import os import numpy as np from typing import List from sklearn.neighbors import NearestNeighbors def check_dirs(files: List[str]) -> None: """Checks to see if the directories for the files in the list exist. If they dont, then make those directories Args: files (list[str]): the list of files whose directory paths to create. Needs to be the full, not relative paths """ if not type(files) == list: d = os.path.dirname(files) if not os.path.isdir(d): # print(files+'files' + d +'Does not exist') os.makedirs(d) else: for f in files: d = os.path.dirname(f) if d != "" and not os.path.isdir(d): # print(f+'files' + d +'Does not exist') os.makedirs(d) def identity(img): return img def transformWarpedImages(warped_images, transform, clip_thresh): pp_wi = list() filtered_wi = list() for wi in range(warped_images.shape[0]): _img = transform(warped_images[wi, :, :]) pp_wi.append(_img) for wi in pp_wi: _img = np.where(wi > np.percentile(wi, clip_thresh), 1, 0) filtered_wi.append(_img) filtered_wi = np.stack(np.array(filtered_wi), axis=0) return filtered_wi def getBrightPixelCount(filtered_warped_images): bright_pix_count = filtered_warped_images.sum(axis=0) return bright_pix_count def getBarcodesFromPixelStack(codebook, pixel_stack, filtered_wi): codebook_bits = np.array(codebook.barcode_arrays) nbrs = NearestNeighbors(n_neighbors=1, algorithm="ball_tree", p=1).fit( codebook_bits ) pixel_stack = pixel_stack[np.newaxis, :, :] bit_map = dict() barcode_map = dict() dist_map = dict() bit_vector_map = dict() print(f"Pixel Stack Shape={pixel_stack.shape}") print(f"Filtered WI Shape={filtered_wi.shape}") bit_map[3] = np.multiply(pixel_stack == 3, filtered_wi) bit_map[4] = np.multiply(pixel_stack == 4, filtered_wi) bit_map[5] = np.multiply(pixel_stack == 5, filtered_wi) print(f"Bitmap 5 Shape={bit_map[5].shape}") bit_vector_map[3] = np.reshape(bit_map[3], (16, -1)).T bit_vector_map[4] = np.reshape(bit_map[4], (16, -1)).T bit_vector_map[5] = np.reshape(bit_map[5], (16, -1)).T # Look at distances for 3 pixel barcodes dist_map[3], barcode_map[3] = nbrs.kneighbors(bit_vector_map[3]) dist_map[4], barcode_map[4] = nbrs.kneighbors(bit_vector_map[4]) dist_map[5], barcode_map[5] = nbrs.kneighbors(bit_vector_map[5]) return bit_map, bit_vector_map, dist_map, barcode_map, codebook_bits def filterDetections(barcode_ids, distances, filter_val): return barcode_ids[distances == filter_val] def findErrorBits(bright_pix, codebook_bits, dist, barcode_ids, filter_val=0): barcode_subset = barcode_ids[dist == filter_val] bright_pix_subset = bright_pix[np.where(dist == filter_val)[0], :] codebook_subset = codebook_bits[barcode_subset] error_bit_locs = np.argmax(np.abs(bright_pix_subset - codebook_subset), axis=1) return error_bit_locs def performDumbExtraction(warped_images, codebook, clip_thresh=98.5): transform = identity filtered_warped_images = transformWarpedImages( warped_images, transform, clip_thresh ) bright_pixel_count = getBrightPixelCount(filtered_warped_images) ( bit_map, bit_vector_map, dist_map, barcode_map, codebook_bits, ) = getBarcodesFromPixelStack(codebook, bright_pixel_count, filtered_warped_images) error_bit_map = dict() error_bit_map[3] = findErrorBits( bit_vector_map[3], codebook_bits, dist_map[3], barcode_map[3], filter_val=1 ) error_bit_map[4] = findErrorBits( bit_vector_map[4], codebook_bits, dist_map[4], barcode_map[4], filter_val=0 ) error_bit_map[5] = findErrorBits( bit_vector_map[5], codebook_bits, dist_map[5], barcode_map[5], filter_val=1 ) detection_number_map = dict() detection_number_map[3] = dist_map[3][dist_map[3] == 1].sum() detection_number_map[4] = (1 + dist_map[4][dist_map[4] == 0]).sum() detection_number_map[5] = dist_map[5][dist_map[5] == 1].sum() return ( filtered_warped_images, bright_pixel_count, bit_map, bit_vector_map, dist_map, barcode_map, error_bit_map, detection_number_map, codebook_bits, )