# Import import cProfile from distutils import core from pathlib import Path import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns import os import pickle import scipy.stats as stats import argparse from adjustText import adjust_text import matplotlib.backends.backend_pdf def main(): parser = argparse.ArgumentParser() parser.add_argument('-b', type = str, help = 'Path to barcodes') parser.add_argument('-xp', type = str, help = 'Experiment ID') parser.add_argument('-c', type = str, default = "D:\BCCAncer\FILES\codebook_0_C1E1_van.csv", help = 'Path to codebook') parser.add_argument('-a', type = str, default = "D:\BCCAncer\FILES\XP2474_4T1_C1E1_new_bulk.csv", help = 'Path to bulk file (abundance file)') parser.add_argument('-o', type = str, default = "D:\BCCAncer\EXP\XP7174\Correlations\BulkCorr", help = 'Path to save processed files') parser.add_argument('-is_cambridge', type = bool, default = False, help = 'Are the results for Cambridge datasets?') parser.add_argument('-drop_blanks', type = bool, default = False, help = 'Remove blanks before correlation') parser.add_argument('-log', type =bool, default = True, help = 'Do we want to take log while correlation of bulk?') parser.add_argument("-d", nargs="+", type = float, default=0.65, help = 'Max mean distance threshold for an area of detected barcode') parser.add_argument("-removeZ", nargs="+", type=int, default=None, help="Z slices to remove from evaluation") #parser.add_argument('-gene_list', type = str, action='append', required=True, help = 'List of genes which we want to exclude from analysis') args = parser.parse_args() if not os.path.exists(args.o): os.makedirs(args.o) info_np = np.zeros(shape = (len(args.d), 7)) # read sheet and remove undesired z slices df = read_sheet(args.b) if args.removeZ is not None: removeZ_set = set(args.removeZ) df = df[~df['z'].isin(removeZ_set)] pdf = matplotlib.backends.backend_pdf.PdfPages(f'{args.o}/{args.xp}_correlation.pdf') correlation = Correlation(args.c, df, args.a, args.o, args.xp, args.is_cambridge, pdf) args.d.sort(reverse = True) for idx, dist_threshold in enumerate(args.d): filter_df = correlation.filter_distance(dist_threshold) gp_df = correlation.groupby(filter_df) gp_df = correlation.merge_df_cb(gp_df) tot_counts = gp_df.counts.sum() blank_counts = gp_df.loc[gp_df['gene_symbol'].isin(['Blank_01', 'Blank_02', 'Blank_03', 'Blank_04', 'Blank_05', 'Blank_06'])].counts.sum() info_np[idx][0] = dist_threshold info_np[idx][3] = int(tot_counts) info_np[idx][4] = int(blank_counts) info_np[idx][5] = int(len(gp_df)) gp_df = correlation.df_bulk(gp_df) if args.drop_blanks: gp_df = correlation.remove_blanks(gp_df) """ if args.gene_list: print('removing') gp_df = correlation.remove_specific_genes(gp_df) """ info_np[idx][-1] = len(gp_df) gp_df['log_counts'] = np.log2(gp_df['counts']+1) gp_df['log_tpm'] = np.log2(gp_df['bulk_exp']+0.0001) gp_df.to_csv(f'{args.o}/{args.xp}_{dist_threshold}.csv') info_np[idx][1], info_np[idx][2] = correlation.log_correlation(gp_df, dist_threshold) pdf.close() info_df = pd.DataFrame(info_np, columns = ['Distance Threshold',\ 'Pearson correlation',\ 'Spearman correlation',\ '# detected barcodes (including control barcodes)',\ '# detected control (blanks) barcodes',\ '# genes at dist threshold in correlation',\ '# barcodes counted towards correlaton estimation']) info_df.to_csv(f'{args.o}/info_{args.xp}.csv') def read_sheet(file): ext = file.split(".")[-1] if ext == "csv": df = pd.read_csv(file) elif ext == "tsv": df = pd.read_csv(file, '\t') elif ext in {"xls", "xlsx", "xlsm", "xlsb"}: df = pd.read_excel(file) else: raise ValueError("Unexpected file extension") return df class Correlation: def __init__(self, codebook, barcodes, bulk, output_dir, name, is_cambridge, pdf_object): self.codebook = read_sheet(codebook) self.barcodes = barcodes self.bulk = read_sheet(bulk) self.output_dir = output_dir self.name = name self.is_cambridge = is_cambridge self.pdf_object = pdf_object #self.remove_genes_list = remove_genes_list def filter_distance(self, distance_threshold): return self.barcodes.loc[self.barcodes['mean_distance']