File size: 43,508 Bytes
faa56b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 |
""" helper function
author junde
"""
import collections
import logging
import math
import os
import pathlib
import random
import shutil
import sys
import tempfile
import time
import warnings
from collections import OrderedDict
from datetime import datetime
from typing import BinaryIO, List, Optional, Text, Tuple, Union
import dateutil.tz
import matplotlib.pyplot as plt
import numpy
import numpy as np
import PIL
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
from monai.config import print_config
from monai.data import (CacheDataset, ThreadDataLoader, decollate_batch,
load_decathlon_datalist, set_track_meta)
from monai.inferers import sliding_window_inference
from monai.losses import DiceCELoss
from monai.metrics import DiceMetric
from monai.networks.nets import SwinUNETR
from monai.transforms import (AsDiscrete, Compose, CropForegroundd,
EnsureTyped, LoadImaged, Orientationd,
RandCropByPosNegLabeld, RandFlipd, RandRotate90d,
RandShiftIntensityd, ScaleIntensityRanged,
Spacingd)
from PIL import Image, ImageColor, ImageDraw, ImageFont
from torch import autograd
from torch.autograd import Function, Variable
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
# from lucent.optvis.param.spatial import pixel_image, fft_image, init_image
# from lucent.optvis.param.color import to_valid_rgb
# from lucent.optvis import objectives, transform, param
# from lucent.misc.io import show
from torchvision.models import vgg19
from tqdm import tqdm
import cfg
# from precpt import run_precpt
from models.discriminator import Discriminator
# from siren_pytorch import SirenNet, SirenWrapper
args = cfg.parse_args()
device = torch.device('cuda', args.gpu_device)
'''preparation of domain loss'''
# cnn = vgg19(pretrained=True).features.to(device).eval()
# cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
# cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# netD = Discriminator(1).to(device)
# netD.apply(init_D)
# beta1 = 0.5
# dis_lr = 0.0002
# optimizerD = optim.Adam(netD.parameters(), lr=dis_lr, betas=(beta1, 0.999))
'''end'''
def get_network(args, net, use_gpu=True, gpu_device = 0, distribution = True):
""" return given network
"""
if net == 'sam':
from models.sam import SamPredictor, sam_model_registry
from models.sam.utils.transforms import ResizeLongestSide
options = ['default','vit_b','vit_l','vit_h']
if args.encoder not in options:
raise ValueError("Invalid encoder option. Please choose from: {}".format(options))
else:
net = sam_model_registry[args.encoder](args,checkpoint=args.sam_ckpt).to(device)
elif net == 'efficient_sam':
from models.efficient_sam import sam_model_registry
options = ['default','vit_s','vit_t']
if args.encoder not in options:
raise ValueError("Invalid encoder option. Please choose from: {}".format(options))
else:
net = sam_model_registry[args.encoder](args)
elif net == 'mobile_sam':
from models.MobileSAMv2.mobilesamv2 import sam_model_registry
options = ['default','vit_h','vit_l','vit_b','tiny_vit','efficientvit_l2','PromptGuidedDecoder','sam_vit_h']
if args.encoder not in options:
raise ValueError("Invalid encoder option. Please choose from: {}".format(options))
else:
net = sam_model_registry[args.encoder](args,checkpoint=args.sam_ckpt)
else:
print('the network name you have entered is not supported yet')
sys.exit()
if use_gpu:
#net = net.cuda(device = gpu_device)
if distribution != 'none':
net = torch.nn.DataParallel(net,device_ids=[int(id) for id in args.distributed.split(',')])
net = net.to(device=gpu_device)
else:
net = net.to(device=gpu_device)
return net
def get_decath_loader(args):
train_transforms = Compose(
[
LoadImaged(keys=["image", "label"], ensure_channel_first=True),
ScaleIntensityRanged(
keys=["image"],
a_min=-175,
a_max=250,
b_min=0.0,
b_max=1.0,
clip=True,
),
CropForegroundd(keys=["image", "label"], source_key="image"),
Orientationd(keys=["image", "label"], axcodes="RAS"),
Spacingd(
keys=["image", "label"],
pixdim=(1.5, 1.5, 2.0),
mode=("bilinear", "nearest"),
),
EnsureTyped(keys=["image", "label"], device=device, track_meta=False),
RandCropByPosNegLabeld(
keys=["image", "label"],
label_key="label",
spatial_size=(args.roi_size, args.roi_size, args.chunk),
pos=1,
neg=1,
num_samples=args.num_sample,
image_key="image",
image_threshold=0,
),
RandFlipd(
keys=["image", "label"],
spatial_axis=[0],
prob=0.10,
),
RandFlipd(
keys=["image", "label"],
spatial_axis=[1],
prob=0.10,
),
RandFlipd(
keys=["image", "label"],
spatial_axis=[2],
prob=0.10,
),
RandRotate90d(
