import csv import re from typing import List import skimage.io as skio import numpy as np import json import pandas as pds import matplotlib.colors as mcolors base_colors = list(mcolors.BASE_COLORS) def create_image_stack( image_format: str, fov: str, z: str, irs: List[str], wvs: List[str], out_file: str, coord_file: str, ): """Creates the images in an memory format for convenient data access in later reports Args: image_format (str): The file image pattern that will be used to construct the image stacks fov (str): The Fov of images to use for the stack z (str): The z of the images to use for the stack irs (List[str]): The list of imaging rounds for the stack wvs (List[str]): The list of channels for the stack out_file (str): The filename of the image stack produced coord_file (str): The filename of the coordinate file produced """ # if any parameter is a single string, then make it into an iterable # list object if not isinstance(irs, list): irs = [irs] if not isinstance(wvs, list): wvs = [wvs] # Extract a test image to get size parameter out of test_img = skio.imread(image_format.format(wv=wvs[0], fov=fov, ir=irs[0], z=z)) xyshape = test_img.shape x = xyshape[1] y = xyshape[0] # Load in all the data # Pre-allocate the image stack img_stack = np.zeros((y, x, len(wvs), len(irs),)) for iir, ir in enumerate(irs): for iwv, wv in enumerate(wvs): img_stack[:, :, iwv, iir] = skio.imread( image_format.format(wv=wv, fov=fov, ir=ir, z=z) ) # Drop it all into an npy file np.save(out_file, img_stack) # Save all the coordinates for the dimensions into a seperate file data = {"y": y, "x": x, "wvs": wvs, "irs": irs, "fovs": [fov], "zs": [z]} a_file = open(coord_file, "w") a_file = json.dump(data, a_file) class Codebook: """The Codebook helper class Args: codebook_path (str): The path to the codebook file """ def __init__(self, codebook_path: str): # TODO this could probably work well as a pandas df self.names = [] self.ids = [] self.barcode_strings = [] with open(codebook_path, encoding="utf8") as csv_file: codebook_reader = csv.reader(csv_file) for i, row in enumerate(codebook_reader): if i == 0: self.version = row[1] elif i == 1: self.codebook_name = row[1] elif i == 2: self.bit_names = row[1:] elif i >= 4: self.names.append(row[0]) self.ids.append(row[1]) self.barcode_strings.append(row[2]) self.barcode_arrays = [ np.array([int(char) for char in re.sub(r"\s", "", barcode)], dtype="uint8") for barcode in self.barcode_strings ] def __len__(self): return len(self.names) def normalize_barcode(self, barcode_array): if np.sum(barcode_array) == 0: return barcode_array return barcode_array / np.sqrt(np.sum(barcode_array ** 2)) def get_weighted_barcodes(self): magnitudes = [np.sqrt(sum(barcodes ** 2)) for barcodes in self.barcode_arrays] return [ (self.barcode_arrays[i] / magnitudes[i]).astype("float16") for i in range(len(self.barcode_arrays)) ] def get_single_bit_error_matrix(self, barcode_id): barcode_array = self.barcode_arrays[barcode_id] bit_error_matrix = [self.normalize_barcode(barcode_array)] for i in range(len(barcode_array)): corrected_barcode = barcode_array.copy() corrected_barcode[i] = np.logical_not(corrected_barcode[i]) bit_error_matrix.append(self.normalize_barcode(corrected_barcode)) return np.array(bit_error_matrix) def read_table(file: str) -> pds.DataFrame: """Reads a file differently depending on its extension Args: file (str): The filename Raises: ValueError: If the file extension is unrecognized Returns: pandas.DataFrame: _description_ """ ext = file.split(".")[-1] if ext == "csv": df = pds.read_csv(file) elif ext == "tsv": df = pds.read_csv(file, "\t") elif ext in {"xls", "xlsx", "xlsm", "xlsb"}: df = pds.read_excel(file) else: raise ValueError("Unexpected file extension") return df