File size: 7,844 Bytes
5ad11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205




# Import
import cProfile
from distutils import core
from pathlib import Path
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import seaborn as sns
import os
import pickle
import scipy.stats as stats
import argparse
from adjustText import adjust_text
import matplotlib.backends.backend_pdf



def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-b', type = str, help = 'Path to barcodes')
    parser.add_argument('-xp', type = str, help = 'Experiment ID')
    parser.add_argument('-c', type = str, default = "D:\BCCAncer\FILES\codebook_0_C1E1_van.csv", help = 'Path to codebook')
    parser.add_argument('-a', type = str, default = "D:\BCCAncer\FILES\XP2474_4T1_C1E1_new_bulk.csv", help = 'Path to bulk file (abundance file)')
    parser.add_argument('-o', type = str, default = "D:\BCCAncer\EXP\XP7174\Correlations\BulkCorr", help = 'Path to save processed files')
    parser.add_argument('-is_cambridge', type = bool, default = False, help = 'Are the results for Cambridge datasets?')
    parser.add_argument('-drop_blanks', type = bool, default = False, help = 'Remove blanks before correlation')
    parser.add_argument('-log', type =bool, default = True, help = 'Do we want to take log while correlation of bulk?')
    parser.add_argument("-d", nargs="+", type = float, default=0.65, help = 'Max mean distance threshold for an area of detected barcode')
    parser.add_argument("-removeZ", nargs="+", type=int, default=None, help="Z slices to remove from evaluation")
    #parser.add_argument('-gene_list', type = str, action='append', required=True, help = 'List of genes which we want to exclude from analysis')


    args = parser.parse_args()

    if not os.path.exists(args.o):
        os.makedirs(args.o)

    info_np = np.zeros(shape = (len(args.d), 7))

    # read sheet and remove undesired z slices
    df = read_sheet(args.b)
    if args.removeZ is not None:
        removeZ_set = set(args.removeZ)
        df = df[~df['z'].isin(removeZ_set)]
    
    
    
    pdf = matplotlib.backends.backend_pdf.PdfPages(f'{args.o}/{args.xp}_correlation.pdf')
    correlation = Correlation(args.c, df, args.a, args.o, args.xp, args.is_cambridge, pdf)
    args.d.sort(reverse = True)

    
    for idx, dist_threshold in enumerate(args.d):
        filter_df = correlation.filter_distance(dist_threshold)
        gp_df = correlation.groupby(filter_df)
        gp_df = correlation.merge_df_cb(gp_df)

        tot_counts = gp_df.counts.sum()
        blank_counts = gp_df.loc[gp_df['gene_symbol'].isin(['Blank_01', 'Blank_02', 'Blank_03', 'Blank_04', 'Blank_05', 'Blank_06'])].counts.sum()

        info_np[idx][0] = dist_threshold
        info_np[idx][3] = int(tot_counts)
        info_np[idx][4] = int(blank_counts)
        info_np[idx][5] = int(len(gp_df))

        gp_df = correlation.df_bulk(gp_df)

        if args.drop_blanks:
            gp_df = correlation.remove_blanks(gp_df) 

        """
            if args.gene_list:
            print('removing')
            gp_df = correlation.remove_specific_genes(gp_df)
        """

        info_np[idx][-1] = len(gp_df)

        gp_df['log_counts'] = np.log2(gp_df['counts']+1)
        gp_df['log_tpm'] = np.log2(gp_df['bulk_exp']+0.0001)

        gp_df.to_csv(f'{args.o}/{args.xp}_{dist_threshold}.csv')


        info_np[idx][1], info_np[idx][2] = correlation.log_correlation(gp_df, dist_threshold)

    pdf.close()

    info_df = pd.DataFrame(info_np, columns = ['Distance Threshold',\
                                        'Pearson correlation',\
                                        'Spearman correlation',\
                                        '# detected barcodes (including control barcodes)',\
                                        '# detected control (blanks) barcodes',\
                                        '# genes at dist threshold in correlation',\
                                        '# barcodes counted towards correlaton estimation'])
    info_df.to_csv(f'{args.o}/info_{args.xp}.csv')
 
