Datasets:

License:
File size: 61,710 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
;;;
;;;; An Efficient and Portable LALR(1) Parser Generator for Scheme
;;;
;; Copyright 2014  Jan Nieuwenhuizen <[email protected]>
;; Copyright 1993, 2010 Dominique Boucher
;;
;; This program is free software: you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public License
;; as published by the Free Software Foundation, either version 3 of
;; the License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <http://www.gnu.org/licenses/>.


(define *lalr-scm-version* "2.5.0")


(cond-expand 

 ;; -- Gambit-C
 (gambit

  (define-macro (def-macro form . body)
    `(define-macro ,form (let () ,@body)))

  (def-macro (BITS-PER-WORD) 28)
  (def-macro (logical-or x . y) `(bitwise-ior ,x ,@y))
  (def-macro (lalr-error msg obj) `(error ,msg ,obj))

  (define pprint pretty-print)
  (define lalr-keyword? keyword?)
  (define (note-source-location lvalue tok) lvalue))
 
 ;; -- 
 (bigloo
  (define-macro (def-macro form . body)
    `(define-macro ,form (let () ,@body)))

  (define pprint (lambda (obj) (write obj) (newline)))
  (define lalr-keyword? keyword?)
  (def-macro (BITS-PER-WORD) 29)
  (def-macro (logical-or x . y) `(bit-or ,x ,@y))
  (def-macro (lalr-error msg obj) `(error "lalr-parser" ,msg ,obj))
  (define (note-source-location lvalue tok) lvalue))
 
 ;; -- Chicken
 (chicken
  
  (define-macro (def-macro form . body)
    `(define-macro ,form (let () ,@body)))

  (define pprint pretty-print)
  (define lalr-keyword? symbol?)
  (def-macro (BITS-PER-WORD) 30)
  (def-macro (logical-or x . y) `(bitwise-ior ,x ,@y))
  (def-macro (lalr-error msg obj) `(error ,msg ,obj))
  (define (note-source-location lvalue tok) lvalue))

 ;; -- STKlos
 (stklos
  (require "pp")

  (define (pprint form) (pp form :port (current-output-port)))

  (define lalr-keyword? keyword?)
  (define-macro (BITS-PER-WORD) 30)
  (define-macro (logical-or x . y) `(bit-or ,x ,@y))
  (define-macro (lalr-error msg obj) `(error 'lalr-parser ,msg ,obj))
  (define (note-source-location lvalue tok) lvalue))

 ;; -- Guile
 (guile
  (use-modules (ice-9 pretty-print))
  (use-modules (srfi srfi-9))

  (define pprint pretty-print)
  (define lalr-keyword? symbol?)
  (define-macro (BITS-PER-WORD) 30)
  (define-macro (logical-or x . y) `(logior ,x ,@y))
  (define-macro (lalr-error msg obj) `(error ,msg ,obj))
  (define (note-source-location lvalue tok)
    (if (and (supports-source-properties? lvalue)
             (not (source-property lvalue 'loc))
             (lexical-token? tok))
        (set-source-property! lvalue 'loc (lexical-token-source tok)))
    lvalue))


 ;; -- Kawa
 (kawa
  (require 'pretty-print)
  (define (BITS-PER-WORD) 30)
  (define logical-or logior)
  (define (lalr-keyword? obj) (keyword? obj))
  (define (pprint obj) (pretty-print obj))
  (define (lalr-error msg obj) (error msg obj))
  (define (note-source-location lvalue tok) lvalue))

 ;; -- SISC
 (sisc
  (import logicops)
  (import record)
	
  (define pprint pretty-print)
  (define lalr-keyword? symbol?)
  (define-macro BITS-PER-WORD (lambda () 32))
  (define-macro logical-or (lambda (x . y) `(logor ,x ,@y)))
  (define-macro (lalr-error msg obj) `(error "~a ~S:" ,msg ,obj))
  (define (note-source-location lvalue tok) lvalue))
       
 (else
  (error "Unsupported Scheme system")))


(define-record-type lexical-token
  (make-lexical-token category source value)
  lexical-token?
  (category lexical-token-category)
  (source   lexical-token-source)
  (value    lexical-token-value))


(define-record-type source-location
  (make-source-location input line column offset length)
  source-location?
  (input   source-location-input)
  (line    source-location-line)
  (column  source-location-column)
  (offset  source-location-offset)
  (length  source-location-length))



      ;; - Macros pour la gestion des vecteurs de bits

(define-macro (lalr-parser . arguments)
  (define (set-bit v b)
    (let ((x (quotient b (BITS-PER-WORD)))
	  (y (expt 2 (remainder b (BITS-PER-WORD)))))
      (vector-set! v x (logical-or (vector-ref v x) y))))

  (define (bit-union v1 v2 n)
    (do ((i 0 (+ i 1)))
	((= i n))
      (vector-set! v1 i (logical-or (vector-ref v1 i)
				    (vector-ref v2 i)))))

  ;; - Macro pour les structures de donnees

  (define (new-core)              (make-vector 4 0))
  (define (set-core-number! c n)  (vector-set! c 0 n))
  (define (set-core-acc-sym! c s) (vector-set! c 1 s))
  (define (set-core-nitems! c n)  (vector-set! c 2 n))
  (define (set-core-items! c i)   (vector-set! c 3 i))
  (define (core-number c)         (vector-ref c 0))
  (define (core-acc-sym c)        (vector-ref c 1))
  (define (core-nitems c)         (vector-ref c 2))
  (define (core-items c)          (vector-ref c 3))

  (define (new-shift)              (make-vector 3 0))
  (define (set-shift-number! c x)  (vector-set! c 0 x))
  (define (set-shift-nshifts! c x) (vector-set! c 1 x))
  (define (set-shift-shifts! c x)  (vector-set! c 2 x))
  (define (shift-number s)         (vector-ref s 0))
  (define (shift-nshifts s)        (vector-ref s 1))
  (define (shift-shifts s)         (vector-ref s 2))

  (define (new-red)                (make-vector 3 0))
  (define (set-red-number! c x)    (vector-set! c 0 x))
  (define (set-red-nreds! c x)     (vector-set! c 1 x))
  (define (set-red-rules! c x)     (vector-set! c 2 x))
  (define (red-number c)           (vector-ref c 0))
  (define (red-nreds c)            (vector-ref c 1))
  (define (red-rules c)            (vector-ref c 2))


  (define (new-set nelem)
    (make-vector nelem 0))


  (define (vector-map f v)
    (let ((vm-n (- (vector-length v) 1)))
      (let loop ((vm-low 0) (vm-high vm-n))
	(if (= vm-low vm-high)
	    (vector-set! v vm-low (f (vector-ref v vm-low) vm-low))
	    (let ((vm-middle (quotient (+ vm-low vm-high) 2)))
	      (loop vm-low vm-middle)
	      (loop (+ vm-middle 1) vm-high))))))


  ;; - Constantes
  (define STATE-TABLE-SIZE 1009)


  ;; - Tableaux 
  (define rrhs         #f)
  (define rlhs         #f)
  (define ritem        #f)
  (define nullable     #f)
  (define derives      #f)
  (define fderives     #f)
  (define firsts       #f)
  (define kernel-base  #f)
  (define kernel-end   #f)
  (define shift-symbol #f)
  (define shift-set    #f)
  (define red-set      #f)
  (define state-table  #f)
  (define acces-symbol #f)
  (define reduction-table #f)
  (define shift-table  #f)
  (define consistent   #f)
  (define lookaheads   #f)
  (define LA           #f)
  (define LAruleno     #f)
  (define lookback     #f)
  (define goto-map     #f)
  (define from-state   #f)
  (define to-state     #f)
  (define includes     #f)
  (define F            #f)
  (define action-table #f)

  ;; - Variables
  (define nitems          #f)
  (define nrules          #f)
  (define nvars           #f)
  (define nterms          #f)
  (define nsyms           #f)
  (define nstates         #f)
  (define first-state     #f)
  (define last-state      #f)
  (define final-state     #f)
  (define first-shift     #f)
  (define last-shift      #f)
  (define first-reduction #f)
  (define last-reduction  #f)
  (define nshifts         #f)
  (define maxrhs          #f)
  (define ngotos          #f)
  (define token-set-size  #f)

  (define driver-name     'lr-driver)