keys=["image", "label"],
prob=0.10,
max_k=3,
),
RandShiftIntensityd(
keys=["image"],
offsets=0.10,
prob=0.50,
),
]
)
val_transforms = Compose(
[
LoadImaged(keys=["image", "label"], ensure_channel_first=True),
ScaleIntensityRanged(
keys=["image"], a_min=-175, a_max=250, b_min=0.0, b_max=1.0, clip=True
),
CropForegroundd(keys=["image", "label"], source_key="image"),
Orientationd(keys=["image", "label"], axcodes="RAS"),
Spacingd(
keys=["image", "label"],
pixdim=(1.5, 1.5, 2.0),
mode=("bilinear", "nearest"),
),
EnsureTyped(keys=["image", "label"], device=device, track_meta=True),
]
)
data_dir = args.data_path
split_JSON = "dataset_0.json"
datasets = os.path.join(data_dir, split_JSON)
datalist = load_decathlon_datalist(datasets, True, "training")
val_files = load_decathlon_datalist(datasets, True, "validation")
train_ds = CacheDataset(
data=datalist,
transform=train_transforms,
cache_num=24,
cache_rate=1.0,
num_workers=8,
)
train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=args.b, shuffle=True)
val_ds = CacheDataset(
data=val_files, transform=val_transforms, cache_num=2, cache_rate=1.0, num_workers=0
)
val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1)
set_track_meta(False)
return train_loader, val_loader, train_transforms, val_transforms, datalist, val_files
def cka_loss(gram_featureA, gram_featureB):
scaled_hsic = torch.dot(torch.flatten(gram_featureA),torch.flatten(gram_featureB))
normalization_x = gram_featureA.norm()
normalization_y = gram_featureB.norm()
return scaled_hsic / (normalization_x * normalization_y)
class WarmUpLR(_LRScheduler):
"""warmup_training learning rate scheduler
Args:
optimizer: optimzier(e.g. SGD)
total_iters: totoal_iters of warmup phase
"""
def __init__(self, optimizer, total_iters, last_epoch=-1):
self.total_iters = total_iters
super().__init__(optimizer, last_epoch)
def get_lr(self):
"""we will use the first m batches, and set the learning
rate to base_lr * m / total_iters
"""
return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs]
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
@torch.no_grad()
def make_grid(
tensor: Union[torch.Tensor, List[torch.Tensor]],
nrow: int = 8,
padding: int = 2,
normalize: bool = False,
value_range: Optional[Tuple[int, int]] = None,
scale_each: bool = False,
pad_value: int = 0,
**kwargs
) -> torch.Tensor:
if not (torch.is_tensor(tensor) or
(isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if "range" in kwargs.keys():
warning = "range will be deprecated, please use value_range instead."
warnings.warn(warning)
value_range = kwargs["range"]
# if list of tensors, convert to a 4D mini-batch Tensor
if isinstance(tensor, list):
tensor = torch.stack(tensor, dim=0)
if tensor.dim() == 2: # single image H x W
tensor = tensor.unsqueeze(0)
if tensor.dim() == 3: # single image
if tensor.size(0) == 1: # if single-channel, convert to 3-channel
tensor = torch.cat((tensor, tensor, tensor), 0)
tensor = tensor.unsqueeze(0)
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
tensor = torch.cat((tensor, tensor, tensor), 1)
if normalize is True:
tensor = tensor.clone() # avoid modifying tensor in-place
if value_range is not None:
assert isinstance(value_range, tuple), \
"value_range has to be a tuple (min, max) if specified. min and max are numbers"
def norm_ip(img, low, high):
img.clamp(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
def norm_range(t, value_range):
if value_range is not None:
norm_ip(t, value_range[0], value_range[1])
else:
norm_ip(t, float(t.min()), float(t.max()))
if scale_each is True:
for t in tensor: # loop over mini-batch dimension
norm_range(t, value_range)
else:
norm_range(tensor, value_range)
if tensor.size(0) == 1:
return tensor.squeeze(0)
# make the mini-batch of images into a grid
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
num_channels = tensor.size(1)
grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
# Tensor.copy_() is a valid method but seems to be missing from the stubs
# https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
grid.narrow(1, y * height + padding, height - padding).narrow( # type: ignore[attr-defined]
2, x * width + padding, width - padding
).copy_(tensor[k])
k = k + 1
return grid
@torch.no_grad()
def save_image(
tensor: Union[torch.Tensor, List[torch.Tensor]],
fp: Union[Text, pathlib.Path, BinaryIO],
format: Optional[str] = None,
**kwargs
) -> None:
"""
Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
fp (string or file object): A filename or a file object
format(Optional): If omitted, the format to use is determined from the filename extension.
