File size: 9,567 Bytes
5ad11ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from magicgui import magicgui
import napari
import skimage.io as skio
import scipy.ndimage as ndi
import numpy as np
import pandas as pd
from dask_image.imread import imread
from dask_image.ndfourier import fourier_shift
import dask.array as da
from dask.array.image import imread as daimread
from dask import delayed
import json
import os
import functools
import pandas as pd
import matplotlib.pyplot as plt
from napari.types import ImageData, PointsData
import widgets
from magicgui import magicgui
import functools
def gene_mask(arr,g):
v = da.equal(arr,g)
return v
def dask_reshape(arr,gmax):
gene_map = [gene_mask(arr-1,g) for g in range(gmax)]
x=da.stack(1*gene_map,axis=0)
return x
def getTLBF(df:pd.DataFrame,im_shape):
# TODO: THIS NEEDS TO BE CHANGED WITH THE NEW CSV FORMAT
shift_r = [0]
shift_r.extend(df['shift_y'].to_list())
shift_c = [0]
shift_c.extend(df['shift_x'].to_list())
dx_tl = np.max(np.maximum(shift_c,0))
dy_tl = np.max(np.maximum(shift_r,0))
dx_br = np.min(np.minimum(shift_c,0))
dy_br = np.min(np.minimum(shift_r,0))
tl = np.ceil([dy_tl,dx_tl]).astype(int)
br = np.floor([im_shape[0]+dy_br,im_shape[1]+dx_br]).astype(int)
return shift_r,shift_c,tl, br,dx_tl,dy_tl
def load_img_and_shift(fn,shift,tl,br):
_img = skio.imread(fn)
#just perform the shift and then trim
shifted_img = ndi.shift(_img,shift)
cropped_img = shifted_img#[tl[0]:br[0],tl[1]:br[1]]
return cropped_img
if __name__=="__main__":
config = json.load(open('config.json'))
ir_upper=config["ir_upper"] #Has to 9 or less
raw_data_dir = config["raw_data_dir"]
analysis_dir = config["analysis_dir"]
stagepos_file = os.path.join(raw_data_dir,'stagePos_Round#1.xlsx')
if os.path.isfile(stagepos_file):
stage = pd.read_excel(stagepos_file)
else:
stagepos_file = os.path.join(raw_data_dir,'stage_position_1.csv')
stage = pd.read_csv(stagepos_file)
z_lower = config["z_lower"]
z_num = config["z_upper"]#len(stage.columns)-5
_fovs = [i for i in range(1,len(stage))]
fovs = list(map(lambda x: f'{x:03d}',_fovs))
if 'Var1_ 1' in stage.columns: #Backwards compatability with old stagepos files
x_loc = stage['Var1_ 5']
y_loc = stage['Var1_ 4']
z_spacing = np.abs(stage['Var1_ 6'][0]-stage['Var1_ 7'][0])
elif 'x_pos' in stage.columns:
x_loc = stage['y_pos']
y_loc = stage['x_pos']
z_spacing = np.abs(stage['z_slice_0'][0]-stage['z_slice_1'][0])
else:
x_loc = stage['stage_pos_y']
y_loc = stage['stage_pos_x']
z_spacing = np.abs(stage['z_position_1'][0]-stage['z_position_2'][0])
x_loc = x_loc-x_loc.iloc[0]
y_loc = y_loc-y_loc.iloc[0]
stage2pix_scaling=config["stage2pix_scaling"] # nikon/pix
stage2z_scaling = config["stage2pix_scaling"] #nikon/z
viewer = napari.Viewer()
for idx,fov in enumerate(fovs):
shift_r=np.full((ir_upper,1),0)
shift_c=np.full((ir_upper,1),0)
tl,br = 0,0
pattern_img = config["file_pattern"].format(fov=fov)
image_root = f'/decoding/decoded_images/decoded_{fov}'+'_{:02d}.npy'
alignment_root = f'/aligned/shift_{fov}.csv'
if config["decoded_img"]:
shift_name =analysis_dir+alignment_root
codebook_name = os.path.join(config["raw_data_dir"],config["codebook_name"])
codebook_df = pd.read_csv(codebook_name,skiprows=3)
codebook_df=codebook_df.rename(columns={c:c.strip() for c in codebook_df.columns},errors='raise')
