File size: 6,464 Bytes
faa56b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import itertools

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath as TimmDropPath

from .utils import Conv2d_BN, DropPath, Mlp


class Attention(torch.nn.Module):
    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 resolution=(14, 14),
                 ):
        super().__init__()
        # (h, w)
        assert isinstance(resolution, tuple) and len(resolution) == 2
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2

        self.norm = nn.LayerNorm(dim)
        self.qkv = nn.Linear(dim, h)
        self.proj = nn.Linear(self.dh, dim)

        points = list(itertools.product(
            range(resolution[0]), range(resolution[1])))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N),
                             persistent=False)

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]
            # self.register_buffer('ab',
            #                    self.attention_biases[:, self.attention_bias_idxs],
            #                    persistent=False)
    def forward(self, x):  # x (B,N,C)
        B, N, _ = x.shape

        # Normalization
        x = self.norm(x)

        qkv = self.qkv(x)
        # (B, N, num_heads, d)
        q, k, v = qkv.view(B, N, self.num_heads, -
                           1).split([self.key_dim, self.key_dim, self.d], dim=3)
        # (B, num_heads, N, d)
        q = q.permute(0, 2, 1, 3)
        k = k.permute(0, 2, 1, 3)
        v = v.permute(0, 2, 1, 3)

        attn = (
            (q @ k.transpose(-2, -1)) * self.scale
            +
            (self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab)
        )
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
        x = self.proj(x)
        return x

class TinyViTBlock(nn.Module):
    r""" TinyViT Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int, int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        drop (float, optional): Dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        local_conv_size (int): the kernel size of the convolution between
                               Attention and MLP. Default: 3
        activation: the activation function. Default: nn.GELU
    """

    def __init__(self, args, dim, input_resolution, num_heads, window_size=7,
                 mlp_ratio=4., drop=0., drop_path=0.,
                 local_conv_size=3,
                 activation=nn.GELU,
                 ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        assert window_size > 0, 'window_size must be greater than 0'
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio

        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

        assert dim % num_heads == 0, 'dim must be divisible by num_heads'
        head_dim = dim // num_heads

        window_resolution = (window_size, window_size)
        self.attn = Attention(dim, head_dim, num_heads,
                              attn_ratio=1, resolution=window_resolution)

        mlp_hidden_dim = int(dim * mlp_ratio)
        mlp_activation = activation
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=mlp_activation, drop=drop)

        pad = local_conv_size // 2
        self.local_conv = Conv2d_BN(
            dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        res_x = x
        if H == self.window_size and W == self.window_size:
            x = self.attn(x)
        else:
            x = x.view(B, H, W, C)
            pad_b = (self.window_size - H %
                     self.window_size) % self.window_size
            pad_r = (self.window_size - W %
                     self.window_size) % self.window_size
            padding = pad_b > 0 or pad_r > 0

            if padding:
                x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))

            pH, pW = H + pad_b, W + pad_r
            nH = pH // self.window_size
            nW = pW // self.window_size
            # window partition
            x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
                B * nH * nW, self.window_size * self.window_size, C)
            x = self.attn(x)
            # window reverse
            x = x.view(B, nH, nW, self.window_size, self.window_size,
                       C).transpose(2, 3).reshape(B, pH, pW, C)

            if padding:
                x = x[:, :H, :W].contiguous()

            x = x.view(B, L, C)

        x = res_x + self.drop_path(x)

        x = x.transpose(1, 2).reshape(B, C, H, W)
        x = self.local_conv(x)
        x = x.view(B, C, L).transpose(1, 2)

        x = x + self.drop_path(self.mlp(x))
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"