|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class LinearBottleNeck(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, stride, t=6, class_num=1):
|
|
super().__init__()
|
|
|
|
self.residual = nn.Sequential(
|
|
nn.Conv2d(in_channels, in_channels * t, 1),
|
|
nn.BatchNorm2d(in_channels * t),
|
|
nn.ReLU6(inplace=True),
|
|
|
|
nn.Conv2d(in_channels * t, in_channels * t, 3, stride=stride, padding=1, groups=in_channels * t),
|
|
nn.BatchNorm2d(in_channels * t),
|
|
nn.ReLU6(inplace=True),
|
|
|
|
nn.Conv2d(in_channels * t, out_channels, 1),
|
|
nn.BatchNorm2d(out_channels)
|
|
)
|
|
|
|
self.stride = stride
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
|
|
def forward(self, x):
|
|
residual = self.residual(x)
|
|
|
|
if self.stride == 1 and self.in_channels == self.out_channels:
|
|
residual += x
|
|
|
|
return residual
|
|
|
|
|
|
|
|
|
|
class ImplicitNet(nn.Module):
|
|
|
|
def __init__(self, class_num=1):
|
|
super().__init__()
|
|
|
|
self.pre = nn.Sequential(
|
|
nn.Conv2d(5, 32, 1, padding=1),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU6(inplace=True)
|
|
)
|
|
|
|
self.stage1 = LinearBottleNeck(32, 16, 1, 1)
|
|
self.stage2 = self._make_stage(2, 16, 24, 2, 6)
|
|
self.stage3 = self._make_stage(3, 24, 32, 2, 6)
|
|
self.stage4 = self._make_stage(4, 32, 64, 2, 6)
|
|
self.stage5 = self._make_stage(3, 64, 96, 1, 6)
|
|
self.stage6 = self._make_stage(3, 96, 160, 1, 6)
|
|
self.stage7 = LinearBottleNeck(160, 320, 1, 6)
|
|
|
|
self.conv1 = nn.Sequential(
|
|
nn.Conv2d(320, 1280, 1),
|
|
nn.BatchNorm2d(1280),
|
|
nn.ReLU6(inplace=True)
|
|
)
|
|
|
|
self.conv2 = nn.Conv2d(1280, class_num, 1)
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, seg, label, natural):
|
|
label = label.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(seg.size())
|
|
|
|
x = torch.cat((label,natural,seg),1)
|
|
x = self.pre(x)
|
|
x = self.stage1(x)
|
|
x = self.stage2(x)
|
|
x = self.stage3(x)
|
|
x = self.stage4(x)
|
|
x = self.stage5(x)
|
|
x = self.stage6(x)
|
|
x = self.stage7(x)
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
x = self.sigmoid(x)
|
|
return x
|
|
|
|
def _make_stage(self, repeat, in_channels, out_channels, stride, t):
|
|
layers = []
|
|
layers.append(LinearBottleNeck(in_channels, out_channels, stride, t))
|
|
|
|
while repeat - 1:
|
|
layers.append(LinearBottleNeck(out_channels, out_channels, 1, t))
|
|
repeat -= 1
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
|
|
|
|
def implicitnet():
|
|
return ImplicitNet() |