|
import itertools |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ...common import Adapter |
|
from .utils import Conv2d_BN, DropPath, Mlp |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__(self, dim, key_dim, num_heads=8, |
|
attn_ratio=4, |
|
resolution=(14, 14), |
|
): |
|
super().__init__() |
|
|
|
assert isinstance(resolution, tuple) and len(resolution) == 2 |
|
self.num_heads = num_heads |
|
self.scale = key_dim ** -0.5 |
|
self.key_dim = key_dim |
|
self.nh_kd = nh_kd = key_dim * num_heads |
|
self.d = int(attn_ratio * key_dim) |
|
self.dh = int(attn_ratio * key_dim) * num_heads |
|
self.attn_ratio = attn_ratio |
|
h = self.dh + nh_kd * 2 |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
self.qkv = nn.Linear(dim, h) |
|
self.proj = nn.Linear(self.dh, dim) |
|
|
|
points = list(itertools.product( |
|
range(resolution[0]), range(resolution[1]))) |
|
N = len(points) |
|
attention_offsets = {} |
|
idxs = [] |
|
for p1 in points: |
|
for p2 in points: |
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
|
if offset not in attention_offsets: |
|
attention_offsets[offset] = len(attention_offsets) |
|
idxs.append(attention_offsets[offset]) |
|
self.attention_biases = torch.nn.Parameter( |
|
torch.zeros(num_heads, len(attention_offsets))) |
|
self.register_buffer('attention_bias_idxs', |
|
torch.LongTensor(idxs).view(N, N), |
|
persistent=False) |
|
|
|
@torch.no_grad() |
|
def train(self, mode=True): |
|
super().train(mode) |
|
if mode and hasattr(self, 'ab'): |
|
del self.ab |
|
else: |
|
self.ab = self.attention_biases[:, self.attention_bias_idxs] |
|
|
|
|
|
|
|
def forward(self, x): |
|
B, N, _ = x.shape |
|
|
|
|
|
x = self.norm(x) |
|
|
|
qkv = self.qkv(x) |
|
|
|
q, k, v = qkv.view(B, N, self.num_heads, - |
|
1).split([self.key_dim, self.key_dim, self.d], dim=3) |
|
|
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
|
|
attn = ( |
|
(q @ k.transpose(-2, -1)) * self.scale |
|
+ |
|
(self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab) |
|
) |
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) |
|
x = self.proj(x) |
|
return x |
|
|
|
class TinyViTAdapterBlock(nn.Module): |
|
r""" TinyViT Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int, int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
local_conv_size (int): the kernel size of the convolution between |
|
Attention and MLP. Default: 3 |
|
activation: the activation function. Default: nn.GELU |
|
""" |
|
|
|
def __init__(self, args, dim, input_resolution, num_heads, window_size=7, |
|
mlp_ratio=4., drop=0., drop_path=0., |
|
local_conv_size=3, |
|
activation=nn.GELU, |
|
): |
|
super().__init__() |
|
self.args = args, |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
assert window_size > 0, 'window_size must be greater than 0' |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
|
|
if(args.mid_dim != None): |
|
adapter_dim = args.mid_dim |
|
else: |
|
adapter_dim = dim |
|
|
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
assert dim % num_heads == 0, 'dim must be divisible by num_heads' |
|
head_dim = dim // num_heads |
|
|
|
window_resolution = (window_size, window_size) |
|
self.attn = Attention(dim, head_dim, num_heads, |
|
attn_ratio=1, resolution=window_resolution) |
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
mlp_activation = activation |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, |
|
act_layer=mlp_activation, drop=drop) |
|
|
|
self.MLP_Adapter = Adapter(adapter_dim, skip_connect=False) |
|
self.Space_Adapter = Adapter(adapter_dim) |
|
self.Depth_Adapter = Adapter(adapter_dim, skip_connect=False) |
|
|
|
pad = local_conv_size // 2 |
|
self.local_conv = Conv2d_BN( |
|
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) |
|
|
|
def forward(self, x): |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
res_x = x |
|
if H == self.window_size and W == self.window_size: |
|
x = self.attn(x) |
|
else: |
|
x = x.view(B, H, W, C) |
|
pad_b = (self.window_size - H % |
|
self.window_size) % self.window_size |
|
pad_r = (self.window_size - W % |
|
self.window_size) % self.window_size |
|
padding = pad_b > 0 or pad_r > 0 |
|
|
|
if padding: |
|
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) |
|
|
|
pH, pW = H + pad_b, W + pad_r |
|
nH = pH // self.window_size |
|
nW = pW // self.window_size |
|
|
|
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( |
|
B * nH * nW, self.window_size * self.window_size, C) |
|
|
|
|
|
if self.args[0].thd: |
|
from einops import rearrange |
|
hh, ww = x.shape[1], x.shape[2] |
|
depth = self.args.chunk |
|
xd = rearrange(x, '(b d) h w c -> (b h w) d c ', d=depth) |
|
|
|
xd = self.norm1(xd) |
|
dh, _ = closest_numbers(depth) |
|
xd = rearrange(xd, 'bhw (dh dw) c -> bhw dh dw c', dh= dh) |
|
xd = self.Depth_Adapter(self.attn(xd)) |
|
xd = rearrange(xd, '(b n) dh dw c ->(b dh dw) n c', n= hh * ww ) |
|
|
|
x = self.attn(x) |
|
x = self.Space_Adapter(x) |
|
|
|
if self.args[0].thd: |
|
xd = rearrange(xd, 'b (hh ww) c -> b hh ww c', hh= hh ) |
|
x = x + xd |
|
|
|
|
|
x = x.view(B, nH, nW, self.window_size, self.window_size, |
|
C).transpose(2, 3).reshape(B, pH, pW, C) |
|
|
|
if padding: |
|
x = x[:, :H, :W].contiguous() |
|
|
|
x = x.view(B, L, C) |
|
|
|
x = res_x + self.drop_path(x) |
|
|
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
x = self.local_conv(x) |
|
x = x.view(B, C, L).transpose(1, 2) |
|
|
|
x = x + self.drop_path(self.mlp(x)) + 0.5 * self.MLP_Adapter(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" |
|
|
|
def closest_numbers(target): |
|
a = int(target ** 0.5) |
|
b = a + 1 |
|
while True: |
|
if a * b == target: |
|
return (a, b) |
|
elif a * b < target: |
|
b += 1 |
|
else: |
|
a -= 1 |