If a file object was used instead of a filename, this parameter should always be used.
**kwargs: Other arguments are documented in ``make_grid``.
"""
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(fp, format=format)
def create_logger(log_dir, phase='train'):
time_str = time.strftime('%Y-%m-%d-%H-%M')
log_file = '{}_{}.log'.format(time_str, phase)
final_log_file = os.path.join(log_dir, log_file)
head = '%(asctime)-15s %(message)s'
logging.basicConfig(filename=str(final_log_file),
format=head)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console = logging.StreamHandler()
logging.getLogger('').addHandler(console)
return logger
def set_log_dir(root_dir, exp_name):
path_dict = {}
os.makedirs(root_dir, exist_ok=True)
# set log path
exp_path = os.path.join(root_dir, exp_name)
now = datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
prefix = exp_path + '_' + timestamp
os.makedirs(prefix)
path_dict['prefix'] = prefix
# set checkpoint path
ckpt_path = os.path.join(prefix, 'Model')
os.makedirs(ckpt_path)
path_dict['ckpt_path'] = ckpt_path
log_path = os.path.join(prefix, 'Log')
os.makedirs(log_path)
path_dict['log_path'] = log_path
# set sample image path for fid calculation
sample_path = os.path.join(prefix, 'Samples')
os.makedirs(sample_path)
path_dict['sample_path'] = sample_path
return path_dict
def save_checkpoint(states, is_best, output_dir,
filename='checkpoint.pth'):
torch.save(states, os.path.join(output_dir, filename))
if is_best:
torch.save(states, os.path.join(output_dir, 'checkpoint_best.pth'))
class RunningStats:
def __init__(self, WIN_SIZE):
self.mean = 0
self.run_var = 0
self.WIN_SIZE = WIN_SIZE
self.window = collections.deque(maxlen=WIN_SIZE)
def clear(self):
self.window.clear()
self.mean = 0
self.run_var = 0
def is_full(self):
return len(self.window) == self.WIN_SIZE
def push(self, x):
if len(self.window) == self.WIN_SIZE:
# Adjusting variance
x_removed = self.window.popleft()
self.window.append(x)
old_m = self.mean
self.mean += (x - x_removed) / self.WIN_SIZE
self.run_var += (x + x_removed - old_m - self.mean) * (x - x_removed)
else:
# Calculating first variance
self.window.append(x)
delta = x - self.mean
self.mean += delta / len(self.window)
self.run_var += delta * (x - self.mean)
def get_mean(self):
return self.mean if len(self.window) else 0.0
def get_var(self):
return self.run_var / len(self.window) if len(self.window) > 1 else 0.0
def get_std(self):
return math.sqrt(self.get_var())
def get_all(self):
return list(self.window)
def __str__(self):
return "Current window values: {}".format(list(self.window))
def iou(outputs: np.array, labels: np.array):
SMOOTH = 1e-6
intersection = (outputs & labels).sum((1, 2))
union = (outputs | labels).sum((1, 2))
iou = (intersection + SMOOTH) / (union + SMOOTH)
return iou.mean()
class DiceCoeff(Function):
"""Dice coeff for individual examples"""
def forward(self, input, target):
self.save_for_backward(input, target)
eps = 0.0001
self.inter = torch.dot(input.view(-1), target.view(-1))
self.union = torch.sum(input) + torch.sum(target) + eps
t = (2 * self.inter.float() + eps) / self.union.float()
return t
# This function has only a single output, so it gets only one gradient
def backward(self, grad_output):
input, target = self.saved_variables
grad_input = grad_target = None
if self.needs_input_grad[0]:
grad_input = grad_output * 2 * (target * self.union - self.inter) \
/ (self.union * self.union)
if self.needs_input_grad[1]:
grad_target = None
return grad_input, grad_target
def dice_coeff(input, target):
"""Dice coeff for batches"""
if input.is_cuda:
s = torch.FloatTensor(1).to(device = input.device).zero_()
else:
s = torch.FloatTensor(1).zero_()
for i, c in enumerate(zip(input, target)):
s = s + DiceCoeff().forward(c[0], c[1])
return s / (i + 1)
'''parameter'''
