File size: 9,567 Bytes
5ad11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from magicgui import magicgui
import napari
import skimage.io as skio
import scipy.ndimage as ndi
import numpy as np
import pandas as pd
from dask_image.imread import imread
from dask_image.ndfourier import fourier_shift
import dask.array as da
from dask.array.image import imread as daimread
from dask import delayed
import json
import os
import functools
import pandas as pd
import matplotlib.pyplot as plt
from napari.types import ImageData, PointsData
import widgets
from magicgui import magicgui
import functools

def gene_mask(arr,g):
    v = da.equal(arr,g)
    return v

def dask_reshape(arr,gmax):
    
    gene_map = [gene_mask(arr-1,g) for g in range(gmax)]
    x=da.stack(1*gene_map,axis=0)
    return x
    
def getTLBF(df:pd.DataFrame,im_shape):
    # TODO: THIS NEEDS TO BE CHANGED WITH THE NEW CSV FORMAT
    shift_r = [0]
    shift_r.extend(df['shift_y'].to_list())
    shift_c = [0]
    shift_c.extend(df['shift_x'].to_list())

    dx_tl = np.max(np.maximum(shift_c,0))
    dy_tl = np.max(np.maximum(shift_r,0))

    dx_br = np.min(np.minimum(shift_c,0))
    dy_br = np.min(np.minimum(shift_r,0))

    tl = np.ceil([dy_tl,dx_tl]).astype(int)
    br = np.floor([im_shape[0]+dy_br,im_shape[1]+dx_br]).astype(int)
    return shift_r,shift_c,tl, br,dx_tl,dy_tl

def load_img_and_shift(fn,shift,tl,br):
    _img = skio.imread(fn)
    #just perform the shift and then trim

    shifted_img = ndi.shift(_img,shift)

    cropped_img = shifted_img#[tl[0]:br[0],tl[1]:br[1]]

    return cropped_img

if __name__=="__main__":
    config = json.load(open('config.json'))
    ir_upper=config["ir_upper"] #Has to 9 or less
    raw_data_dir = config["raw_data_dir"]
    analysis_dir = config["analysis_dir"]
    stagepos_file = os.path.join(raw_data_dir,'stagePos_Round#1.xlsx')

    if os.path.isfile(stagepos_file):
        stage = pd.read_excel(stagepos_file)
    else:
        stagepos_file = os.path.join(raw_data_dir,'stage_position_1.csv')
        stage = pd.read_csv(stagepos_file)
        
    
    z_lower = config["z_lower"]
    z_num = config["z_upper"]#len(stage.columns)-5
    _fovs = [i for i in range(1,len(stage))]
    fovs = list(map(lambda x: f'{x:03d}',_fovs))
    if 'Var1_ 1' in stage.columns: #Backwards compatability with old stagepos files
        x_loc = stage['Var1_ 5']
        y_loc = stage['Var1_ 4']
        z_spacing = np.abs(stage['Var1_ 6'][0]-stage['Var1_ 7'][0])
    elif 'x_pos' in stage.columns:
        x_loc = stage['y_pos']
        y_loc = stage['x_pos']
        z_spacing = np.abs(stage['z_slice_0'][0]-stage['z_slice_1'][0])
    else:
        x_loc = stage['stage_pos_y']
        y_loc = stage['stage_pos_x']
        z_spacing = np.abs(stage['z_position_1'][0]-stage['z_position_2'][0])
    
    x_loc = x_loc-x_loc.iloc[0]
    y_loc = y_loc-y_loc.iloc[0]

    stage2pix_scaling=config["stage2pix_scaling"] # nikon/pix
    stage2z_scaling = config["stage2pix_scaling"] #nikon/z
    
    viewer = napari.Viewer()
    for idx,fov in enumerate(fovs):
        shift_r=np.full((ir_upper,1),0)
        shift_c=np.full((ir_upper,1),0)
        tl,br = 0,0 
        pattern_img =  config["file_pattern"].format(fov=fov)
        image_root = f'/decoding/decoded_images/decoded_{fov}'+'_{:02d}.npy'
        alignment_root = f'/aligned/shift_{fov}.csv'
        
        if config["decoded_img"]:
            shift_name =analysis_dir+alignment_root
            
            codebook_name = os.path.join(config["raw_data_dir"],config["codebook_name"])
            codebook_df = pd.read_csv(codebook_name,skiprows=3)
            codebook_df=codebook_df.rename(columns={c:c.strip() for c in codebook_df.columns},errors='raise')
            name =analysis_dir+image_root.format(z_lower)
            if not os.path.isfile(name):
                print(f"{name} does not exist")
                continue
            sample = np.load(name)
            if os.path.isfile(shift_name):
                df= pd.read_csv(shift_name)
                shift_r,shift_c,tl, br, dx_tl,dy_tl= getTLBF(df,sample.shape)
            num_genes = sample.max()
            