name =analysis_dir+image_root.format(z_lower)
if not os.path.isfile(name):
print(f"{name} does not exist")
continue
sample = np.load(name)
if os.path.isfile(shift_name):
df= pd.read_csv(shift_name)
shift_r,shift_c,tl, br, dx_tl,dy_tl= getTLBF(df,sample.shape)
num_genes = sample.max()
lazy_npload = delayed(np.load)
lazy_reshapefn = delayed(dask_reshape)
_zs = np.arange(z_lower,z_num+1)
lazy_decodes = [lazy_npload(analysis_dir+image_root.format(z)) for z in _zs]
dask_arrays = [
da.from_delayed(delayed_reader, shape=sample.shape, dtype=sample.dtype)
for delayed_reader in lazy_decodes
]
lazy_reshapes = [lazy_reshapefn(da,num_genes) for da in dask_arrays]
dask_arrays = [
da.from_delayed(lr, shape=(num_genes,*sample.shape), dtype=sample.dtype)
for lr in lazy_reshapes
]
stack = da.stack(dask_arrays, axis=0)
stack = da.broadcast_to(stack,(1,stack.shape[0],stack.shape[1],stack.shape[2],stack.shape[3]))
stack = da.transpose(stack,[2,0,1,3,4])
#add decoded image
viewer.add_image(stack,translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),name=f'decoded',scale=[1,1,z_spacing/stage2z_scaling,-1,1],blending='additive')
#add 473 volume
channel = 473
channel_format = f'{channel}nm, Raw/'
irs = [imread(raw_data_dir + channel_format + pattern_img.format(ir=ir)) for ir in range(1,ir_upper)]
stack = da.stack(irs)
viewer.add_image(stack,
translate=((x_loc[idx])/stage2pix_scaling,
(-y_loc[idx])/stage2pix_scaling),
name=f'fov:{fov}, {channel}nm volume',
opacity=0.5,
scale=[1,z_spacing/stage2z_scaling,-1,1],
contrast_limits=[0,2**16])
#add 561 volume
channel = 561
channel_format = f'{channel}nm, Raw/'
irs = [
daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
)
)
for ir in range(1,ir_upper)
]
# irs = [imread(raw_data_dir + channel_format + pattern_img.format(ir)) for ir in range(1,ir_upper)]
stack = da.stack(irs)
viewer.add_image(stack,
translate=(
x_loc.iloc[idx]/stage2pix_scaling,
-y_loc[idx]/stage2pix_scaling),
name=f'fov:{fov}, {channel}nm volume',
opacity=0.5,
scale=[1,z_spacing/stage2z_scaling,-1,1],
contrast_limits=[0,2**16])
#add 647 volume
channel = 647
channel_format = f'{channel}nm, Raw/'
irs = [
daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
)
)
for ir in range(1,ir_upper)
]
stack = da.stack(irs)
viewer.add_image(stack,
translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),
name=f'fov:{fov}, {channel}nm volume',
opacity=0.5,
scale=[1,z_spacing/stage2z_scaling,-1,1],
contrast_limits=[0,2**16],
colormap='yellow')
#add 750 volume
channel = 750
channel_format = f'{channel}nm, Raw/'
irs = [
daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
)
)
for ir in range(1,ir_upper)
]
stack = da.stack(irs)
viewer.add_image(stack,
translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),
name=f'fov:{fov}, {channel}nm volume',
opacity=0.5,
scale=[1,z_spacing/stage2z_scaling,-1,1],
contrast_limits=[0,2**16],
colormap='green')
viewer.dims.axis_labels = ['GN','IR', 'Z', 'Y', 'X']
if config["decoded_img"]:
barcode_viewer=widgets.FancyGUI(viewer,codebook_df,fovs=fovs,x_loc=x_loc.to_numpy()/stage2pix_scaling,y_loc=y_loc.to_numpy()/stage2pix_scaling,img_scale=[1,z_spacing/stage2z_scaling,-1,1])
viewer.window.add_dock_widget(barcode_viewer,area='right')
viewer.reset_view()# start the event loop and show the viewer
napari.run()
|