def para_image(w, h=None, img = None, mode = 'multi', seg = None, sd=None, batch=None,
fft = False, channels=None, init = None):
h = h or w
batch = batch or 1
ch = channels or 3
shape = [batch, ch, h, w]
param_f = fft_image if fft else pixel_image
if init is not None:
param_f = init_image
params, maps_f = param_f(init)
else:
params, maps_f = param_f(shape, sd=sd)
if mode == 'multi':
output = to_valid_out(maps_f,img,seg)
elif mode == 'seg':
output = gene_out(maps_f,img)
elif mode == 'raw':
output = raw_out(maps_f,img)
return params, output
def to_valid_out(maps_f,img,seg): #multi-rater
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
maps = torch.nn.Softmax(dim = 1)(maps)
final_seg = torch.multiply(seg,maps).sum(dim = 1, keepdim = True)
return torch.cat((img,final_seg),1)
# return torch.cat((img,maps),1)
return inner
def gene_out(maps_f,img): #pure seg
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
# maps = torch.nn.Sigmoid()(maps)
return torch.cat((img,maps),1)
# return torch.cat((img,maps),1)
return inner
def raw_out(maps_f,img): #raw
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
# maps = torch.nn.Sigmoid()(maps)
return maps
# return torch.cat((img,maps),1)
return inner
class CompositeActivation(torch.nn.Module):
def forward(self, x):
x = torch.atan(x)
return torch.cat([x/0.67, (x*x)/0.6], 1)
# return x
def cppn(args, size, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8,
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"):
r = 3 ** 0.5
coord_range = torch.linspace(-r, r, size)
x = coord_range.view(-1, 1).repeat(1, coord_range.size(0))
y = coord_range.view(1, -1).repeat(coord_range.size(0), 1)
input_tensor = torch.stack([x, y], dim=0).unsqueeze(0).repeat(batch,1,1,1).to(device)
layers = []
kernel_size = 1
for i in range(num_layers):
out_c = num_hidden_channels
in_c = out_c * 2 # * 2 for composite activation
if i == 0:
in_c = 2
if i == num_layers - 1:
out_c = num_output_channels
layers.append(('conv{}'.format(i), torch.nn.Conv2d(in_c, out_c, kernel_size)))
if normalize:
layers.append(('norm{}'.format(i), torch.nn.InstanceNorm2d(out_c)))
if i < num_layers - 1:
layers.append(('actv{}'.format(i), activation_fn()))
else:
layers.append(('output', torch.nn.Sigmoid()))
# Initialize model
net = torch.nn.Sequential(OrderedDict(layers)).to(device)
# Initialize weights
def weights_init(module):
if isinstance(module, torch.nn.Conv2d):
torch.nn.init.normal_(module.weight, 0, np.sqrt(1/module.in_channels))
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
net.apply(weights_init)
# Set last conv2d layer's weights to 0
torch.nn.init.zeros_(dict(net.named_children())['conv{}'.format(num_layers - 1)].weight)
outimg = raw_out(lambda: net(input_tensor),img) if args.netype == 'raw' else to_valid_out(lambda: net(input_tensor),img,seg)
return net.parameters(), outimg
def get_siren(args):
wrapper = get_network(args, 'siren', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed)
'''load init weights'''
checkpoint = torch.load('./logs/siren_train_init_2022_08_19_21_00_16/Model/checkpoint_best.pth')
wrapper.load_state_dict(checkpoint['state_dict'],strict=False)
'''end'''
'''load prompt'''
checkpoint = torch.load('./logs/vae_standard_refuge1_2022_08_21_17_56_49/Model/checkpoint500')
vae = get_network(args, 'vae', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed)
vae.load_state_dict(checkpoint['state_dict'],strict=False)
'''end'''
return wrapper, vae
def siren(args, wrapper, vae, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8,
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"):
vae_img = torchvision.transforms.Resize(64)(img)
latent = vae.encoder(vae_img).view(-1).detach()
outimg = raw_out(lambda: wrapper(latent = latent),img) if args.netype == 'raw' else to_valid_out(lambda: wrapper(latent = latent),img,seg)