            lazy_npload = delayed(np.load)
            lazy_reshapefn = delayed(dask_reshape)
            _zs = np.arange(z_lower,z_num+1)
            lazy_decodes = [lazy_npload(analysis_dir+image_root.format(z)) for z in _zs]
            
            dask_arrays = [
            da.from_delayed(delayed_reader, shape=sample.shape, dtype=sample.dtype)
            for delayed_reader in lazy_decodes
            ]
            lazy_reshapes = [lazy_reshapefn(da,num_genes) for da in dask_arrays]
            dask_arrays = [
            da.from_delayed(lr, shape=(num_genes,*sample.shape), dtype=sample.dtype)
            for lr in lazy_reshapes
            ]

            stack = da.stack(dask_arrays, axis=0)
            
            stack = da.broadcast_to(stack,(1,stack.shape[0],stack.shape[1],stack.shape[2],stack.shape[3]))
            stack = da.transpose(stack,[2,0,1,3,4])
            #add decoded image

            viewer.add_image(stack,translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),name=f'decoded',scale=[1,1,z_spacing/stage2z_scaling,-1,1],blending='additive')

        #add 473 volume
        channel = 473
        channel_format = f'{channel}nm, Raw/'
        irs = [imread(raw_data_dir + channel_format + pattern_img.format(ir=ir)) for ir in range(1,ir_upper)]
        stack = da.stack(irs)    
        viewer.add_image(stack,
                                translate=((x_loc[idx])/stage2pix_scaling,
                                            (-y_loc[idx])/stage2pix_scaling),
                                name=f'fov:{fov}, {channel}nm volume',
                                opacity=0.5,
                                scale=[1,z_spacing/stage2z_scaling,-1,1],
                                contrast_limits=[0,2**16]) 
        #add 561 volume
        channel = 561
        channel_format = f'{channel}nm, Raw/'
        irs = [
            daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
                                                                                                                shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
                                                                                                )
                    ) 
            for ir in range(1,ir_upper)
            ]
        # irs = [imread(raw_data_dir + channel_format + pattern_img.format(ir)) for ir in range(1,ir_upper)]
        stack = da.stack(irs)    
        viewer.add_image(stack,
                                translate=(
                                            x_loc.iloc[idx]/stage2pix_scaling,
                                            -y_loc[idx]/stage2pix_scaling),
                                name=f'fov:{fov}, {channel}nm volume',
                                opacity=0.5,
                                scale=[1,z_spacing/stage2z_scaling,-1,1],
                                contrast_limits=[0,2**16])         
        #add 647 volume 
        channel = 647
        channel_format = f'{channel}nm, Raw/'
        irs = [
            daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
                                                                                                                shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
                                                                                                )
                    ) 
            for ir in range(1,ir_upper)
            ]
        stack = da.stack(irs)    
        viewer.add_image(stack,
                                translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),
                                name=f'fov:{fov}, {channel}nm volume',
                                opacity=0.5,
                                scale=[1,z_spacing/stage2z_scaling,-1,1],
                                contrast_limits=[0,2**16],
                                colormap='yellow')
        #add 750 volume 
        channel = 750
        channel_format = f'{channel}nm, Raw/'
        irs = [
            daimread(raw_data_dir + channel_format + pattern_img.format(ir=ir),functools.partial(load_img_and_shift,
                                                                                                                shift = (shift_r[ir-1],shift_c[ir-1]),tl=tl,br=br
                                                                                                )
                    ) 
            for ir in range(1,ir_upper)
            ]
        stack = da.stack(irs)    
        viewer.add_image(stack,
                                translate=(x_loc.iloc[idx]/stage2pix_scaling,-y_loc[idx]/stage2pix_scaling),
                                name=f'fov:{fov}, {channel}nm volume',
                                opacity=0.5,
                                scale=[1,z_spacing/stage2z_scaling,-1,1],
                                contrast_limits=[0,2**16],
                                colormap='green')
        viewer.dims.axis_labels = ['GN','IR', 'Z', 'Y', 'X']



    if config["decoded_img"]:
        barcode_viewer=widgets.FancyGUI(viewer,codebook_df,fovs=fovs,x_loc=x_loc.to_numpy()/stage2pix_scaling,y_loc=y_loc.to_numpy()/stage2pix_scaling,img_scale=[1,z_spacing/stage2z_scaling,-1,1])
        viewer.window.add_dock_widget(barcode_viewer,area='right')

    viewer.reset_view()# start the event loop and show the viewer
    napari.run()