Datasets:

License:
mike dupont
update
3dcad1f
raw
history blame
28.9 kB
;;; Guile Emacs Lisp
;; Copyright (C) 2009-2011, 2013, 2018 Free Software Foundation, Inc.
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; see the file COPYING. If not, write to
;; the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Code:
(define-module (language elisp compile-tree-il)
#:use-module (language elisp bindings)
#:use-module (language elisp runtime)
#:use-module (language tree-il)
#:use-module (system base pmatch)
#:use-module (system base compile)
#:use-module (system base target)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-8)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:export (compile-tree-il
compile-progn
compile-eval-when-compile
compile-if
compile-defconst
compile-defvar
compile-setq
compile-let
compile-flet
compile-labels
compile-let*
compile-guile-ref
compile-guile-primitive
compile-function
compile-defmacro
compile-defun
#{compile-`}#
compile-quote
compile-%funcall
compile-%set-lexical-binding-mode))
;;; Certain common parameters (like the bindings data structure or
;;; compiler options) are not always passed around but accessed using
;;; fluids to simulate dynamic binding (hey, this is about elisp).
;;; The bindings data structure to keep track of symbol binding related
;;; data.
(define bindings-data (make-fluid))
(define lexical-binding (make-fluid))
;;; Find the source properties of some parsed expression if there are
;;; any associated with it.
(define (location x)
(and (pair? x)
(let ((props (source-properties x)))
(and (not (null? props))
props))))
;;; Values to use for Elisp's nil and t.
(define (nil-value loc)
(make-const loc (@ (language elisp runtime) nil-value)))
(define (t-value loc)
(make-const loc (@ (language elisp runtime) t-value)))
;;; Modules that contain the value and function slot bindings.
(define runtime '(language elisp runtime))
(define value-slot (@ (language elisp runtime) value-slot-module))
(define function-slot (@ (language elisp runtime) function-slot-module))
;;; The backquoting works the same as quasiquotes in Scheme, but the
;;; forms are named differently; to make easy adaptions, we define these
;;; predicates checking for a symbol being the car of an
;;; unquote/unquote-splicing/backquote form.
(define (unquote? sym)
(and (symbol? sym) (eq? sym '#{,}#)))
(define (unquote-splicing? sym)
(and (symbol? sym) (eq? sym '#{,@}#)))
;;; Build a call to a primitive procedure nicely.
(define (call-primitive loc sym . args)
(make-primcall loc sym args))
;;; Error reporting routine for syntax/compilation problems or build
;;; code for a runtime-error output.
(define (report-error loc . args)
(apply error args))
(define (access-variable loc symbol handle-lexical handle-dynamic)
(cond
((get-lexical-binding (fluid-ref bindings-data) symbol)
=> handle-lexical)
(else
(handle-dynamic))))
(define (reference-variable loc symbol)
(access-variable
loc
symbol
(lambda (lexical)
(make-lexical-ref loc lexical lexical))
(lambda ()
(call-primitive loc
'fluid-ref
(make-module-ref loc value-slot symbol #t)))))
(define (global? module symbol)
(module-variable module symbol))
(define (ensure-globals! loc names body)
(if (and (every (cut global? (resolve-module value-slot) <>) names)
(every symbol-interned? names))
body
(list->seq
loc
`(,@(map
(lambda (name)
(ensure-fluid! value-slot name)
(make-call loc
(make-module-ref loc runtime 'ensure-fluid! #t)
(list (make-const loc value-slot)
(make-const loc name))))
names)
,body))))
(define (set-variable! loc symbol value)
(access-variable
loc
symbol
(lambda (lexical)
(make-lexical-set loc lexical lexical value))
(lambda ()
(ensure-globals!
loc
(list symbol)
(call-primitive loc
'fluid-set!