  (define (glr-driver?)
    (eq? driver-name 'glr-driver))
  (define (lr-driver?)
    (eq? driver-name 'lr-driver))

  (define (gen-tables! tokens gram )
    (initialize-all)
    (rewrite-grammar
     tokens
     gram
     (lambda (terms terms/prec vars gram gram/actions)
       (set! the-terminals/prec (list->vector terms/prec))
       (set! the-terminals (list->vector terms))
       (set! the-nonterminals (list->vector vars))
       (set! nterms (length terms))
       (set! nvars  (length vars))
       (set! nsyms  (+ nterms nvars))
       (let ((no-of-rules (length gram/actions))
	     (no-of-items (let loop ((l gram/actions) (count 0))
			    (if (null? l)
				count
				(loop (cdr l) (+ count (length (caar l))))))))
	 (pack-grammar no-of-rules no-of-items gram)
	 (set-derives)
	 (set-nullable)
	 (generate-states)
	 (lalr)
	 (build-tables)
	 (compact-action-table terms)
	 gram/actions))))


  (define (initialize-all)
    (set! rrhs         #f)
    (set! rlhs         #f)
    (set! ritem        #f)
    (set! nullable     #f)
    (set! derives      #f)
    (set! fderives     #f)
    (set! firsts       #f)
    (set! kernel-base  #f)
    (set! kernel-end   #f)
    (set! shift-symbol #f)
    (set! shift-set    #f)
    (set! red-set      #f)
    (set! state-table  (make-vector STATE-TABLE-SIZE '()))
    (set! acces-symbol #f)
    (set! reduction-table #f)
    (set! shift-table  #f)
    (set! consistent   #f)
    (set! lookaheads   #f)
    (set! LA           #f)
    (set! LAruleno     #f)
    (set! lookback     #f)
    (set! goto-map     #f)
    (set! from-state   #f)
    (set! to-state     #f)
    (set! includes     #f)
    (set! F            #f)
    (set! action-table #f)
    (set! nstates         #f)
    (set! first-state     #f)
    (set! last-state      #f)
    (set! final-state     #f)
    (set! first-shift     #f)
    (set! last-shift      #f)
    (set! first-reduction #f)
    (set! last-reduction  #f)
    (set! nshifts         #f)
    (set! maxrhs          #f)
    (set! ngotos          #f)
    (set! token-set-size  #f)
    (set! rule-precedences '()))


  (define (pack-grammar no-of-rules no-of-items gram)
    (set! nrules (+  no-of-rules 1))
    (set! nitems no-of-items)
    (set! rlhs (make-vector nrules #f))
    (set! rrhs (make-vector nrules #f))
    (set! ritem (make-vector (+ 1 nitems) #f))

    (let loop ((p gram) (item-no 0) (rule-no 1))
      (if (not (null? p))
	  (let ((nt (caar p)))
	    (let loop2 ((prods (cdar p)) (it-no2 item-no) (rl-no2 rule-no))
	      (if (null? prods)
		  (loop (cdr p) it-no2 rl-no2)
		  (begin
		    (vector-set! rlhs rl-no2 nt)
		    (vector-set! rrhs rl-no2 it-no2)
		    (let loop3 ((rhs (car prods)) (it-no3 it-no2))
		      (if (null? rhs)
			  (begin
			    (vector-set! ritem it-no3 (- rl-no2))
			    (loop2 (cdr prods) (+ it-no3 1) (+ rl-no2 1)))
			  (begin
			    (vector-set! ritem it-no3 (car rhs))
			    (loop3 (cdr rhs) (+ it-no3 1))))))))))))


  (define (set-derives)
    (define delts (make-vector (+ nrules 1) 0))
    (define dset  (make-vector nvars -1))

    (let loop ((i 1) (j 0))		; i = 0
      (if (< i nrules)
	  (let ((lhs (vector-ref rlhs i)))
	    (if (>= lhs 0)
		(begin
		  (vector-set! delts j (cons i (vector-ref dset lhs)))
		  (vector-set! dset lhs j)
		  (loop (+ i 1) (+ j 1)))
		(loop (+ i 1) j)))))

    (set! derives (make-vector nvars 0))

    (let loop ((i 0))
      (if (< i nvars)
	  (let ((q (let loop2 ((j (vector-ref dset i)) (s '()))
		     (if (< j 0)
			 s
			 (let ((x (vector-ref delts j)))
			   (loop2 (cdr x) (cons (car x) s)))))))
	    (vector-set! derives i q)
	    (loop (+ i 1))))))



  (define (set-nullable)
    (set! nullable (make-vector nvars #f))
    (let ((squeue (make-vector nvars #f))
	  (rcount (make-vector (+ nrules 1) 0))
	  (rsets  (make-vector nvars #f))
	  (relts  (make-vector (+ nitems nvars 1) #f)))
      (let loop ((r 0) (s2 0) (p 0))
	(let ((*r (vector-ref ritem r)))
	  (if *r
	      (if (< *r 0)
		  (let ((symbol (vector-ref rlhs (- *r))))
		    (if (and (>= symbol 0)
			     (not (vector-ref nullable symbol)))
			(begin
			  (vector-set! nullable symbol #t)
			  (vector-set! squeue s2 symbol)
			  (loop (+ r 1) (+ s2 1) p))))
		  (let loop2 ((r1 r) (any-tokens #f))
		    (let* ((symbol (vector-ref ritem r1)))
		      (if (> symbol 0)
			  (loop2 (+ r1 1) (or any-tokens (>= symbol nvars)))
			  (if (not any-tokens)
			      (let ((ruleno (- symbol)))
				(let loop3 ((r2 r) (p2 p))
				  (let ((symbol (vector-ref ritem r2)))
				    (if (> symbol 0)
					(begin
					  (vector-set! rcount ruleno
						       (+ (vector-ref rcount ruleno) 1))
					  (vector-set! relts p2
						       (cons (vector-ref rsets symbol)
							     ruleno))
					  (vector-set! rsets symbol p2)
					  (loop3 (+ r2 1) (+ p2 1)))
					(loop (+ r2 1) s2 p2)))))
			      (loop (+ r1 1) s2 p))))))
	      (let loop ((s1 0) (s3 s2))
		(if (< s1 s3)
		    (let loop2 ((p (vector-ref rsets (vector-ref squeue s1))) (s4 s3))
		      (if p
			  (let* ((x (vector-ref relts p))
				 (ruleno (cdr x))
				 (y (- (vector-ref rcount ruleno) 1)))
			    (vector-set! rcount ruleno y)
			    (if (= y 0)
				(let ((symbol (vector-ref rlhs ruleno)))
				  (if (and (>= symbol 0)
					   (not (vector-ref nullable symbol)))
				      (begin
					(vector-set! nullable symbol #t)
					(vector-set! squeue s4 symbol)
					(loop2 (car x) (+ s4 1)))
				      (loop2 (car x) s4)))
				(loop2 (car x) s4))))
		      (loop (+ s1 1) s4)))))))))



  (define (set-firsts)
    (set! firsts (make-vector nvars '()))

    ;; -- initialization
    (let loop ((i 0))
      (if (< i nvars)
	  (let loop2 ((sp (vector-ref derives i)))
	    (if (null? sp)
		(loop (+ i 1))
		(let ((sym (vector-ref ritem (vector-ref rrhs (car sp)))))
		  (if (< -1 sym nvars)
		      (vector-set! firsts i (sinsert sym (vector-ref firsts i))))
		  (loop2 (cdr sp)))))))

    ;; -- reflexive and transitive closure
    (let loop ((continue #t))
      (if continue
	  (let loop2 ((i 0) (cont #f))
	    (if (>= i nvars)
		(loop cont)
		(let* ((x (vector-ref firsts i))
		       (y (let loop3 ((l x) (z x))
			    (if (null? l)
				z
				(loop3 (cdr l)
				       (sunion (vector-ref firsts (car l)) z))))))
		  (if (equal? x y)
		      (loop2 (+ i 1) cont)
		      (begin
			(vector-set! firsts i y)
			(loop2 (+ i 1) #t))))))))

    (let loop ((i 0))
      (if (< i nvars)
	  (begin
	    (vector-set! firsts i (sinsert i (vector-ref firsts i)))
	    (loop (+ i 1))))))




  (define (set-fderives)
    (set! fderives (make-vector nvars #f))

    (set-firsts)

