introvoyz041's picture
Migrated from GitHub
faa56b4 verified
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath as TimmDropPath
from timm.models.layers import to_2tuple, trunc_normal_
from timm.models.registry import register_model
from ...common import LayerNorm2d
from .adalora_block import TinyViTAdaloraBlock
from .adapter_block import TinyViTAdapterBlock
from .block import TinyViTBlock
from .lora_block import TinyViTLoraBlock
from .utils import Conv2d_BN, DropPath, Mlp
class PatchEmbed(nn.Module):
def __init__(self, in_chans, embed_dim, resolution, activation):
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * \
self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
return self.seq(x)
class MBConv(nn.Module):
def __init__(self, in_chans, out_chans, expand_ratio,
activation, drop_path):
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans,
ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(
self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
return x
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, out_dim, activation):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c=2
if(out_dim==320 or out_dim==448 or out_dim==576):
stride_c=1
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
if x.ndim == 3:
H, W = self.input_resolution
B = len(x)
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
x = x.flatten(2).transpose(1, 2)
return x
class ConvLayer(nn.Module):
def __init__(self, dim, input_resolution, depth,
activation,
drop_path=0., downsample=None, use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
MBConv(dim, dim, conv_expand_ratio, activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
class BasicLayer(nn.Module):
""" A basic TinyViT layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
activation: the activation function. Default: nn.GELU
out_dim: the output dimension of the layer. Default: dim
"""
def __init__(self, args, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., drop=0.,
drop_path=0., downsample=None, use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
if args.mod == 'sam_adpt':
block_class = TinyViTAdapterBlock
elif args.mod == 'sam_lora':
block_class = TinyViTLoraBlock
elif args.mod == 'sam_adalora':
block_class = TinyViTAdaloraBlock
else:
block_class = TinyViTBlock
self.blocks = nn.ModuleList([
block_class(dim=dim, args = args,input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class TinyViT(nn.Module):
def __init__(self, args, img_size=224, in_chans=3, num_classes=1000,
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
super().__init__()
self.img_size=img_size
#import pdb;pdb.set_trace()
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(in_chans=in_chans,
embed_dim=embed_dims[0],
resolution=img_size,
activation=activation)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(dim=embed_dims[i_layer],
input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
downsample=PatchMerging if (
i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(
i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(
conv_expand_ratio=mbconv_expand_ratio,
**kwargs,
)
else:
layer = BasicLayer(
args = args,
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
decay_rate = layer_lr_decay
# layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
#print("LR SCALES:", lr_scales)
def _set_lr_scale(m, scale):
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(
lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
for p in m.parameters():
assert hasattr(p, 'lr_scale'), p.param_name
self.apply(_check_lr_scale)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'attention_biases'}
def forward_features(self, x):
# x: (N, C, H, W)
x = self.patch_embed(x)
x = self.layers[0](x)
start_i = 1
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
B,_,C=x.size()
x = x.view(B, self.img_size//16, self.img_size//16, C)
x=x.permute(0, 3, 1, 2)
x=self.neck(x)
return x
def forward(self, x):
x = self.forward_features(x)
#x = self.norm_head(x)
#x = self.head(x)
return x
_checkpoint_url_format = \
'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth'
_provided_checkpoints = {
'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill',
'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill',
'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill',
'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill',
'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill',
}
def register_tiny_vit_model(fn):
'''Register a TinyViT model
It is a wrapper of `register_model` with loading the pretrained checkpoint.
'''
def fn_wrapper(pretrained=False, **kwargs):
model = fn()
if pretrained:
model_name = fn.__name__
assert model_name in _provided_checkpoints, \
f'Sorry that the checkpoint `{model_name}` is not provided yet.'
url = _checkpoint_url_format.format(
_provided_checkpoints[model_name])
checkpoint = torch.hub.load_state_dict_from_url(
url=url,
map_location='cpu', check_hash=False,
)
model.load_state_dict(checkpoint['model'])
return model
# rename the name of fn_wrapper
fn_wrapper.__name__ = fn.__name__
return register_model(fn_wrapper)
# @register_tiny_vit_model
def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0):
return TinyViT(
num_classes=num_classes,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
# @register_tiny_vit_model
def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
num_classes=num_classes,
embed_dims=[64, 128, 256, 448],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 8, 14],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
# @register_tiny_vit_model
def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2):
return TinyViT(
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
# @register_tiny_vit_model
def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
img_size=384,
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[12, 12, 24, 12],
drop_path_rate=drop_path_rate,
)
# @register_tiny_vit_model
def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
img_size=512,
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[16, 16, 32, 16],
drop_path_rate=drop_path_rate,
)