(make-module-ref loc value-slot symbol #t)
value)))))
(define (access-function loc symbol handle-lexical handle-global)
(cond
((get-function-binding (fluid-ref bindings-data) symbol)
=> handle-lexical)
(else
(handle-global))))
(define (reference-function loc symbol)
(access-function
loc
symbol
(lambda (gensym) (make-lexical-ref loc symbol gensym))
(lambda () (make-module-ref loc function-slot symbol #t))))
(define (set-function! loc symbol value)
(access-function
loc
symbol
(lambda (gensym) (make-lexical-set loc symbol gensym value))
(lambda ()
(make-call
loc
(make-module-ref loc runtime 'set-symbol-function! #t)
(list (make-const loc symbol) value)))))
(define (bind-lexically? sym module decls)
(or (eq? module function-slot)
(let ((decl (assq-ref decls sym)))
(and (equal? module value-slot)
(or
(eq? decl 'lexical)
(and
(fluid-ref lexical-binding)
(not (global? (resolve-module module) sym))))))))
(define (parse-let-binding loc binding)
(pmatch binding
((unquote var)
(guard (symbol? var))
(cons var #nil))
((,var)
(guard (symbol? var))
(cons var #nil))
((,var ,val)
(guard (symbol? var))
(cons var val))
(else
(report-error loc "malformed variable binding" binding))))
(define (parse-flet-binding loc binding)
(pmatch binding
((,var ,args . ,body)
(guard (symbol? var))
(cons var `(function (lambda ,args ,@body))))
(else
(report-error loc "malformed function binding" binding))))
(define (parse-declaration expr)
(pmatch expr
((lexical . ,vars)
(map (cut cons <> 'lexical) vars))
(else
'())))
(define (parse-body-1 body lambda?)
(let loop ((lst body)
(decls '())
(intspec #f)
(doc #f))
(pmatch lst
(((declare . ,x) . ,tail)
(loop tail (append-reverse x decls) intspec doc))
(((interactive . ,x) . ,tail)
(guard lambda? (not intspec))
(loop tail decls x doc))
((,x . ,tail)
(guard lambda? (string? x) (not doc) (not (null? tail)))
(loop tail decls intspec x))
(else
(values (append-map parse-declaration decls)
intspec
doc
lst)))))
(define (parse-lambda-body body)
(parse-body-1 body #t))
(define (parse-body body)
(receive (decls intspec doc body) (parse-body-1 body #f)
(values decls body)))
;;; Partition the argument list of a lambda expression into required,
;;; optional and rest arguments.
(define (parse-lambda-list lst)
(define (%match lst null optional rest symbol)
(pmatch lst
(() (null))
(nil (null))
((&optional . ,tail) (optional tail))
((&rest . ,tail) (rest tail))
((,arg . ,tail) (guard (symbol? arg)) (symbol arg tail))
(else (fail))))
(define (return rreq ropt rest)
(values #t (reverse rreq) (reverse ropt) rest))
(define (fail)
(values #f #f #f #f))
(define (parse-req lst rreq)
(%match lst
(lambda () (return rreq '() #f))
(lambda (tail) (parse-opt tail rreq '()))
(lambda (tail) (parse-rest tail rreq '()))
(lambda (arg tail) (parse-req tail (cons arg rreq)))))
(define (parse-opt lst rreq ropt)
(%match lst
(lambda () (return rreq ropt #f))
(lambda (tail) (fail))
(lambda (tail) (parse-rest tail rreq ropt))
(lambda (arg tail) (parse-opt tail rreq (cons arg ropt)))))
(define (parse-rest lst rreq ropt)
(%match lst
(lambda () (fail))
(lambda (tail) (fail))
(lambda (tail) (fail))
(lambda (arg tail) (parse-post-rest tail rreq ropt arg))))
(define (parse-post-rest lst rreq ropt rest)
(%match lst
(lambda () (return rreq ropt rest))
(lambda () (fail))
(lambda () (fail))
(lambda (arg tail) (fail))))
(parse-req lst '()))
(define (make-simple-lambda loc meta req opt init rest vars body)
(make-lambda loc
meta
(make-lambda-case #f req opt rest #f init vars body #f)))
(define (make-dynlet src fluids vals body)
(let ((f (map (lambda (x) (gensym "fluid ")) fluids))
(v (map (lambda (x) (gensym "valud ")) vals)))
(make-let src (map (lambda (_) 'fluid) fluids) f fluids
(make-let src (map (lambda (_) 'val) vals) v vals
(let lp ((f f) (v v))
(if (null? f)
body
(make-primcall
src 'with-fluid*
(list (make-lexical-ref #f 'fluid (car f))
(make-lexical-ref #f 'val (car v))
(make-lambda
src '()
(make-lambda-case
src '() #f #f #f '() '()
(lp (cdr f) (cdr v))
#f))))))))))
(define (compile-lambda loc meta args body)
(receive (valid? req-ids opt-ids rest-id)
(parse-lambda-list args)
(if valid?