    (let loop ((i 0))
      (if (< i nvars)
	  (let ((x (let loop2 ((l (vector-ref firsts i)) (fd '()))
		     (if (null? l)
			 fd
			 (loop2 (cdr l)
				(sunion (vector-ref derives (car l)) fd))))))
	    (vector-set! fderives i x)
	    (loop (+ i 1))))))


  (define (closure core)
    ;; Initialization
    (define ruleset (make-vector nrules #f))

    (let loop ((csp core))
      (if (not (null? csp))
	  (let ((sym (vector-ref ritem (car csp))))
	    (if (< -1 sym nvars)
		(let loop2 ((dsp (vector-ref fderives sym)))
		  (if (not (null? dsp))
		      (begin
			(vector-set! ruleset (car dsp) #t)
			(loop2 (cdr dsp))))))
	    (loop (cdr csp)))))

    (let loop ((ruleno 1) (csp core) (itemsetv '())) ; ruleno = 0
      (if (< ruleno nrules)
	  (if (vector-ref ruleset ruleno)
	      (let ((itemno (vector-ref rrhs ruleno)))
		(let loop2 ((c csp) (itemsetv2 itemsetv))
		  (if (and (pair? c)
			   (< (car c) itemno))
		      (loop2 (cdr c) (cons (car c) itemsetv2))
		      (loop (+ ruleno 1) c (cons itemno itemsetv2)))))
	      (loop (+ ruleno 1) csp itemsetv))
	  (let loop2 ((c csp) (itemsetv2 itemsetv))
	    (if (pair? c)
		(loop2 (cdr c) (cons (car c) itemsetv2))
		(reverse itemsetv2))))))



  (define (allocate-item-sets)
    (set! kernel-base (make-vector nsyms 0))
    (set! kernel-end  (make-vector nsyms #f)))


  (define (allocate-storage)
    (allocate-item-sets)
    (set! red-set (make-vector (+ nrules 1) 0)))

					; --


  (define (initialize-states)
    (let ((p (new-core)))
      (set-core-number! p 0)
      (set-core-acc-sym! p #f)
      (set-core-nitems! p 1)
      (set-core-items! p '(0))

      (set! first-state (list p))
      (set! last-state first-state)
      (set! nstates 1)))



  (define (generate-states)
    (allocate-storage)
    (set-fderives)
    (initialize-states)
    (let loop ((this-state first-state))
      (if (pair? this-state)
	  (let* ((x (car this-state))
		 (is (closure (core-items x))))
	    (save-reductions x is)
	    (new-itemsets is)
	    (append-states)
	    (if (> nshifts 0)
		(save-shifts x))
	    (loop (cdr this-state))))))


  (define (new-itemsets itemset)
    ;; - Initialization
    (set! shift-symbol '())
    (let loop ((i 0))
      (if (< i nsyms)
	  (begin
	    (vector-set! kernel-end i '())
	    (loop (+ i 1)))))

    (let loop ((isp itemset))
      (if (pair? isp)
	  (let* ((i (car isp))
		 (sym (vector-ref ritem i)))
	    (if (>= sym 0)
		(begin
		  (set! shift-symbol (sinsert sym shift-symbol))
		  (let ((x (vector-ref kernel-end sym)))
		    (if (null? x)
			(begin
			  (vector-set! kernel-base sym (cons (+ i 1) x))
			  (vector-set! kernel-end sym (vector-ref kernel-base sym)))
			(begin
			  (set-cdr! x (list (+ i 1)))
			  (vector-set! kernel-end sym (cdr x)))))))
	    (loop (cdr isp)))))

    (set! nshifts (length shift-symbol)))



  (define (get-state sym)
    (let* ((isp  (vector-ref kernel-base sym))
	   (n    (length isp))
	   (key  (let loop ((isp1 isp) (k 0))
		   (if (null? isp1)
		       (modulo k STATE-TABLE-SIZE)
		       (loop (cdr isp1) (+ k (car isp1))))))
	   (sp   (vector-ref state-table key)))
      (if (null? sp)
	  (let ((x (new-state sym)))
	    (vector-set! state-table key (list x))
	    (core-number x))
	  (let loop ((sp1 sp))
	    (if (and (= n (core-nitems (car sp1)))
		     (let loop2 ((i1 isp) (t (core-items (car sp1))))
		       (if (and (pair? i1)
				(= (car i1)
				   (car t)))
			   (loop2 (cdr i1) (cdr t))
			   (null? i1))))
		(core-number (car sp1))
		(if (null? (cdr sp1))
		    (let ((x (new-state sym)))
		      (set-cdr! sp1 (list x))
		      (core-number x))
		    (loop (cdr sp1))))))))


  (define (new-state sym)
    (let* ((isp  (vector-ref kernel-base sym))
	   (n    (length isp))
	   (p    (new-core)))
      (set-core-number! p nstates)
      (set-core-acc-sym! p sym)
      (if (= sym nvars) (set! final-state nstates))
      (set-core-nitems! p n)
      (set-core-items! p isp)
      (set-cdr! last-state (list p))
      (set! last-state (cdr last-state))
      (set! nstates (+ nstates 1))
      p))


					; --

  (define (append-states)
    (set! shift-set
	  (let loop ((l (reverse shift-symbol)))
	    (if (null? l)
		'()
		(cons (get-state (car l)) (loop (cdr l)))))))

					; --

  (define (save-shifts core)
    (let ((p (new-shift)))
      (set-shift-number! p (core-number core))
      (set-shift-nshifts! p nshifts)
      (set-shift-shifts! p shift-set)
      (if last-shift
	  (begin
	    (set-cdr! last-shift (list p))
	    (set! last-shift (cdr last-shift)))
	  (begin
	    (set! first-shift (list p))
	    (set! last-shift first-shift)))))

  (define (save-reductions core itemset)
    (let ((rs (let loop ((l itemset))
		(if (null? l)
		    '()
		    (let ((item (vector-ref ritem (car l))))
		      (if (< item 0)
			  (cons (- item) (loop (cdr l)))
			  (loop (cdr l))))))))
      (if (pair? rs)
	  (let ((p (new-red)))
	    (set-red-number! p (core-number core))
	    (set-red-nreds!  p (length rs))
	    (set-red-rules!  p rs)
	    (if last-reduction
		(begin
		  (set-cdr! last-reduction (list p))
		  (set! last-reduction (cdr last-reduction)))
		(begin
		  (set! first-reduction (list p))
		  (set! last-reduction first-reduction)))))))


					; --

  (define (lalr)
    (set! token-set-size (+ 1 (quotient nterms (BITS-PER-WORD))))
    (set-accessing-symbol)
    (set-shift-table)
    (set-reduction-table)
    (set-max-rhs)
    (initialize-LA)
    (set-goto-map)
    (initialize-F)
    (build-relations)
    (digraph includes)
    (compute-lookaheads))

  (define (set-accessing-symbol)
    (set! acces-symbol (make-vector nstates #f))
    (let loop ((l first-state))
      (if (pair? l)
	  (let ((x (car l)))
	    (vector-set! acces-symbol (core-number x) (core-acc-sym x))
	    (loop (cdr l))))))

  (define (set-shift-table)
    (set! shift-table (make-vector nstates #f))
    (let loop ((l first-shift))
      (if (pair? l)
	  (let ((x (car l)))
	    (vector-set! shift-table (shift-number x) x)
	    (loop (cdr l))))))

  (define (set-reduction-table)
    (set! reduction-table (make-vector nstates #f))
    (let loop ((l first-reduction))
      (if (pair? l)
	  (let ((x (car l)))
	    (vector-set! reduction-table (red-number x) x)
	    (loop (cdr l))))))

  (define (set-max-rhs)
    (let loop ((p 0) (curmax 0) (length 0))
      (let ((x (vector-ref ritem p)))
	(if x
	    (if (>= x 0)
		(loop (+ p 1) curmax (+ length 1))
		(loop (+ p 1) (max curmax length) 0))
	    (set! maxrhs curmax)))))

  (define (initialize-LA)
    (define (last l)
      (if (null? (cdr l))
	  (car l)
	  (last (cdr l))))

    (set! consistent (make-vector nstates #f))
    (set! lookaheads (make-vector (+ nstates 1) #f))

