import argparse import os from pathlib import Path import numpy as np import pandas as pd def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', type = str, help ="Input directory") parser.add_argument('-o', type = str, help="Output directory") parser.add_argument('-file_format', default = "*.npy", type = str, help = "File to open") args = parser.parse_args() if not args.o: args.o = args.i if not os.path.exists(args.o): os.makedirs(args.o) input_list = _get_file_paths(args.i, args.file_format) offset_x, offset_y = _get_x_y_offsets(input_list) _save_csv(args.o, offset_x, "x_offsets") _save_csv(args.o, offset_y, "y_offsets") def _get_file_paths(input_dir, img_format): input_dir = Path(input_dir) path_list = [str(path) for path in list(sorted(input_dir.rglob(img_format)))] return path_list def _save_csv(output_dir, df, name): df.to_csv(output_dir+"/"+name+".csv") def _get_x_y_offsets(input_list): nFOV = len(input_list) num_datachannels = 16 offset_array_x = np.zeros(shape = (nFOV, num_datachannels+1)) offset_array_y = np.zeros(shape = (nFOV, num_datachannels+1)) for fov in range(nFOV): tnx = np.load(input_list[fov], allow_pickle = True) offset_array_x[fov,0] = int(fov+1) offset_array_y[fov,0] = int(fov+1) for j in range(num_datachannels): offset_array_x[fov,j+1] = tnx[j].params[0][-1] offset_array_y[fov,j+1] = tnx[j].params[1][-1] pd_columns = ['FOV', 'Offset b/w IR1 & IR 1', 'Offset b/w IR1 & IR 2', 'Offset b/w IR1 & IR 3', 'Offset b/w IR1 & IR 4', 'Offset b/w IR1 & IR 5', 'Offset b/w IR1 & IR 6', 'Offset b/w IR1 & IR 7', 'Offset b/w IR1 & IR 8'] offset_pd_x = pd.DataFrame(offset_array_x[:, ::2], columns=pd_columns) offset_pd_y = pd.DataFrame(offset_array_y[:, ::2], columns=pd_columns) return offset_pd_x, offset_pd_y if __name__ == '__main__': main() # python get_registration_offsets.py -i "/Users/ythapliyal/Documents/Merlin_results/FiducialCorrelationWarp/XP4516"