from reports.BrightnessReport import BrightnessReport from reports.DecodabilityReport import DecodabilityReport from reports.MaskedBrightnessReport import MaskedBrightnessReport from reports.FocusReport import FocusReport import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import pandas as pd # Brightness report worker------- def generate_brightness_reports(image_stack_file,coord_info,out_file,fov,z): #This was necessary to prototype on OSX...consider removing in the future after testing import multiprocessing job = multiprocessing.Process(target=brightness_worker,args=(image_stack_file,coord_info,out_file,fov,z)) job.start() #brightness_worker(image_stack_file,coord_info,out_file,fov,fovs) def brightness_worker(image_stack_file,coord_info,out_file,fov,z): br = BrightnessReport(image_stack_file,coord_info,fov,z) br.set_pdf(PdfPages(filename=out_file)) br.preview_images() br.brightness_infov_z() br.brightness_on_images() br.contrast_heatmap() br.closePdf() # Masked Brightness report worker------- def generate_masked_brightness_reports(image_stack_file,coord_info,out_file,fov,z,mask_stack): #This was necessary to prototype on OSX...consider removing in the future after testing import multiprocessing job = multiprocessing.Process(target=masked_brightness_worker,args=(image_stack_file,mask_stack,coord_info,out_file,fov,z)) job.start() def masked_brightness_worker(image_stack_file,mask_stack,coord_info,out_file,fov,z): mbr = MaskedBrightnessReport(image_stack_file,mask_stack,coord_info,fov,z) mbr.set_pdf(PdfPages(filename=out_file)) mbr.preview_images() mbr.brightness_infov_z() mbr.brightness_on_images() mbr.contrast_heatmap() mbr.closePdf() # Decodability Report worker -------- def generate_decodability_reports(image_stack_file,coord_info,out_file,codebook_file,data_org_file,fov,z,out_detection_stats,): #This was necessary to prototype on OSX...consider removing in the future after testing import multiprocessing job = multiprocessing.Process(target=decodability_worker,args=(image_stack_file,coord_info,out_file,codebook_file,data_org_file,fov,z,out_detection_stats)) job.start() def decodability_worker(image_stack_file,coord_info,out_file,codebook_file,data_org_file,fov,z,out_detection_stats): dr = DecodabilityReport(image_stack_file,coord_info,codebook_file,data_org_file,fov,z,out_detection_stats) dr.set_pdf(PdfPages(filename=out_file)) dr.make_bit_imgs() dr.make_decodability_hists() dr.closePdf() # Focus report worker------- def generate_focus_reports(image_stack_file,coord_info,out_file,out_csv,fov): #This was necessary to prototype on OSX...consider removing in the future after testing import multiprocessing job = multiprocessing.Process(target=focus_worker,args=(image_stack_file,coord_info,out_file,out_csv,fov)) job.start() # focus_worker(image_stack_file,coord_info,out_file,out_csv,fov,fovs) def focus_worker(image_stack_file,coord_info,out_file,out_csv,fov): fr = FocusReport(image_stack_file,coord_info,fov,out_csv) fr.set_pdf(PdfPages(filename=out_file)) fr.f_measure_report() fr.closePdf() # Compile reports---------------- def compile_focus_report(file_list:list,output,irs,wvs): full_df = pd.DataFrame() for fl in file_list: test = pd.read_csv(fl) full_df = full_df.append(test,ignore_index=True) full_df.to_csv(output) if not isinstance(irs,list): irs = list(irs) report_pdf = PdfPages(filename = output) compiled_matrix = np.zeros(( len(file_list), # length of fovs len(wvs), len(irs) )) for iir, ir in enumerate(irs):#for each ir for iwv, wv in enumerate(wvs):#for each wv data = full_df[["FOV",str(wv)]][(full_df["IR"]==int(ir))] #extract the FOVs...assume stuff is ordered data = data.to_numpy() # FOV x 2 compiled_matrix[:,iwv,iir] = data[:,1] #this is the z #ax[iir].plot("FOV",str(wv),data=data) #x:FOV y:z spy:IR f,ax = plt.subplots(nrows = len(wvs),ncols = 1,sharex=True,sharey=True,figsize=(8,len(irs)*4)) if not isinstance(ax,np.ndarray): ax = np.array(ax) for iwv, wv in enumerate(wvs):#for each wv ax[iwv].imshow(compiled_matrix[:,iwv,:]) ax[iwv].set_xticks(np.arange(len(irs)), irs) ax[iwv].set_yticks(np.arange(len(file_list)), np.arange(len(file_list))) ax[iwv].set_ylabel("FOVS ") ax[iwv].set_xlabel("Imaging Round") plt.setp(ax[iwv].get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") for iir in range(len(irs)): for ifl in range(len(file_list)): text = ax[iwv].text(iir, ifl, int(compiled_matrix[ifl,iwv, iir]), ha="center", va="center", color="w") ax[iwv].set_title(f"Wavelength: {wv} nm") report_pdf.savefig() report_pdf.close()