    (let loop ((count 0) (i 0))
      (if (< i nstates)
	  (begin
	    (vector-set! lookaheads i count)
	    (let ((rp (vector-ref reduction-table i))
		  (sp (vector-ref shift-table i)))
	      (if (and rp
		       (or (> (red-nreds rp) 1)
			   (and sp
				(not
				 (< (vector-ref acces-symbol
						(last (shift-shifts sp)))
				    nvars)))))
		  (loop (+ count (red-nreds rp)) (+ i 1))
		  (begin
		    (vector-set! consistent i #t)
		    (loop count (+ i 1))))))

	  (begin
	    (vector-set! lookaheads nstates count)
	    (let ((c (max count 1)))
	      (set! LA (make-vector c #f))
	      (do ((j 0 (+ j 1))) ((= j c)) (vector-set! LA j (new-set token-set-size)))
	      (set! LAruleno (make-vector c -1))
	      (set! lookback (make-vector c #f)))
	    (let loop ((i 0) (np 0))
	      (if (< i nstates)
		  (if (vector-ref consistent i)
		      (loop (+ i 1) np)
		      (let ((rp (vector-ref reduction-table i)))
			(if rp
			    (let loop2 ((j (red-rules rp)) (np2 np))
			      (if (null? j)
				  (loop (+ i 1) np2)
				  (begin
				    (vector-set! LAruleno np2 (car j))
				    (loop2 (cdr j) (+ np2 1)))))
			    (loop (+ i 1) np))))))))))


  (define (set-goto-map)
    (set! goto-map (make-vector (+ nvars 1) 0))
    (let ((temp-map (make-vector (+ nvars 1) 0)))
      (let loop ((ng 0) (sp first-shift))
	(if (pair? sp)
	    (let loop2 ((i (reverse (shift-shifts (car sp)))) (ng2 ng))
	      (if (pair? i)
		  (let ((symbol (vector-ref acces-symbol (car i))))
		    (if (< symbol nvars)
			(begin
			  (vector-set! goto-map symbol
				       (+ 1 (vector-ref goto-map symbol)))
			  (loop2 (cdr i) (+ ng2 1)))
			(loop2 (cdr i) ng2)))
		  (loop ng2 (cdr sp))))

	    (let loop ((k 0) (i 0))
	      (if (< i nvars)
		  (begin
		    (vector-set! temp-map i k)
		    (loop (+ k (vector-ref goto-map i)) (+ i 1)))

		  (begin
		    (do ((i 0 (+ i 1)))
			((>= i nvars))
		      (vector-set! goto-map i (vector-ref temp-map i)))

		    (set! ngotos ng)
		    (vector-set! goto-map nvars ngotos)
		    (vector-set! temp-map nvars ngotos)
		    (set! from-state (make-vector ngotos #f))
		    (set! to-state (make-vector ngotos #f))

		    (do ((sp first-shift (cdr sp)))
			((null? sp))
		      (let* ((x (car sp))
			     (state1 (shift-number x)))
			(do ((i (shift-shifts x) (cdr i)))
			    ((null? i))
			  (let* ((state2 (car i))
				 (symbol (vector-ref acces-symbol state2)))
			    (if (< symbol nvars)
				(let ((k (vector-ref temp-map symbol)))
				  (vector-set! temp-map symbol (+ k 1))
				  (vector-set! from-state k state1)
				  (vector-set! to-state k state2))))))))))))))


  (define (map-goto state symbol)
    (let loop ((low (vector-ref goto-map symbol))
	       (high (- (vector-ref goto-map (+ symbol 1)) 1)))
      (if (> low high)
	  (begin
	    (display (list "Error in map-goto" state symbol)) (newline)
	    0)
	  (let* ((middle (quotient (+ low high) 2))
		 (s (vector-ref from-state middle)))
	    (cond
	     ((= s state)
	      middle)
	     ((< s state)
	      (loop (+ middle 1) high))
	     (else
	      (loop low (- middle 1))))))))


  (define (initialize-F)
    (set! F (make-vector ngotos #f))
    (do ((i 0 (+ i 1))) ((= i ngotos)) (vector-set! F i (new-set token-set-size)))

    (let ((reads (make-vector ngotos #f)))

      (let loop ((i 0) (rowp 0))
	(if (< i ngotos)
	    (let* ((rowf (vector-ref F rowp))
		   (stateno (vector-ref to-state i))
		   (sp (vector-ref shift-table stateno)))
	      (if sp
		  (let loop2 ((j (shift-shifts sp)) (edges '()))
		    (if (pair? j)
			(let ((symbol (vector-ref acces-symbol (car j))))
			  (if (< symbol nvars)
			      (if (vector-ref nullable symbol)
				  (loop2 (cdr j) (cons (map-goto stateno symbol)
						       edges))
				  (loop2 (cdr j) edges))
			      (begin
				(set-bit rowf (- symbol nvars))
				(loop2 (cdr j) edges))))
			(if (pair? edges)
			    (vector-set! reads i (reverse edges))))))
	      (loop (+ i 1) (+ rowp 1)))))
      (digraph reads)))

  (define (add-lookback-edge stateno ruleno gotono)
    (let ((k (vector-ref lookaheads (+ stateno 1))))
      (let loop ((found #f) (i (vector-ref lookaheads stateno)))
	(if (and (not found) (< i k))
	    (if (= (vector-ref LAruleno i) ruleno)
		(loop #t i)
		(loop found (+ i 1)))

	    (if (not found)
		(begin (display "Error in add-lookback-edge : ")
		       (display (list stateno ruleno gotono)) (newline))
		(vector-set! lookback i
			     (cons gotono (vector-ref lookback i))))))))


  (define (transpose r-arg n)
    (let ((new-end (make-vector n #f))
	  (new-R  (make-vector n #f)))
      (do ((i 0 (+ i 1)))
	  ((= i n))
	(let ((x (list 'bidon)))
	  (vector-set! new-R i x)
	  (vector-set! new-end i x)))
      (do ((i 0 (+ i 1)))
	  ((= i n))
	(let ((sp (vector-ref r-arg i)))
	  (if (pair? sp)
	      (let loop ((sp2 sp))
		(if (pair? sp2)
		    (let* ((x (car sp2))
			   (y (vector-ref new-end x)))
		      (set-cdr! y (cons i (cdr y)))
		      (vector-set! new-end x (cdr y))
		      (loop (cdr sp2))))))))
      (do ((i 0 (+ i 1)))
	  ((= i n))
	(vector-set! new-R i (cdr (vector-ref new-R i))))

      new-R))



  (define (build-relations)

    (define (get-state stateno symbol)
      (let loop ((j (shift-shifts (vector-ref shift-table stateno)))
		 (stno stateno))
	(if (null? j)
	    stno
	    (let ((st2 (car j)))
	      (if (= (vector-ref acces-symbol st2) symbol)
		  st2
		  (loop (cdr j) st2))))))

    (set! includes (make-vector ngotos #f))
    (do ((i 0 (+ i 1)))
	((= i ngotos))
      (let ((state1 (vector-ref from-state i))
	    (symbol1 (vector-ref acces-symbol (vector-ref to-state i))))
	(let loop ((rulep (vector-ref derives symbol1))
		   (edges '()))
	  (if (pair? rulep)
	      (let ((*rulep (car rulep)))
		(let loop2 ((rp (vector-ref rrhs *rulep))
			    (stateno state1)
			    (states (list state1)))
		  (let ((*rp (vector-ref ritem rp)))
		    (if (> *rp 0)
			(let ((st (get-state stateno *rp)))
			  (loop2 (+ rp 1) st (cons st states)))
			(begin

			  (if (not (vector-ref consistent stateno))
			      (add-lookback-edge stateno *rulep i))

			  (let loop2 ((done #f)
				      (stp (cdr states))
				      (rp2 (- rp 1))
				      (edgp edges))
			    (if (not done)
				(let ((*rp (vector-ref ritem rp2)))
				  (if (< -1 *rp nvars)
				      (loop2 (not (vector-ref nullable *rp))
					     (cdr stp)
					     (- rp2 1)
					     (cons (map-goto (car stp) *rp) edgp))
				      (loop2 #t stp rp2 edgp)))

				(loop (cdr rulep) edgp))))))))
	      (vector-set! includes i edges)))))
    (set! includes (transpose includes ngotos)))