# img = torch.randn(1, 3, 256, 256)
# loss = wrapper(img)
# loss.backward()
# # after much training ...
# # simply invoke the wrapper without passing in anything
# pred_img = wrapper() # (1, 3, 256, 256)
return wrapper.parameters(), outimg
'''adversary'''
def render_vis(
args,
model,
objective_f,
real_img,
param_f=None,
optimizer=None,
transforms=None,
thresholds=(256,),
verbose=True,
preprocess=True,
progress=True,
show_image=True,
save_image=False,
image_name=None,
show_inline=False,
fixed_image_size=None,
label = 1,
raw_img = None,
prompt = None
):
if label == 1:
sign = 1
elif label == 0:
sign = -1
else:
print('label is wrong, label is',label)
if args.reverse:
sign = -sign
if args.multilayer:
sign = 1
'''prepare'''
now = datetime.now()
date_time = now.strftime("%m-%d-%Y, %H:%M:%S")
netD, optD = pre_d()
'''end'''
if param_f is None:
param_f = lambda: param.image(128)
# param_f is a function that should return two things
# params - parameters to update, which we pass to the optimizer
# image_f - a function that returns an image as a tensor
params, image_f = param_f()
if optimizer is None:
optimizer = lambda params: torch.optim.Adam(params, lr=5e-1)
optimizer = optimizer(params)
if transforms is None:
transforms = []
transforms = transforms.copy()
# Upsample images smaller than 224
image_shape = image_f().shape
if fixed_image_size is not None:
new_size = fixed_image_size
elif image_shape[2] < 224 or image_shape[3] < 224:
new_size = 224
else:
new_size = None
if new_size:
transforms.append(
torch.nn.Upsample(size=new_size, mode="bilinear", align_corners=True)
)
transform_f = transform.compose(transforms)
hook = hook_model(model, image_f)
objective_f = objectives.as_objective(objective_f)
if verbose:
model(transform_f(image_f()))
print("Initial loss of ad: {:.3f}".format(objective_f(hook)))
images = []
try:
for i in tqdm(range(1, max(thresholds) + 1), disable=(not progress)):
optimizer.zero_grad()
try:
model(transform_f(image_f()))
except RuntimeError as ex:
if i == 1:
# Only display the warning message
# on the first iteration, no need to do that
# every iteration
warnings.warn(
"Some layers could not be computed because the size of the "
"image is not big enough. It is fine, as long as the non"
"computed layers are not used in the objective function"
f"(exception details: '{ex}')"
)
if args.disc:
'''dom loss part'''
# content_img = raw_img
# style_img = raw_img
# precpt_loss = run_precpt(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, transform_f(image_f()))
for p in netD.parameters():
p.requires_grad = True
for _ in range(args.drec):
netD.zero_grad()
real = real_img
fake = image_f()
