from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import torch from Model.GCN import mol2graph def get_data(data_path): mols, labels = [], [] with open(data_path, 'r') as f: smis = f.read().splitlines() for smi in smis: smi = smi.split(' ') labels.append(int(smi[0].strip('[]'))) smi = smi[1:] smi = ''.join(smi) mols.append(Chem.MolFromSmiles(smi)) return np.array(mols), np.array(labels) """ get_neg_sample: select negative sample according to the frequent distribution of library. Correct fragments(y) and fragments couldn't be connected to target(y_mask) are masked. """ @torch.no_grad() def get_neg_sample(freq, y): # y: (batch_size, ) # freq: (1, ), frequency of templates batch_size = y.size(0) freq = freq.repeat(batch_size, 1) freq.scatter_(1, y.unsqueeze(1), 0) neg_idxs = torch.multinomial(freq, 1, True).view(-1) return neg_idxs def template_prediction(GCN_model, input_smi, num_sampling, GCN_device=None): mol = Chem.MolFromSmiles(input_smi) data = mol2graph.mol2vec(mol).to(GCN_device) with torch.no_grad(): output = GCN_model.forward(data.x, data.edge_index, data.batch).squeeze() # shape(1, 1000) -> (1000,) try: _, indices = torch.topk(output, num_sampling) except: indices = None return indices def batch_template_prediction(GCN_model, input_smi, num_sampling=5, GCN_device=None): mol = Chem.MolFromSmiles(input_smi) data = mol2graph.mol2vec(mol).to(GCN_device) output = GCN_model.forward(data.x, data.edge_index, data.batch).squeeze() # shape(1, 1000) -> (1000,) _, indices = torch.topk(output, num_sampling) return indices def check_templates(indices, input_smi, r_dict): matched_indices = [] molecule = Chem.MolFromSmiles(input_smi) for i in indices: idx = str(i.item()) rsmi = r_dict[idx] rxn = AllChem.ReactionFromSmarts(rsmi) reactants = rxn.GetReactants() flag = False for reactant in reactants: if molecule.HasSubstructMatch(reactant): flag = True if flag == True: matched_indices.append(f'[{i.item()}]') return matched_indices # list of string, ex) ['[0]', '[123]', ... '[742]']