  (define (compute-lookaheads)
    (let ((n (vector-ref lookaheads nstates)))
      (let loop ((i 0))
	(if (< i n)
	    (let loop2 ((sp (vector-ref lookback i)))
	      (if (pair? sp)
		  (let ((LA-i (vector-ref LA i))
			(F-j  (vector-ref F (car sp))))
		    (bit-union LA-i F-j token-set-size)
		    (loop2 (cdr sp)))
		  (loop (+ i 1))))))))



  (define (digraph relation)
    (define infinity (+ ngotos 2))
    (define INDEX (make-vector (+ ngotos 1) 0))
    (define VERTICES (make-vector (+ ngotos 1) 0))
    (define top 0)
    (define R relation)

    (define (traverse i)
      (set! top (+ 1 top))
      (vector-set! VERTICES top i)
      (let ((height top))
	(vector-set! INDEX i height)
	(let ((rp (vector-ref R i)))
	  (if (pair? rp)
	      (let loop ((rp2 rp))
		(if (pair? rp2)
		    (let ((j (car rp2)))
		      (if (= 0 (vector-ref INDEX j))
			  (traverse j))
		      (if (> (vector-ref INDEX i)
			     (vector-ref INDEX j))
			  (vector-set! INDEX i (vector-ref INDEX j)))
		      (let ((F-i (vector-ref F i))
			    (F-j (vector-ref F j)))
			(bit-union F-i F-j token-set-size))
		      (loop (cdr rp2))))))
	  (if (= (vector-ref INDEX i) height)
	      (let loop ()
		(let ((j (vector-ref VERTICES top)))
		  (set! top (- top 1))
		  (vector-set! INDEX j infinity)
		  (if (not (= i j))
		      (begin
			(bit-union (vector-ref F i)
				   (vector-ref F j)
				   token-set-size)
			(loop)))))))))

    (let loop ((i 0))
      (if (< i ngotos)
	  (begin
	    (if (and (= 0 (vector-ref INDEX i))
		     (pair? (vector-ref R i)))
		(traverse i))
	    (loop (+ i 1))))))


  ;; ----------------------------------------------------------------------
  ;; operator precedence management
  ;; ----------------------------------------------------------------------
      
  ;; a vector of precedence descriptors where each element
  ;; is of the form (terminal type precedence)
  (define the-terminals/prec #f)   ; terminal symbols with precedence 
					; the precedence is an integer >= 0
  (define (get-symbol-precedence sym)
    (caddr (vector-ref the-terminals/prec sym)))
					; the operator type is either 'none, 'left, 'right, or 'nonassoc
  (define (get-symbol-assoc sym)
    (cadr (vector-ref the-terminals/prec sym)))

  (define rule-precedences '())
  (define (add-rule-precedence! rule sym)
    (set! rule-precedences
	  (cons (cons rule sym) rule-precedences)))

  (define (get-rule-precedence ruleno)
    (cond
     ((assq ruleno rule-precedences)
      => (lambda (p)
	   (get-symbol-precedence (cdr p))))
     (else
      ;; process the rule symbols from left to right
      (let loop ((i    (vector-ref rrhs ruleno))
		 (prec 0))
	(let ((item (vector-ref ritem i)))
	  ;; end of rule
	  (if (< item 0)
	      prec
	      (let ((i1 (+ i 1)))
		(if (>= item nvars)
		    ;; it's a terminal symbol
		    (loop i1 (get-symbol-precedence (- item nvars)))
		    (loop i1 prec)))))))))

  ;; ----------------------------------------------------------------------
  ;; Build the various tables
  ;; ----------------------------------------------------------------------

  (define expected-conflicts 0)

  (define (build-tables)

    (define (resolve-conflict sym rule)
      (let ((sym-prec   (get-symbol-precedence sym))
	    (sym-assoc  (get-symbol-assoc sym))
	    (rule-prec  (get-rule-precedence rule)))
	(cond
	 ((> sym-prec rule-prec)     'shift)
	 ((< sym-prec rule-prec)     'reduce)
	 ((eq? sym-assoc 'left)      'reduce)
	 ((eq? sym-assoc 'right)     'shift)
	 (else                       'none))))

    (define conflict-messages '())

    (define (add-conflict-message . l)
      (set! conflict-messages (cons l conflict-messages)))

    (define (log-conflicts)
      (if (> (length conflict-messages) expected-conflicts)
	  (for-each
	   (lambda (message)
	     (for-each display message)
	     (newline))
	   conflict-messages)))

    ;; --- Add an action to the action table
    (define (add-action state symbol new-action)
      (let* ((state-actions (vector-ref action-table state))
	     (actions       (assv symbol state-actions)))
	(if (pair? actions)
	    (let ((current-action (cadr actions)))
	      (if (not (= new-action current-action))
		  ;; -- there is a conflict 
		  (begin
		    (if (and (<= current-action 0) (<= new-action 0))
			;; --- reduce/reduce conflict
			(begin
			  (add-conflict-message
			   "%% Reduce/Reduce conflict (reduce " (- new-action) ", reduce " (- current-action) 
			   ") on '" (get-symbol (+ symbol nvars)) "' in state " state)
			  (if (glr-driver?)
			      (set-cdr! (cdr actions) (cons new-action (cddr actions)))
			      (set-car! (cdr actions) (max current-action new-action))))
			;; --- shift/reduce conflict
			;; can we resolve the conflict using precedences?
			(case (resolve-conflict symbol (- current-action))
			  ;; -- shift
			  ((shift)   (if (glr-driver?)
					 (set-cdr! (cdr actions) (cons new-action (cddr actions)))
					 (set-car! (cdr actions) new-action)))
			  ;; -- reduce
			  ((reduce)  #f) ; well, nothing to do...
			  ;; -- signal a conflict!
			  (else      (add-conflict-message
				      "%% Shift/Reduce conflict (shift " new-action ", reduce " (- current-action)
				      ") on '" (get-symbol (+ symbol nvars)) "' in state " state)
				     (if (glr-driver?)
					 (set-cdr! (cdr actions) (cons new-action (cddr actions)))
					 (set-car! (cdr actions) new-action))))))))
          
	    (vector-set! action-table state (cons (list symbol new-action) state-actions)))
	))

    (define (add-action-for-all-terminals state action)
      (do ((i 1 (+ i 1)))
	  ((= i nterms))
	(add-action state i action)))

    (set! action-table (make-vector nstates '()))

    (do ((i 0 (+ i 1)))			; i = state
	((= i nstates))
      (let ((red (vector-ref reduction-table i)))
	(if (and red (>= (red-nreds red) 1))
	    (if (and (= (red-nreds red) 1) (vector-ref consistent i))
		(if (glr-driver?)
		    (add-action-for-all-terminals i (- (car (red-rules red))))
		    (add-action i 'default (- (car (red-rules red)))))
		(let ((k (vector-ref lookaheads (+ i 1))))
		  (let loop ((j (vector-ref lookaheads i)))
		    (if (< j k)
			(let ((rule (- (vector-ref LAruleno j)))
			      (lav  (vector-ref LA j)))
			  (let loop2 ((token 0) (x (vector-ref lav 0)) (y 1) (z 0))
			    (if (< token nterms)
				(begin
				  (let ((in-la-set? (modulo x 2)))
				    (if (= in-la-set? 1)
					(add-action i token rule)))
				  (if (= y (BITS-PER-WORD))
				      (loop2 (+ token 1)
					     (vector-ref lav (+ z 1))
					     1
					     (+ z 1))
				      (loop2 (+ token 1) (quotient x 2) (+ y 1) z)))))
			  (loop (+ j 1)))))))))

      (let ((shiftp (vector-ref shift-table i)))
	(if shiftp
	    (let loop ((k (shift-shifts shiftp)))
	      (if (pair? k)
		  (let* ((state (car k))
			 (symbol (vector-ref acces-symbol state)))
		    (if (>= symbol nvars)
			(add-action i (- symbol nvars) state))
		    (loop (cdr k))))))))

    (add-action final-state 0 'accept)
    (log-conflicts))

  (define (compact-action-table terms)
    (define (most-common-action acts)
      (let ((accums '()))
	(let loop ((l acts))
	  (if (pair? l)
	      (let* ((x (cadar l))
		     (y (assv x accums)))
		(if (and (number? x) (< x 0))
		    (if y
			(set-cdr! y (+ 1 (cdr y)))
			(set! accums (cons `(,x . 1) accums))))
		(loop (cdr l)))))

