File size: 5,234 Bytes
faa56b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from torch import nn
from torch.nn import functional as F
# from .types_ import *


class VanillaVAE(nn.Module):
    def __init__(self,args,
                 in_channels: int,
                 latent_dim: int,
                 hidden_dims = None,
                 **kwargs) -> None:
        super(VanillaVAE, self).__init__()

        self.latent_dim = latent_dim

        modules = []
        if hidden_dims is None:
            hidden_dims = [32, 64, 128, 256, 512]
        
        if latent_dim is None:
            latent_dim = 512

        # Build Encoder
        for h_dim in hidden_dims:
            modules.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels=h_dim,
                              kernel_size= 3, stride= 2, padding  = 1),
                    nn.BatchNorm2d(h_dim),
                    nn.LeakyReLU())
            )
            in_channels = h_dim

        self.encoder = nn.Sequential(*modules)
        self.fc_mu = nn.Linear(hidden_dims[-1]*4, latent_dim)
        self.fc_var = nn.Linear(hidden_dims[-1]*4, latent_dim)


        # Build Decoder
        modules = []

        self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4)

        hidden_dims.reverse()

        for i in range(len(hidden_dims) - 1):
            modules.append(
                nn.Sequential(
                    nn.ConvTranspose2d(hidden_dims[i],
                                       hidden_dims[i + 1],
                                       kernel_size=3,
                                       stride = 2,
                                       padding=1,
                                       output_padding=1),
                    nn.BatchNorm2d(hidden_dims[i + 1]),
                    nn.LeakyReLU())
            )



        self.decoder = nn.Sequential(*modules)

        self.final_layer = nn.Sequential(
                            nn.ConvTranspose2d(hidden_dims[-1],
                                               hidden_dims[-1],
                                               kernel_size=3,
                                               stride=2,
                                               padding=1,
                                               output_padding=1),
                            nn.BatchNorm2d(hidden_dims[-1]),
                            nn.LeakyReLU(),
                            nn.Conv2d(hidden_dims[-1], out_channels= 3,
                                      kernel_size= 3, padding= 1),
                            nn.Tanh())

    def encode(self, input):
        """
        Encodes the input by passing through the encoder network
        and returns the latent codes.
        :param input: (Tensor) Input tensor to encoder [N x C x H x W]
        :return: (Tensor) List of latent codes
        """
        result = self.encoder(input)
        result = torch.flatten(result, start_dim=1)

        # Split the result into mu and var components
        # of the latent Gaussian distribution
        mu = self.fc_mu(result)
        # log_var = self.fc_var(result)

        return mu

    def decode(self, z):
        """
        Maps the given latent codes
        onto the image space.
        :param z: (Tensor) [B x D]
        :return: (Tensor) [B x C x H x W]
        """
        result = self.decoder_input(z)
        result = result.view(-1, 512, 2, 2)
        result = self.decoder(result)
        result = self.final_layer(result)
        return result

    # def reparameterize(self, mu, logvar):
    #     """
    #     Reparameterization trick to sample from N(mu, var) from
    #     N(0,1).
    #     :param mu: (Tensor) Mean of the latent Gaussian [B x D]
    #     :param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
    #     :return: (Tensor) [B x D]
    #     """
    #     std = torch.exp(0.5 * logvar)
    #     eps = torch.randn_like(std)
    #     return eps * std + mu

    def forward(self, input, **kwargs):
        mu = self.encode(input)
        # z = self.reparameterize(mu, log_var)
        return  self.decode(mu)

    def loss_function(self,
                      *args,
                      **kwargs) -> dict:
        """
        Computes the VAE loss function.
        KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}
        :param args:
        :param kwargs:
        :return:
        """
        recons = args[0]
        input = args[1]
        # mu = args[2]
        # log_var = args[3]

        # kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
        recons_loss =F.mse_loss(recons, input)


        # kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)

        loss = recons_loss
        return loss
        # {'loss': loss, 'Reconstruction_Loss':recons_loss.detach(), 'KLD':recons_loss.detach()}


    def generate(self, x, **kwargs):
        """
        Given an input image x, returns the reconstructed image
        :param x: (Tensor) [B x C x H x W]
        :return: (Tensor) [B x C x H x W]
        """

        return self.forward(x)[0]