# for _ in range(6):
# errD, D_x, D_G_z1 = update_d(args, netD, optD, real, fake)
# label = torch.full((args.b,), 1., dtype=torch.float, device=device)
# label.fill_(1.)
# output = netD(fake).view(-1)
# errG = nn.BCELoss()(output, label)
# D_G_z2 = output.mean().item()
# dom_loss = err
one = torch.tensor(1, dtype=torch.float)
mone = one * -1
one = one.cuda(args.gpu_device)
mone = mone.cuda(args.gpu_device)
d_loss_real = netD(real)
d_loss_real = d_loss_real.mean()
d_loss_real.backward(mone)
d_loss_fake = netD(fake)
d_loss_fake = d_loss_fake.mean()
d_loss_fake.backward(one)
# Train with gradient penalty
gradient_penalty = calculate_gradient_penalty(netD, real.data, fake.data)
gradient_penalty.backward()
d_loss = d_loss_fake - d_loss_real + gradient_penalty
Wasserstein_D = d_loss_real - d_loss_fake
optD.step()
# Generator update
for p in netD.parameters():
p.requires_grad = False # to avoid computation
fake_images = image_f()
g_loss = netD(fake_images)
g_loss = -g_loss.mean()
dom_loss = g_loss
g_cost = -g_loss
if i% 5 == 0:
print(f' loss_fake: {d_loss_fake}, loss_real: {d_loss_real}')
print(f'Generator g_loss: {g_loss}')
'''end'''
'''ssim loss'''
'''end'''
if args.disc:
loss = sign * objective_f(hook) + args.pw * dom_loss
# loss = args.pw * dom_loss
else:
loss = sign * objective_f(hook)
# loss = args.pw * dom_loss
loss.backward()
# #video the images
# if i % 5 == 0:
# print('1')
# image_name = image_name[0].split('\\')[-1].split('.')[0] + '_' + str(i) + '.png'
# img_path = os.path.join(args.path_helper['sample_path'], str(image_name))
# export(image_f(), img_path)
# #end
# if i % 50 == 0:
# print('Loss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
# % (errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
optimizer.step()
if i in thresholds:
image = tensor_to_img_array(image_f())
# if verbose:
# print("Loss at step {}: {:.3f}".format(i, objective_f(hook)))
if save_image:
na = image_name[0].split('\\')[-1].split('.')[0] + '_' + str(i) + '.png'
na = date_time + na
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path']
img_path = os.path.join(outpath, str(na))
export(image_f(), img_path)
images.append(image)
except KeyboardInterrupt:
print("Interrupted optimization at step {:d}.".format(i))
if verbose:
print("Loss at step {}: {:.3f}".format(i, objective_f(hook)))
images.append(tensor_to_img_array(image_f()))
if save_image:
na = image_name[0].split('\\')[-1].split('.')[0] + '.png'
na = date_time + na
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path']
img_path = os.path.join(outpath, str(na))
export(image_f(), img_path)
if show_inline:
show(tensor_to_img_array(image_f()))
elif show_image:
view(image_f())
return image_f()
def tensor_to_img_array(tensor):
image = tensor.cpu().detach().numpy()
image = np.transpose(image, [0, 2, 3, 1])
return image
def view(tensor):
image = tensor_to_img_array(tensor)
assert len(image.shape) in [
3,
4,
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape)
# Change dtype for PIL.Image
image = (image * 255).astype(np.uint8)
if len(image.shape) == 4:
image = np.concatenate(image, axis=1)
Image.fromarray(image).show()
def export(tensor, img_path=None):
# image_name = image_name or "image.jpg"
c = tensor.size(1)
# if c == 7:
# for i in range(c):
# w_map = tensor[:,i,:,:].unsqueeze(1)
# w_map = tensor_to_img_array(w_map).squeeze()
# w_map = (w_map * 255).astype(np.uint8)
# image_name = image_name[0].split('/')[-1].split('.')[0] + str(i)+ '.png'
# wheat = sns.heatmap(w_map,cmap='coolwarm')
# figure = wheat.get_figure()
# figure.savefig ('./fft_maps/weightheatmap/'+str(image_name), dpi=400)
# figure = 0
# else:
if c == 3:
vutils.save_image(tensor, fp = img_path)
else:
image = tensor[:,0:3,:,:]
w_map = tensor[:,-1,:,:].unsqueeze(1)
image = tensor_to_img_array(image)
w_map = 1 - tensor_to_img_array(w_map).squeeze()
# w_map[w_map==1] = 0
assert len(image.shape) in [
3,
4,
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape)
# Change dtype for PIL.Image
image = (image * 255).astype(np.uint8)
w_map = (w_map * 255).astype(np.uint8)
Image.fromarray(w_map,'L').save(img_path)
class ModuleHook:
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_fn)
self.module = None
self.features = None
def hook_fn(self, module, input, output):
self.module = module
self.features = output
def close(self):
self.hook.remove()
def hook_model(model, image_f):
features = OrderedDict()
# recursive hooking function
def hook_layers(net, prefix=[]):
if hasattr(net, "_modules"):
for name, layer in net._modules.items():
if layer is None:
# e.g. GoogLeNet's aux1 and aux2 layers
continue
features["_".join(prefix + [name])] = ModuleHook(layer)
hook_layers(layer, prefix=prefix + [name])
hook_layers(model)
def hook(layer):
if layer == "input":
out = image_f()
elif layer == "labels":
out = list(features.values())[-1].features
else:
assert layer in features, f"Invalid layer {layer}. Retrieve the list of layers with `lucent.modelzoo.util.get_model_layers(model)`."