	(let loop ((l accums) (max 0) (sym #f))
	  (if (null? l)
	      sym
	      (let ((x (car l)))
		(if (> (cdr x) max)
		    (loop (cdr l) (cdr x) (car x))
		    (loop (cdr l) max sym)))))))

    (define (translate-terms acts)
      (map (lambda (act)
	     (cons (list-ref terms (car act))
		   (cdr act)))
	   acts))

    (do ((i 0 (+ i 1)))
	((= i nstates))
      (let ((acts (vector-ref action-table i)))
	(if (vector? (vector-ref reduction-table i))
	    (let ((act (most-common-action acts)))
	      (vector-set! action-table i
			   (cons `(*default* ,(if act act '*error*))
				 (translate-terms
				  (lalr-filter (lambda (x)
						 (not (and (= (length x) 2)
							   (eq? (cadr x) act))))
					       acts)))))
	    (vector-set! action-table i
			 (cons `(*default* *error*)
			       (translate-terms acts)))))))



  ;; --

  (define (rewrite-grammar tokens grammar k)

    (define eoi '*eoi*)

    (define (check-terminal term terms)
      (cond
       ((not (valid-terminal? term))
	(lalr-error "invalid terminal: " term))
       ((member term terms)
	(lalr-error "duplicate definition of terminal: " term))))

    (define (prec->type prec)
      (cdr (assq prec '((left:     . left)
			(right:    . right)
			(nonassoc: . nonassoc)))))

    (cond
     ;; --- a few error conditions
     ((not (list? tokens))
      (lalr-error "Invalid token list: " tokens))
     ((not (pair? grammar))
      (lalr-error "Grammar definition must have a non-empty list of productions" '()))

     (else
      ;; --- check the terminals
      (let loop1 ((lst            tokens)
		  (rev-terms      '())
		  (rev-terms/prec '())
		  (prec-level     0))
	(if (pair? lst)
	    (let ((term (car lst)))
	      (cond
	       ((pair? term)
		(if (and (memq (car term) '(left: right: nonassoc:))
			 (not (null? (cdr term))))
		    (let ((prec    (+ prec-level 1))
			  (optype  (prec->type (car term))))
		      (let loop-toks ((l             (cdr term))
				      (rev-terms      rev-terms)
				      (rev-terms/prec rev-terms/prec))
			(if (null? l)
			    (loop1 (cdr lst) rev-terms rev-terms/prec prec)
			    (let ((term (car l)))
			      (check-terminal term rev-terms)
			      (loop-toks
			       (cdr l)
			       (cons term rev-terms)
			       (cons (list term optype prec) rev-terms/prec))))))

		    (lalr-error "invalid operator precedence specification: " term)))

	       (else
		(check-terminal term rev-terms)
		(loop1 (cdr lst)
		       (cons term rev-terms)
		       (cons (list term 'none 0) rev-terms/prec)
		       prec-level))))

	    ;; --- check the grammar rules
	    (let loop2 ((lst grammar) (rev-nonterm-defs '()))
	      (if (pair? lst)
		  (let ((def (car lst)))
		    (if (not (pair? def))
			(lalr-error "Nonterminal definition must be a non-empty list" '())
			(let ((nonterm (car def)))
			  (cond ((not (valid-nonterminal? nonterm))
				 (lalr-error "Invalid nonterminal:" nonterm))
				((or (member nonterm rev-terms)
				     (assoc nonterm rev-nonterm-defs))
				 (lalr-error "Nonterminal previously defined:" nonterm))
				(else
				 (loop2 (cdr lst)
					(cons def rev-nonterm-defs)))))))
		  (let* ((terms        (cons eoi            (cons 'error          (reverse rev-terms))))
			 (terms/prec   (cons '(eoi none 0)  (cons '(error none 0) (reverse rev-terms/prec))))
			 (nonterm-defs (reverse rev-nonterm-defs))
			 (nonterms     (cons '*start* (map car nonterm-defs))))
		    (if (= (length nonterms) 1)
			(lalr-error "Grammar must contain at least one nonterminal" '())
			(let loop-defs ((defs      (cons `(*start* (,(cadr nonterms) ,eoi) : $1)
							 nonterm-defs))
					(ruleno    0)
					(comp-defs '()))
			  (if (pair? defs)
			      (let* ((nonterm-def  (car defs))
				     (compiled-def (rewrite-nonterm-def
						    nonterm-def
						    ruleno
						    terms nonterms)))
				(loop-defs (cdr defs)
					   (+ ruleno (length compiled-def))
					   (cons compiled-def comp-defs)))

			      (let ((compiled-nonterm-defs (reverse comp-defs)))
				(k terms
				   terms/prec
				   nonterms
				   (map (lambda (x) (cons (caaar x) (map cdar x)))
					compiled-nonterm-defs)
				   (apply append compiled-nonterm-defs))))))))))))))


  (define (rewrite-nonterm-def nonterm-def ruleno terms nonterms)

    (define No-NT (length nonterms))

    (define (encode x)
      (let ((PosInNT (pos-in-list x nonterms)))
	(if PosInNT
	    PosInNT
	    (let ((PosInT (pos-in-list x terms)))
	      (if PosInT
		  (+ No-NT PosInT)
		  (lalr-error "undefined symbol : " x))))))

    (define (process-prec-directive rhs ruleno)
      (let loop ((l rhs))
	(if (null? l)
	    '()
	    (let ((first (car l))
		  (rest  (cdr l)))
	      (cond
	       ((or (member first terms) (member first nonterms))
		(cons first (loop rest)))
	       ((and (pair? first)
		     (eq? (car first) 'prec:))
		(if (and (pair? (cdr first))
			 (null? (cddr first))
			 (member (cadr first) terms))
		    (if (null? rest)
			(begin
			  (add-rule-precedence! ruleno (pos-in-list (cadr first) terms))
			  (loop rest))
			(lalr-error "prec: directive should be at end of rule: " rhs))
		    (lalr-error "Invalid prec: directive: " first)))
	       (else
		(lalr-error "Invalid terminal or nonterminal: " first)))))))

    (define (check-error-production rhs)
      (let loop ((rhs rhs))
	(if (pair? rhs)
	    (begin
	      (if (and (eq? (car rhs) 'error)
		       (or (null? (cdr rhs))
			   (not (member (cadr rhs) terms))
			   (not (null? (cddr rhs)))))
		  (lalr-error "Invalid 'error' production. A single terminal symbol must follow the 'error' token.:" rhs))
	      (loop (cdr rhs))))))


    (if (not (pair? (cdr nonterm-def)))
	(lalr-error "At least one production needed for nonterminal:" (car nonterm-def))
	(let ((name (symbol->string (car nonterm-def))))
	  (let loop1 ((lst (cdr nonterm-def))
		      (i 1)
		      (rev-productions-and-actions '()))
	    (if (not (pair? lst))
		(reverse rev-productions-and-actions)
		(let* ((rhs  (process-prec-directive (car lst) (+ ruleno i -1)))
		       (rest (cdr lst))
		       (prod (map encode (cons (car nonterm-def) rhs))))
		  ;; -- check for undefined tokens
		  (for-each (lambda (x)
			      (if (not (or (member x terms) (member x nonterms)))
				  (lalr-error "Invalid terminal or nonterminal:" x)))
			    rhs)
		  ;; -- check 'error' productions
		  (check-error-production rhs)

		  (if (and (pair? rest)
			   (eq? (car rest) ':)
			   (pair? (cdr rest)))
		      (loop1 (cddr rest)
			     (+ i 1)
			     (cons (cons prod (cadr rest))
				   rev-productions-and-actions))
		      (let* ((rhs-length (length rhs))
			     (action
			      (cons 'vector
				    (cons (list 'quote (string->symbol
							(string-append
							 name
							 "-"
							 (number->string i))))
					  (let loop-j ((j 1))
					    (if (> j rhs-length)
						'()
						(cons (string->symbol
						       (string-append
							"$"
							(number->string j)))
						      (loop-j (+ j 1)))))))))
			(loop1 rest
			       (+ i 1)
			       (cons (cons prod action)
				     rev-productions-and-actions))))))))))

  (define (valid-nonterminal? x)
    (symbol? x))

  (define (valid-terminal? x)
    (symbol? x))			; DB 

  ;; ----------------------------------------------------------------------
  ;; Miscellaneous
  ;; ----------------------------------------------------------------------
  (define (pos-in-list x lst)
    (let loop ((lst lst) (i 0))
      (cond ((not (pair? lst))    #f)
	    ((equal? (car lst) x) i)
	    (else                 (loop (cdr lst) (+ i 1))))))