def read_sheet(file):
    
    ext = file.split(".")[-1]
    if ext == "csv":
        df = pd.read_csv(file)
    elif ext == "tsv":
        df = pd.read_csv(file, '\t')
    elif ext in {"xls", "xlsx", "xlsm", "xlsb"}:
        df = pd.read_excel(file)
    else:
        raise ValueError("Unexpected file extension")
    return df    

class Correlation:
    def __init__(self, codebook, barcodes, bulk, output_dir, name, is_cambridge, pdf_object):
        self.codebook = read_sheet(codebook)
        self.barcodes = barcodes
        self.bulk = read_sheet(bulk)
        self.output_dir = output_dir
        self.name = name
        self.is_cambridge = is_cambridge
        self.pdf_object = pdf_object
        #self.remove_genes_list = remove_genes_list

    def filter_distance(self, distance_threshold):
        return self.barcodes.loc[self.barcodes['mean_distance']<distance_threshold]

    def groupby(self, df):
        return (df.groupby('barcode_id').size().reset_index(name='counts'))

    def modify_codebook(self):
        self.codebook['barcode_id'] = self.codebook.index
        self.codebook.rename(columns={"name": "gene_symbol"}, inplace = True)

    def merge_df_cb(self,df):
        self.modify_codebook()
        return pd.merge(self.codebook, df, how='inner', on='barcode_id')

    def df_bulk(self, df):
        return pd.merge(self.bulk, df, how='inner', on='gene_symbol')

    def remove_blanks(self,df):
        return df[df['bulk_exp'] != 0]

    """
    def remove_specific_genes(self,df):
        c = 0
        print(self.remove_genes_list)
        for gene in self.remove_genes_list:
            print(c, gene)
            df = df.loc[df['gene_symbol']!=gene]
            #cccprint(df.loc[df['gene_symbol']==gene])
            c+=1
        return df
    """
    

    def log_correlation(self, df, dist_threshold):
            f1, ax = plt.subplots(figsize=(9, 9))
            sns.set_palette("deep")
            sns.scatterplot(x="log_tpm",y="log_counts",data=df,ax=ax)
                           
            if self.is_cambridge == True:
                count_type = "C_counts"
            else: count_type = "V_counts"
                    
                
            ax.set_title("TPM Correlation for " + self.name, fontsize = 15)
            ax.set_xlabel("log2(TPM+1e-4), V_bulk", fontsize = 20)
            ax.set_ylabel("log2(# detected counts+1), "+ count_type, fontsize = 20)
            
            
            def plotlabel(xvar, yvar, label):
                ax.text(xvar+0.02, yvar, label)
      
                
            pearson, _ = stats.pearsonr(df["log_tpm"],df["log_counts"])
            spearman, _ = stats.spearmanr(df["log_tpm"],df["log_counts"])
            #kendalltau, _ = stats.kendalltau(df["log_tpm"],df["log_counts"])
               
            ax.text(.01, .95, 'Pearson = {:.2f}\nSpearman = {:.2f}'.format(pearson,spearman),transform=ax.transAxes)
            #df.apply(lambda x: plotlabel(x['log_tpm'],  x['log_counts'], x['gene_symbol']), axis=1)
            #plt.axvline(x = 0, color = 'r', label = 'axvline - full height')
            
            self.pdf_object.savefig(f1)

            texts = []
            for xs,ys,label in zip(df['log_tpm'],df['log_counts'],df['gene_symbol']):
                    texts.append(ax.text(xs,ys,label))
            adjust_text(texts, force_points=0.2, force_text=0.2,expand_points=(1, 1), expand_text=(1, 1), arrowprops=dict(arrowstyle="-", color='black', lw=0.5))
            plt.tight_layout()
            
            #plt.savefig(f'{self.output_dir}/{self.name}_{dist_threshold}.pdf')
            self.pdf_object.savefig(f1)

            return pearson, spearman


if __name__ == '__main__':
    #cProfile.run('main()')
    main()