out = features[layer].features
assert out is not None, "There are no saved feature maps. Make sure to put the model in eval mode, like so: `model.to(device).eval()`. See README for example."
return out
return hook
def vis_image(imgs, pred_masks, gt_masks, save_path, reverse = False, points = None, boxes = None):
b,c,h,w = pred_masks.size()
dev = pred_masks.get_device()
row_num = min(b, 4)
if torch.max(pred_masks) > 1 or torch.min(pred_masks) < 0:
pred_masks = torch.sigmoid(pred_masks)
if reverse == True:
pred_masks = 1 - pred_masks
gt_masks = 1 - gt_masks
if c == 2: # for REFUGE multi mask output
pred_disc, pred_cup = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), pred_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w)
gt_disc, gt_cup = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), gt_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w)
tup = (imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:])
compose = torch.cat(tup, 0)
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10)
elif c > 2: # for multi-class segmentation > 2 classes
preds = []
gts = []
for i in range(0, c):
pred = pred_masks[:,i,:,:].unsqueeze(1).expand(b,3,h,w)
preds.append(pred)
gt = gt_masks[:,i,:,:].unsqueeze(1).expand(b,3,h,w)
gts.append(gt)
tup = [imgs[:row_num,:,:,:]] + preds + gts
compose = torch.cat(tup,0)
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10)
else:
imgs = torchvision.transforms.Resize((h,w))(imgs)
if imgs.size(1) == 1:
imgs = imgs[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
pred_masks = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
gt_masks = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
if points != None:
for i in range(b):
if args.thd:
ps = np.round(points.cpu()/args.roi_size * args.out_size).to(dtype = torch.int)
else:
ps = np.round(points.cpu()/args.image_size * args.out_size).to(dtype = torch.int)
# gt_masks[i,:,points[i,0]-5:points[i,0]+5,points[i,1]-5:points[i,1]+5] = torch.Tensor([255, 0, 0]).to(dtype = torch.float32, device = torch.device('cuda:' + str(dev)))
for p in ps:
gt_masks[i,0,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.5
gt_masks[i,1,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.1
gt_masks[i,2,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.4
if boxes is not None:
for i in range(b):
# the next line causes: ValueError: Tensor uint8 expected, got torch.float32
# imgs[i, :] = torchvision.utils.draw_bounding_boxes(imgs[i, :], boxes[i])
# until TorchVision 0.19 is released (paired with Pytorch 2.4), apply this workaround:
img255 = (imgs[i] * 255).byte()
img255 = torchvision.utils.draw_bounding_boxes(img255, boxes[i].reshape(-1, 4), colors="red")
img01 = img255 / 255
# torchvision.utils.save_image(img01, save_path + "_boxes.png")
imgs[i, :] = img01
tup = (imgs[:row_num,:,:,:],pred_masks[:row_num,:,:,:], gt_masks[:row_num,:,:,:])
# compose = torch.cat((imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:]),0)
compose = torch.cat(tup,0)
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10)
return
def eval_seg(pred,true_mask_p,threshold):
'''
threshold: a int or a tuple of int
masks: [b,2,h,w]
pred: [b,2,h,w]
'''
b, c, h, w = pred.size()
if c == 2:
iou_d, iou_c, disc_dice, cup_dice = 0,0,0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
cup_pred = vpred_cpu[:,1,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
cup_mask = gt_vmask_p [:, 1, :, :].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
iou_d += iou(disc_pred,disc_mask)
iou_c += iou(cup_pred,cup_mask)
'''dice for torch'''
disc_dice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
cup_dice += dice_coeff(vpred[:,1,:,:], gt_vmask_p[:,1,:,:]).item()
return iou_d / len(threshold), iou_c / len(threshold), disc_dice / len(threshold), cup_dice / len(threshold)
elif c > 2: # for multi-class segmentation > 2 classes
ious = [0] * c
dices = [0] * c
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
for i in range(0, c):
pred = vpred_cpu[:,i,:,:].numpy().astype('int32')
mask = gt_vmask_p[:,i,:,:].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
ious[i] += iou(pred,mask)
'''dice for torch'''