  (define (sunion lst1 lst2)		; union of sorted lists
    (let loop ((L1 lst1)
	       (L2 lst2))
      (cond ((null? L1)    L2)
	    ((null? L2)    L1)
	    (else
	     (let ((x (car L1)) (y (car L2)))
	       (cond
		((> x y)
		 (cons y (loop L1 (cdr L2))))
		((< x y)
		 (cons x (loop (cdr L1) L2)))
		(else
		 (loop (cdr L1) L2))
		))))))

  (define (sinsert elem lst)
    (let loop ((l1 lst))
      (if (null? l1)
	  (cons elem l1)
	  (let ((x (car l1)))
	    (cond ((< elem x)
		   (cons elem l1))
		  ((> elem x)
		   (cons x (loop (cdr l1))))
		  (else
		   l1))))))

  (define (lalr-filter p lst)
    (let loop ((l lst))
      (if (null? l)
	  '()
	  (let ((x (car l)) (y (cdr l)))
	    (if (p x)
		(cons x (loop y))
		(loop y))))))
      
  ;; ----------------------------------------------------------------------
  ;; Debugging tools ...
  ;; ----------------------------------------------------------------------
  (define the-terminals #f)		; names of terminal symbols
  (define the-nonterminals #f)		; non-terminals

  (define (print-item item-no)
    (let loop ((i item-no))
      (let ((v (vector-ref ritem i)))
	(if (>= v 0)
	    (loop (+ i 1))
	    (let* ((rlno    (- v))
		   (nt      (vector-ref rlhs rlno)))
	      (display (vector-ref the-nonterminals nt)) (display " --> ")
	      (let loop ((i (vector-ref rrhs rlno)))
		(let ((v (vector-ref ritem i)))
		  (if (= i item-no)
		      (display ". "))
		  (if (>= v 0)
		      (begin
			(display (get-symbol v))
			(display " ")
			(loop (+ i 1)))
		      (begin
			(display "   (rule ")
			(display (- v))
			(display ")")
			(newline))))))))))

  (define (get-symbol n)
    (if (>= n nvars)
	(vector-ref the-terminals (- n nvars))
	(vector-ref the-nonterminals n)))


  (define (print-states)
    (define (print-action act)
      (cond
       ((eq? act '*error*)
	(display " : Error"))
       ((eq? act 'accept)
	(display " : Accept input"))
       ((< act 0)
	(display " : reduce using rule ")
	(display (- act)))
       (else
	(display " : shift and goto state ")
	(display act)))
      (newline)
      #t)

    (define (print-actions acts)
      (let loop ((l acts))
	(if (null? l)
	    #t
	    (let ((sym (caar l))
		  (act (cadar l)))
	      (display "   ")
	      (cond
	       ((eq? sym 'default)
		(display "default action"))
	       (else
		(if (number? sym)
		    (display (get-symbol (+ sym nvars)))
		    (display sym))))
	      (print-action act)
	      (loop (cdr l))))))

    (if (not action-table)
	(begin
	  (display "No generated parser available!")
	  (newline)
	  #f)
	(begin
	  (display "State table") (newline)
	  (display "-----------") (newline) (newline)

	  (let loop ((l first-state))
	    (if (null? l)
		#t
		(let* ((core  (car l))
		       (i     (core-number core))
		       (items (core-items core))
		       (actions (vector-ref action-table i)))
		  (display "state ") (display i) (newline)
		  (newline)
		  (for-each (lambda (x) (display "   ") (print-item x))
			    items)
		  (newline)
		  (print-actions actions)
		  (newline)
		  (loop (cdr l))))))))



  ;; ----------------------------------------------------------------------
      
  (define build-goto-table
    (lambda ()
      `(vector
	,@(map
	   (lambda (shifts)
	     (list 'quote
		   (if shifts
		       (let loop ((l (shift-shifts shifts)))
			 (if (null? l)
			     '()
			     (let* ((state  (car l))
				    (symbol (vector-ref acces-symbol state)))
			       (if (< symbol nvars)
				   (cons `(,symbol . ,state)
					 (loop (cdr l)))
				   (loop (cdr l))))))
		       '())))
	   (vector->list shift-table)))))


  (define build-reduction-table
    (lambda (gram/actions)
      `(vector
	'()
	,@(map
	   (lambda (p)
	     (let ((act (cdr p)))
	       `(lambda ,(if (eq? driver-name 'lr-driver)
			     '(___stack ___sp ___goto-table ___push yypushback)
			     '(___sp ___goto-table ___push))
		  ,(let* ((nt (caar p)) (rhs (cdar p)) (n (length rhs)))
		     `(let* (,@(if act
				   (let loop ((i 1) (l rhs))
				     (if (pair? l)
					 (let ((rest (cdr l))
                                               (ns (number->string (+ (- n i) 1))))
                                           (cons
                                            `(tok ,(if (eq? driver-name 'lr-driver)
                                                       `(vector-ref ___stack (- ___sp ,(- (* i 2) 1)))
                                                       `(list-ref ___sp ,(+ (* (- i 1) 2) 1))))
                                            (cons
                                             `(,(string->symbol (string-append "$" ns))
                                               (if (lexical-token? tok) (lexical-token-value tok) tok))
                                             (cons
                                              `(,(string->symbol (string-append "@" ns))
                                                (if (lexical-token? tok) (lexical-token-source tok) tok))
                                              (loop (+ i 1) rest)))))
					 '()))
				   '()))
			,(if (= nt 0)
			     '$1
			     `(___push ,n ,nt ,(cdr p) ,@(if (eq? driver-name 'lr-driver) '() '(___sp)) 
                                       ,(if (eq? driver-name 'lr-driver)
                                            `(vector-ref ___stack (- ___sp ,(length rhs)))
                                            `(list-ref ___sp ,(length rhs))))))))))

	   gram/actions))))



  ;; Options

  (define *valid-options*
    (list
     (cons 'out-table:
	   (lambda (option)
	     (and (list? option)
		  (= (length option) 2)
		  (string? (cadr option)))))
     (cons 'output:
	   (lambda (option)
	     (and (list? option)
		  (= (length option) 3)
		  (symbol? (cadr option))
		  (string? (caddr option)))))
     (cons 'expect:
	   (lambda (option)
	     (and (list? option)
		  (= (length option) 2)
		  (integer? (cadr option))
		  (>= (cadr option) 0))))

     (cons 'driver:
	   (lambda (option)
	     (and (list? option)
		  (= (length option) 2)
		  (symbol? (cadr option))
		  (memq (cadr option) '(lr glr)))))))


  (define (validate-options options)
    (for-each
     (lambda (option)
       (let ((p (assoc (car option) *valid-options*)))
	 (if (or (not p)
		 (not ((cdr p) option)))
	     (lalr-error "Invalid option:" option))))
     options))


  (define (output-parser! options code)
    (let ((option (assq 'output: options)))
      (if option
	  (let ((parser-name (cadr option))
		(file-name   (caddr option)))
	    (with-output-to-file file-name
	      (lambda ()
		(pprint `(define ,parser-name ,code))
		(newline)))))))


  (define (output-table! options)
    (let ((option (assq 'out-table: options)))
      (if option
	  (let ((file-name (cadr option)))
	    (with-output-to-file file-name print-states)))))


  (define (set-expected-conflicts! options)
    (let ((option (assq 'expect: options)))
      (set! expected-conflicts (if option (cadr option) 0))))

  (define (set-driver-name! options)
    (let ((option (assq 'driver: options)))
      (if option
	  (let ((driver-type (cadr option)))
	    (set! driver-name (if (eq? driver-type 'glr) 'glr-driver 'lr-driver))))))


  ;; -- arguments

  (define (extract-arguments lst proc)
    (let loop ((options '())
	       (tokens  '())
	       (rules   '())
	       (lst     lst))
      (if (pair? lst)
	  (let ((p (car lst)))
	    (cond
	     ((and (pair? p)
		   (lalr-keyword? (car p))
		   (assq (car p) *valid-options*))
	      (loop (cons p options) tokens rules (cdr lst)))
	     (else
	      (proc options p (cdr lst)))))
	  (lalr-error "Malformed lalr-parser form" lst))))


