import os import operator import itertools import re import json import hydra from tqdm.auto import tqdm from config.config import cs from omegaconf import DictConfig import rdkit.Chem as Chem from rdkit.Chem import AllChem import torch import torchtext.vocab.vocab as Vocab import torch.nn.functional as F from Model.Transformer.model import Transformer from scripts.preprocess import make_counter ,make_transforms from Utils.utils import smi_tokenizer from Model.GCN import network from Model.GCN.utils import template_prediction, check_templates device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') with open('./data/label_template.json') as f: r_dict = json.load(f) class BeamSearchNode(object): def __init__(self, previousNode, decoder_input, logProb, length): self.prevNode = previousNode self.dec_in = decoder_input self.logp = logProb self.leng = length def eval(self, alpha=0.6): return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha) def check_templates(indices, input_smi): matched_indices = [] input_smi = input_smi.replace(' ','') molecule = Chem.MolFromSmiles(input_smi) for i in indices: idx = str(i.item()) rsmi = r_dict[idx] rxn = AllChem.ReactionFromSmarts(rsmi) reactants = rxn.GetReactants() flag = False for reactant in reactants: if molecule.HasSubstructMatch(reactant): flag = True if flag == True: matched_indices.append(f'[{i.item()}]') return matched_indices # ['[0]', '[123]', ... '[742]'] def beam_decode(v:Vocab, model=None, input_tokens=None, template_idx=None, device=None, inf_max_len=None, beam_width=10, nbest=5, Temp=None, beam_templates:list=None): SOS_token = v[''] EOS_token = v[''] if template_idx is not None: template_idx = re.sub(r'\D', '', template_idx) if template_idx not in beam_templates: beam_width = 5 nbest = 1 # A batch of one input for Encoder encoder_input = input_tokens # Generate encoded features with torch.no_grad(): encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1 encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model) # Start with the start of the sentence token decoder_input = torch.tensor([[SOS_token]]) # (1,1) # Starting node counter = itertools.count() node = BeamSearchNode(previousNode=None, decoder_input=decoder_input, logProb=0, length=0) with torch.no_grad(): tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device) logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask) logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1 decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # (1, vocab) tmp_beam_width = min(beam_width, decoder_output.size(1)) log_prob, indices = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,) nextnodes = [] for new_k in range(tmp_beam_width): decoded_t = indices[0][new_k].view(1, -1) log_p = log_prob[0][new_k].item() next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq) nn = BeamSearchNode(previousNode=node, decoder_input=next_decoder_input, logProb=node.logp + log_p, length=node.leng + 1) score = -nn.eval() count = next(counter) nextnodes.append((score, count, nn)) # start beam search for i in range(inf_max_len - 1): # fetch the best node if i == 0: current_nodes = sorted(nextnodes)[:tmp_beam_width] else: current_nodes = sorted(nextnodes)[:beam_width] nextnodes=[] # current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,) scores, counts, nodes, decoder_inputs = [], [], [], [] for score, count, node in current_nodes: if node.dec_in[0][-1].item() == EOS_token: nextnodes.append((score, count, node)) else: scores.append(score) counts.append(count) nodes.append(node) decoder_inputs.append(node.dec_in) if not bool(decoder_inputs): break decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq) # adjust batch_size enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1) mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1) with torch.no_grad(): tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device) logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask) logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab) decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1).to('cpu') # extract log_softmax of last token # decoder_output.shape = (batch, vocab) for beam, score in enumerate(scores): for token in range(EOS_token, decoder_output.size(-1)): # remove unk, pad, bosは最初から捨てる decoded_t = torch.tensor([[token]]) log_p = decoder_output[beam, token].item() next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1) node = BeamSearchNode(previousNode=nodes[beam], decoder_input=next_decoder_input, logProb=nodes[beam].logp + log_p, length=nodes[beam].leng + 1) score = -node.eval() count = next(counter) nextnodes.append((score, count, node)) outputs = [] for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]: # endnodes = [(score, node), (score, node)...] output = n.dec_in.squeeze(0).tolist()[1:-1] # remove bos and eos output = v.lookup_tokens(output) output = ''.join(output) outputs.append(output) return outputs def greedy_translate(v:Vocab, model=None, input_tokens=None, device=None, inf_max_len=None): ''' in: input_tokens: (seq, batch) out: outputs: list of SMILES(str). ''' SOS_token = v[''] EOS_token = v[''] # A batch of one input for Encoder encoder_input = input_tokens.permute(1, 0) # (batch,seq) -> (seq, batch) # Generate encoded features with torch.no_grad(): enc_out, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model) # Start with the SOS token dec_inp = torch.tensor([[SOS_token]]).expand(1, encoder_input.size(1)).to(device) # (1, batch) EOS_dic = {i:False for i in range(encoder_input.size(1))} for i in range(inf_max_len - 1): tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(dec_inp.size(0)).to(device) logits = model.decode(memory=enc_out, tgt=dec_inp, tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask) dec_out = F.softmax(logits[-1, :, :], dim=1) # extract softmax of last token, (batch, vocab) next_items = dec_out.topk(1)[1].permute(1, 0) # (seq, batch) -> (batch, seq) EOS_indices = (next_items == EOS_token) # update EOS_dic for j, EOS in enumerate(EOS_indices[0]): if EOS: EOS_dic[j] = True dec_inp = torch.cat([dec_inp, next_items], dim=0) if sum(list(EOS_dic.values())) == encoder_input.size(1): break out = dec_inp.permute(1, 0).to('cpu') # (seq, batch) -> (batch, seq) outputs = [] for i in range(out.size(0)): out_tokens = v.lookup_tokens(out[i].tolist()) try: eos_idx = out_tokens.index('') out_tokens = out_tokens[1:eos_idx] outputs.append(''.join(out_tokens)) except ValueError: continue return outputs def translate(cfg:DictConfig): print('Loading...') # make transforms and vocabulary src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train'] tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train'] src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid'] tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid'] data_dict = make_counter(src_train_path=src_train_path, tgt_train_path=tgt_train_path, src_valid_path=src_valid_path, tgt_valid_path=tgt_valid_path ) src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None) # load model d_model = cfg['model']['dim_model'] num_encoder_layers = cfg['model']['num_encoder_layers'] num_decoder_layers = cfg['model']['num_decoder_layers'] nhead = cfg['model']['nhead'] dropout = cfg['model']['dropout'] dim_ff = cfg['model']['dim_ff'] model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device) ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device) model.load_state_dict(ckpt['model_state_dict']) model.eval() # make dataset src = [] src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path'] with open(src_test_path,'r') as f: for line in f: src.append(line.rstrip()) dim_GCN = cfg['GCN_train']['dim'] n_conv_hidden = cfg['GCN_train']['n_conv_hidden'] n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden'] GCN_model = network.MolecularGCN(dim = dim_GCN, n_conv_hidden = n_conv_hidden, n_mlp_hidden = n_mlp_hidden, dropout = dropout).to(device) GCN_ckpt = hydra.utils.get_original_cwd() + cfg['translate']['GCN_ckpt'] GCN_model.load_state_dict(torch.load(GCN_ckpt)) GCN_model.eval() out_dir = cfg['translate']['out_dir'] beam_width = cfg['translate']['beam_size'] nbest = cfg['translate']['nbest'] inf_max_len = cfg['translate']['inf_max_len'] GCN_num_sampling = cfg['translate']['GCN_num_sampling'] with open(hydra.utils.get_original_cwd() + cfg['translate']['annotated_templates'], 'r') as f: beam_templates = f.read().splitlines() f.close() print(f'The number of sampling for GCN: {GCN_num_sampling}') print('Start translation...') rsmis =[] for input_smi in tqdm(src): input_smi = input_smi.replace(' ', '') indices = template_prediction(GCN_model=GCN_model, input_smi=input_smi, num_sampling=GCN_num_sampling, GCN_device=device) matched_indices = check_templates(indices, input_smi) print(f"{len(matched_indices)} reaction templates are matched for '{input_smi}'.") with torch.no_grad(): for i in matched_indices: input_conditional = smi_tokenizer(i + input_smi).split(' ') input_tokens = src_transforms(input_conditional).to(device) outputs = beam_decode(v=v, model=model, input_tokens=input_tokens, template_idx=i, device=device, inf_max_len=inf_max_len, beam_width=beam_width, nbest=nbest, Temp=1, beam_templates=beam_templates) for output in outputs: output = smi_tokenizer(output) rsmis.append(i + ' ' + smi_tokenizer(input_smi) + ' >> ' + output) # set output file name os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True) with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}2.txt','w') as f: for rsmi in rsmis: f.write(rsmi + '\n') f.close() @hydra.main(config_path=None, config_name='config', version_base=None) def main(cfg: DictConfig): translate(cfg) if __name__ == '__main__': main()