(let* ((all-ids (append req-ids
opt-ids
(or (and=> rest-id list) '())))
(all-vars (map (lambda (ignore) (gensym)) all-ids)))
(let*-values (((decls intspec doc forms)
(parse-lambda-body body))
((lexical dynamic)
(partition
(compose (cut bind-lexically? <> value-slot decls)
car)
(map list all-ids all-vars)))
((lexical-ids lexical-vars) (unzip2 lexical))
((dynamic-ids dynamic-vars) (unzip2 dynamic)))
(with-dynamic-bindings
(fluid-ref bindings-data)
dynamic-ids
(lambda ()
(with-lexical-bindings
(fluid-ref bindings-data)
lexical-ids
lexical-vars
(lambda ()
(ensure-globals!
loc
dynamic-ids
(let* ((tree-il
(compile-expr
(if rest-id
`(let ((,rest-id (if ,rest-id
,rest-id
nil)))
,@forms)
`(progn ,@forms))))
(full-body
(if (null? dynamic)
tree-il
(make-dynlet
loc
(map (cut make-module-ref loc value-slot <> #t)
dynamic-ids)
(map (cut make-lexical-ref loc <> <>)
dynamic-ids
dynamic-vars)
tree-il))))
(make-simple-lambda loc
meta
req-ids
opt-ids
(map (const (nil-value loc))
opt-ids)
rest-id
all-vars
full-body)))))))))
(report-error "invalid function" `(lambda ,args ,@body)))))
;;; Handle the common part of defconst and defvar, that is, checking for
;;; a correct doc string and arguments as well as maybe in the future
;;; handling the docstring somehow.
(define (handle-var-def loc sym doc)
(cond
((not (symbol? sym)) (report-error loc "expected symbol, got" sym))
((> (length doc) 1) (report-error loc "too many arguments to defvar"))
((and (not (null? doc)) (not (string? (car doc))))
(report-error loc "expected string as third argument of defvar, got"
(car doc)))
;; TODO: Handle doc string if present.
(else #t)))
;;; Handle macro and special operator bindings.
(define (find-operator name type)
(and
(symbol? name)
(module-defined? (resolve-interface function-slot) name)
(let ((op (module-ref (resolve-module function-slot) name)))
(if (and (pair? op) (eq? (car op) type))
(cdr op)
#f))))
;;; See if a (backquoted) expression contains any unquotes.
(define (contains-unquotes? expr)
(if (pair? expr)
(if (or (unquote? (car expr)) (unquote-splicing? (car expr)))
#t
(or (contains-unquotes? (car expr))
(contains-unquotes? (cdr expr))))
#f))
;;; Process a backquoted expression by building up the needed
;;; cons/append calls. For splicing, it is assumed that the expression
;;; spliced in evaluates to a list. The emacs manual does not really
;;; state either it has to or what to do if it does not, but Scheme
;;; explicitly forbids it and this seems reasonable also for elisp.
(define (unquote-cell? expr)
(and (list? expr) (= (length expr) 2) (unquote? (car expr))))
(define (unquote-splicing-cell? expr)
(and (list? expr) (= (length expr) 2) (unquote-splicing? (car expr))))
(define (process-backquote loc expr)
(if (contains-unquotes? expr)
(if (pair? expr)
(if (or (unquote-cell? expr) (unquote-splicing-cell? expr))
(compile-expr (cadr expr))
(let* ((head (car expr))
(processed-tail (process-backquote loc (cdr expr)))
(head-is-list-2 (and (list? head)
(= (length head) 2)))
(head-unquote (and head-is-list-2
(unquote? (car head))))
(head-unquote-splicing (and head-is-list-2
(unquote-splicing?
(car head)))))
(if head-unquote-splicing
(call-primitive loc
'append
(compile-expr (cadr head))
processed-tail)
(call-primitive loc 'cons
(if head-unquote
(compile-expr (cadr head))
(process-backquote loc head))
processed-tail))))
(report-error loc
"non-pair expression contains unquotes"
expr))
(make-const loc expr)))
;;; Special operators
(defspecial progn (loc args)
(list->seq loc
(if (null? args)
(list (nil-value loc))
(map compile-expr args))))
(defspecial eval-when-compile (loc args)
(make-const loc (with-native-target
(lambda ()
(compile `(progn ,@args) #:from 'elisp #:to 'value)))))
(defspecial if (loc args)
(pmatch args
((,cond ,then . ,else)
(make-conditional
loc
(call-primitive loc 'not
(call-primitive loc 'nil? (compile-expr cond)))
(compile-expr then)
(compile-expr `(progn ,@else))))))
(defspecial defconst (loc args)
(pmatch args
((,sym ,value . ,doc)
(if (handle-var-def loc sym doc)
(make-seq loc
(set-variable! loc sym (compile-expr value))
(make-const loc sym))))))
(defspecial defvar (loc args)
(pmatch args
((,sym) (make-const loc sym))
((,sym ,value . ,doc)
(if (handle-var-def loc sym doc)
(make-seq
loc
(make-conditional
loc
(make-conditional
loc
(call-primitive
loc
'module-bound?