dices[i] += dice_coeff(vpred[:,i,:,:], gt_vmask_p[:,i,:,:]).item()
return tuple(np.array(ious + dices) / len(threshold)) # tuple has a total number of c * 2
else:
eiou, edice = 0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
eiou += iou(disc_pred,disc_mask)
'''dice for torch'''
edice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
return eiou / len(threshold), edice / len(threshold)
# @objectives.wrap_objective()
def dot_compare(layer, batch=1, cossim_pow=0):
def inner(T):
dot = (T(layer)[batch] * T(layer)[0]).sum()
mag = torch.sqrt(torch.sum(T(layer)[0]**2))
cossim = dot/(1e-6 + mag)
return -dot * cossim ** cossim_pow
return inner
def init_D(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def pre_d():
netD = Discriminator(3).to(device)
# netD.apply(init_D)
beta1 = 0.5
dis_lr = 0.00002
optimizerD = optim.Adam(netD.parameters(), lr=dis_lr, betas=(beta1, 0.999))
return netD, optimizerD
def update_d(args, netD, optimizerD, real, fake):
criterion = nn.BCELoss()
label = torch.full((args.b,), 1., dtype=torch.float, device=device)
output = netD(real).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
# Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()
label.fill_(0.)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
# Calculate the gradients for this batch, accumulated (summed) with previous gradients
errD_fake.backward()
D_G_z1 = output.mean().item()
# Compute error of D as sum over the fake and the real batches
errD = errD_real + errD_fake
# Update D
optimizerD.step()
return errD, D_x, D_G_z1
def calculate_gradient_penalty(netD, real_images, fake_images):
eta = torch.FloatTensor(args.b,1,1,1).uniform_(0,1)
eta = eta.expand(args.b, real_images.size(1), real_images.size(2), real_images.size(3)).to(device = device)
interpolated = (eta * real_images + ((1 - eta) * fake_images)).to(device = device)
# define it to calculate gradient
interpolated = Variable(interpolated, requires_grad=True)
# calculate probability of interpolated examples
prob_interpolated = netD(interpolated)
# calculate gradients of probabilities with respect to examples
gradients = autograd.grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(
prob_interpolated.size()).to(device = device),
create_graph=True, retain_graph=True)[0]
grad_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * 10
return grad_penalty
def random_click(mask, point_labels = 1):
# check if all masks are black
max_label = max(set(mask.flatten()))
if max_label == 0:
point_labels = max_label
# max agreement position
indices = np.argwhere(mask == max_label)
return point_labels, indices[np.random.randint(len(indices))]
def generate_click_prompt(img, msk, pt_label = 1):
# return: prompt, prompt mask
pt_list = []
msk_list = []
b, c, h, w, d = msk.size()
msk = msk[:,0,:,:,:]
for i in range(d):
pt_list_s = []
msk_list_s = []
for j in range(b):
msk_s = msk[j,:,:,i]
indices = torch.nonzero(msk_s)
if indices.size(0) == 0:
# generate a random array between [0-h, 0-h]:
random_index = torch.randint(0, h, (2,)).to(device = msk.device)
new_s = msk_s
else:
random_index = random.choice(indices)
label = msk_s[random_index[0], random_index[1]]
new_s = torch.zeros_like(msk_s)
# convert bool tensor to int
new_s = (msk_s == label).to(dtype = torch.float)
# new_s[msk_s == label] = 1
pt_list_s.append(random_index)
msk_list_s.append(new_s)
pts = torch.stack(pt_list_s, dim=0)
msks = torch.stack(msk_list_s, dim=0)
pt_list.append(pts)
msk_list.append(msks)
pt = torch.stack(pt_list, dim=-1)
msk = torch.stack(msk_list, dim=-1)
msk = msk.unsqueeze(1)
return img, pt, msk #[b, 2, d], [b, c, h, w, d]
def random_box(multi_rater):
max_value = torch.max(multi_rater[:,0,:,:], dim=0)[0]
max_value_position = torch.nonzero(max_value)
x_coords = max_value_position[:, 0]
y_coords = max_value_position[:, 1]
x_min = int(torch.min(x_coords))
x_max = int(torch.max(x_coords))
y_min = int(torch.min(y_coords))
y_max = int(torch.max(y_coords))
x_min = random.choice(np.arange(x_min-10,x_min+11))
x_max = random.choice(np.arange(x_max-10,x_max+11))
y_min = random.choice(np.arange(y_min-10,y_min+11))
y_max = random.choice(np.arange(y_max-10,y_max+11))
return x_min, x_max, y_min, y_max
|