(call-primitive loc
'resolve-interface
(make-const loc value-slot))
(make-const loc sym))
(call-primitive loc
'fluid-bound?
(make-module-ref loc value-slot sym #t))
(make-const loc #f))
(make-void loc)
(set-variable! loc sym (compile-expr value)))
(make-const loc sym))))))
(defspecial setq (loc args)
(define (car* x) (if (null? x) '() (car x)))
(define (cdr* x) (if (null? x) '() (cdr x)))
(define (cadr* x) (car* (cdr* x)))
(define (cddr* x) (cdr* (cdr* x)))
(list->seq
loc
(let loop ((args args) (last (nil-value loc)))
(if (null? args)
(list last)
(let ((sym (car args))
(val (compile-expr (cadr* args))))
(if (not (symbol? sym))
(report-error loc "expected symbol in setq")
(cons
(set-variable! loc sym val)
(loop (cddr* args)
(reference-variable loc sym)))))))))
(defspecial let (loc args)
(pmatch args
((,varlist . ,body)
(let ((bindings (map (cut parse-let-binding loc <>) varlist)))
(receive (decls forms) (parse-body body)
(receive (lexical dynamic)
(partition
(compose (cut bind-lexically? <> value-slot decls)
car)
bindings)
(let ((make-values (lambda (for)
(map (lambda (el) (compile-expr (cdr el)))
for)))
(make-body (lambda () (compile-expr `(progn ,@forms)))))
(ensure-globals!
loc
(map car dynamic)
(if (null? lexical)
(make-dynlet loc
(map (compose (cut make-module-ref
loc
value-slot
<>
#t)
car)
dynamic)
(map (compose compile-expr cdr)
dynamic)
(make-body))
(let* ((lexical-syms (map (lambda (el) (gensym)) lexical))
(dynamic-syms (map (lambda (el) (gensym)) dynamic))
(all-syms (append lexical-syms dynamic-syms))
(vals (append (make-values lexical)
(make-values dynamic))))
(make-let loc
all-syms
all-syms
vals
(with-lexical-bindings
(fluid-ref bindings-data)
(map car lexical)
lexical-syms
(lambda ()
(if (null? dynamic)
(make-body)
(make-dynlet loc
(map
(compose
(cut make-module-ref
loc
value-slot
<>
#t)
car)
dynamic)
(map
(lambda (sym)
(make-lexical-ref
loc
sym
sym))
dynamic-syms)
(make-body))))))))))))))))
(defspecial let* (loc args)
(pmatch args
((,varlist . ,body)
(let ((bindings (map (cut parse-let-binding loc <>) varlist)))
(receive (decls forms) (parse-body body)
(let iterate ((tail bindings))
(if (null? tail)
(compile-expr `(progn ,@forms))
(let ((sym (caar tail))
(value (compile-expr (cdar tail))))
(if (bind-lexically? sym value-slot decls)
(let ((target (gensym)))
(make-let loc
`(,target)
`(,target)
`(,value)
(with-lexical-bindings
(fluid-ref bindings-data)
`(,sym)
`(,target)
(lambda () (iterate (cdr tail))))))
(ensure-globals!
loc
(list sym)
(make-dynlet loc
(list (make-module-ref loc value-slot sym #t))
(list value)
(iterate (cdr tail)))))))))))))
(defspecial flet (loc args)
(pmatch args
((,bindings . ,body)
(let ((names+vals (map (cut parse-flet-binding loc <>) bindings)))
(receive (decls forms) (parse-body body)
(let ((names (map car names+vals))
(vals (map cdr names+vals))
(gensyms (map (lambda (x) (gensym)) names+vals)))
(with-function-bindings
(fluid-ref bindings-data)
names
gensyms
(lambda ()
(make-let loc
names
gensyms
(map compile-expr vals)
(compile-expr `(progn ,@forms)))))))))))
(defspecial labels (loc args)
(pmatch args
((,bindings . ,body)
(let ((names+vals (map (cut parse-flet-binding loc <>) bindings)))
(receive (decls forms) (parse-body body)
(let ((names (map car names+vals))
(vals (map cdr names+vals))
(gensyms (map (lambda (x) (gensym)) names+vals)))
(with-function-bindings
(fluid-ref bindings-data)
names
gensyms
(lambda ()
(make-letrec #f
loc
names
gensyms
(map compile-expr vals)
(compile-expr `(progn ,@forms)))))))))))
;;; guile-ref allows building TreeIL's module references from within
;;; elisp as a way to access data within the Guile universe. The module
;;; and symbol referenced are static values, just like (@ module symbol)
;;; does!
(defspecial guile-ref (loc args)
(pmatch args
((,module ,sym) (guard (and (list? module) (symbol? sym)))
(make-module-ref loc module sym #t))))
;;; guile-primitive allows to create primitive references, which are
;;; still a little faster.
(defspecial guile-primitive (loc args)
(pmatch args
((,sym)
(make-primitive-ref loc sym))))
(defspecial function (loc args)
(pmatch args
(((lambda ,args . ,body))
(compile-lambda loc '() args body))
((,sym) (guard (symbol? sym))
(reference-function loc sym))))
(defspecial defmacro (loc args)
(pmatch args
((,name ,args . ,body)
(if (not (symbol? name))
(report-error loc "expected symbol as macro name" name)
(let* ((tree-il
(make-seq
loc
(set-function!
loc
name
(make-call
loc
(make-module-ref loc '(guile) 'cons #t)
(list (make-const loc 'macro)
(compile-lambda loc
`((name . ,name))
args
body))))
(make-const loc name))))
(with-native-target
(lambda ()
(compile tree-il #:from 'tree-il #:to 'value)))
tree-il)))))
(defspecial defun (loc args)
(pmatch args
((,name ,args . ,body)
(if (not (symbol? name))
(report-error loc "expected symbol as function name" name)
(make-seq loc
(set-function! loc
name
(compile-lambda loc
`((name . ,name))
args
body))
(make-const loc name))))))
(defspecial #{`}# (loc args)
(pmatch args
((,val)
(process-backquote loc val))))
(defspecial quote (loc args)
(pmatch args
((,val)
(make-const loc val))))
(defspecial %funcall (loc args)
(pmatch args
((,function . ,arguments)
(make-call loc
(compile-expr function)
(map compile-expr arguments)))))
(defspecial %set-lexical-binding-mode (loc args)
(pmatch args
((,val)
(fluid-set! lexical-binding val)
(make-void loc))))
;;; Compile a compound expression to Tree-IL.
(define (compile-pair loc expr)
(let ((operator (car expr))
(arguments (cdr expr)))
(cond
((find-operator operator 'special-operator)
=> (lambda (special-operator-function)
(special-operator-function loc arguments)))
((find-operator operator 'macro)
=> (lambda (macro-function)
(compile-expr (apply macro-function arguments))))
(else
(compile-expr `(%funcall (function ,operator) ,@arguments))))))
;;; Compile a symbol expression. This is a variable reference or maybe
;;; some special value like nil.
(define (compile-symbol loc sym)
(case sym
((nil) (nil-value loc))
((t) (t-value loc))
(else (reference-variable loc sym))))
;;; Compile a single expression to TreeIL.
(define (compile-expr expr)
(let ((loc (location expr)))
(cond
((symbol? expr)
(compile-symbol loc expr))
((pair? expr)
(compile-pair loc expr))
(else (make-const loc expr)))))
;;; Process the compiler options.
;;; FIXME: Why is '(()) passed as options by the REPL?
(define (valid-symbol-list-arg? value)
(or (eq? value 'all)
(and (list? value) (and-map symbol? value))))
(define (process-options! opt)
(if (and (not (null? opt))
(not (equal? opt '(()))))
(if (null? (cdr opt))
(report-error #f "Invalid compiler options" opt)
(let ((key (car opt))
(value (cadr opt)))
(case key
((#:warnings #:to-file?) ; ignore
#f)
(else (report-error #f
"Invalid compiler option"
key)))))))
(define (compile-tree-il expr env opts)
(values
(with-fluids ((bindings-data (make-bindings)))
(process-options! opts)
(compile-expr expr))
env
env))