  (define (build-driver options tokens rules)
    (validate-options options)
    (set-expected-conflicts! options)
    (set-driver-name! options)
    (let* ((gram/actions (gen-tables! tokens rules))
	   (code         `(,driver-name ',action-table ,(build-goto-table) ,(build-reduction-table gram/actions))))
    
      (output-table! options)
      (output-parser! options code)
      code))

  (extract-arguments arguments build-driver))
   


;;;
;;;; --
;;;; Implementation of the lr-driver
;;;


(cond-expand
 (gambit
  (declare
   (standard-bindings)
   (fixnum)
   (block)
   (not safe)))
 (chicken
  (declare
   (uses extras)
   (usual-integrations)
   (fixnum)
   (not safe)))
 (else))


;;;
;;;; Source location utilities
;;;


;; This function assumes that src-location-1 and src-location-2 are source-locations
;; Returns #f if they are not locations for the same input 
(define (combine-locations src-location-1 src-location-2)
  (let ((offset-1 (source-location-offset src-location-1))
        (offset-2 (source-location-offset src-location-2))
        (length-1 (source-location-length src-location-1))
        (length-2 (source-location-length src-location-2)))

    (cond ((not (equal? (source-location-input src-location-1)
                        (source-location-input src-location-2)))
           #f)
          ((or (not (number? offset-1)) (not (number? offset-2))
               (not (number? length-1)) (not (number? length-2))
               (< offset-1 0) (< offset-2 0)
               (< length-1 0) (< length-2 0))
           (make-source-location (source-location-input src-location-1)
                                 (source-location-line src-location-1)
                                 (source-location-column src-location-1)
                                 -1 -1))
          ((<= offset-1 offset-2)
           (make-source-location (source-location-input src-location-1)
                                 (source-location-line src-location-1)
                                 (source-location-column src-location-1)
                                 offset-1
                                 (- (+ offset-2 length-2) offset-1)))
          (else
           (make-source-location (source-location-input src-location-1)
                                 (source-location-line src-location-1)
                                 (source-location-column src-location-1)
                                 offset-2
                                 (- (+ offset-1 length-1) offset-2))))))


;;;
;;;;  LR-driver
;;;


(define *max-stack-size* 500)

(define (lr-driver action-table goto-table reduction-table)
  (define ___atable action-table)
  (define ___gtable goto-table)
  (define ___rtable reduction-table)

  (define ___lexerp #f)
  (define ___errorp #f)
  
  (define ___stack  #f)
  (define ___sp     0)
  
  (define ___curr-input #f)
  (define ___reuse-input #f)
  
  (define ___input #f)
  (define (___consume)
    (set! ___input (if ___reuse-input ___curr-input (___lexerp)))
    (set! ___reuse-input #f)
    (set! ___curr-input ___input))
  
  (define (___pushback)
    (set! ___reuse-input #t))
  
  (define (___initstack)
    (set! ___stack (make-vector *max-stack-size* 0))
    (set! ___sp 0))
  
  (define (___growstack)
    (let ((new-stack (make-vector (* 2 (vector-length ___stack)) 0)))
      (let loop ((i (- (vector-length ___stack) 1)))
        (if (>= i 0)
	    (begin
	      (vector-set! new-stack i (vector-ref ___stack i))
	      (loop (- i 1)))))
      (set! ___stack new-stack)))
  
  (define (___checkstack)
    (if (>= ___sp (vector-length ___stack))
        (___growstack)))
  
  (define (___push delta new-category lvalue tok)
    (set! ___sp (- ___sp (* delta 2)))
    (let* ((state     (vector-ref ___stack ___sp))
           (new-state (cdr (assoc new-category (vector-ref ___gtable state)))))
      (set! ___sp (+ ___sp 2))
      (___checkstack)
      (vector-set! ___stack ___sp new-state)
      (vector-set! ___stack (- ___sp 1) (note-source-location lvalue tok))))
  
  (define (___reduce st)
    ((vector-ref ___rtable st) ___stack ___sp ___gtable ___push ___pushback))
  
  (define (___shift token attribute)
    (set! ___sp (+ ___sp 2))
    (___checkstack)
    (vector-set! ___stack (- ___sp 1) attribute)
    (vector-set! ___stack ___sp token))
  
  (define (___action x l)
    (let ((y (assoc x l)))
      (if y (cadr y) (cadar l))))
  
  (define (___recover tok)
    (let find-state ((sp ___sp))
      (if (< sp 0)
          (set! ___sp sp)
          (let* ((state (vector-ref ___stack sp))
                 (act   (assoc 'error (vector-ref ___atable state))))
            (if act
                (begin
                  (set! ___sp sp)
                  (___sync (cadr act) tok))
                (find-state (- sp 2)))))))
  
  (define (___sync state tok)
    (let ((sync-set (map car (cdr (vector-ref ___atable state)))))
      (set! ___sp (+ ___sp 4))
      (___checkstack)
      (vector-set! ___stack (- ___sp 3) #f)
      (vector-set! ___stack (- ___sp 2) state)
      (let skip ()
        (let ((i (___category ___input)))
          (if (eq? i '*eoi*)
              (set! ___sp -1)
              (if (memq i sync-set)
                  (let ((act (assoc i (vector-ref ___atable state))))
                    (vector-set! ___stack (- ___sp 1) #f)
                    (vector-set! ___stack ___sp (cadr act)))
                  (begin
                    (___consume)
                    (skip))))))))
  
  (define (___category tok)
    (if (lexical-token? tok)
        (lexical-token-category tok)
        tok))

  (define (___run)
    (let loop ()
      (if ___input
          (let* ((state (vector-ref ___stack ___sp))
                 (i     (___category ___input))
                 (act   (___action i (vector-ref ___atable state))))
            
            (cond ((not (symbol? i))
                   (___errorp "Syntax error: invalid token: " ___input)
                   #f)
             
                  ;; Input succesfully parsed
                  ((eq? act 'accept)
                   (vector-ref ___stack 1))
                  
                  ;; Syntax error in input
                  ((eq? act '*error*)
                   (if (eq? i '*eoi*)
                       (begin
                         (___errorp "Syntax error: unexpected end of input")
                         #f)
                       (begin
                         (___errorp "Syntax error: unexpected token : " ___input)
                         (___recover i)
                         (if (>= ___sp 0)
                             (set! ___input #f)
                             (begin
                               (set! ___sp 0)
                               (set! ___input '*eoi*)))
                         (loop))))
             
                  ;; Shift current token on top of the stack
                  ((>= act 0)
                   (___shift act ___input)
                   (set! ___input (if (eq? i '*eoi*) '*eoi* #f))
                   (loop))
             
                  ;; Reduce by rule (- act)
                  (else
                   (___reduce (- act))
                   (loop))))
          
          ;; no lookahead, so check if there is a default action
          ;; that does not require the lookahead
          (let* ((state  (vector-ref ___stack ___sp))
                 (acts   (vector-ref ___atable state))
                 (defact (if (pair? acts) (cadar acts) #f)))
            (if (and (= 1 (length acts)) (< defact 0))
                (___reduce (- defact))
                (___consume))
            (loop)))))
  

  (lambda (lexerp errorp)
    (set! ___errorp errorp)
    (set! ___lexerp lexerp)
    (___initstack)
    (___run)))


;;;
;;;;  Simple-minded GLR-driver
;;;


(define (glr-driver action-table goto-table reduction-table)
  (define ___atable action-table)
  (define ___gtable goto-table)
  (define ___rtable reduction-table)

  (define ___lexerp #f)
  (define ___errorp #f)
  
  ;; -- Input handling 
  
  (define *input* #f)
  (define (initialize-lexer lexer)
    (set! ___lexerp lexer)
    (set! *input* #f))
  (define (consume)
    (set! *input* (___lexerp)))
  
  (define (token-category tok)
    (if (lexical-token? tok)
        (lexical-token-category tok)
        tok))

  (define (token-attribute tok)
    (if (lexical-token? tok)
        (lexical-token-value tok)
        tok))

  ;; -- Processes (stacks) handling
  
  (define *processes* '())
  
  (define (initialize-processes)
    (set! *processes* '()))
  (define (add-process process)
    (set! *processes* (cons process *processes*)))
  (define (get-processes)
    (reverse *processes*))
  
  (define (for-all-processes proc)
    (let ((processes (get-processes)))
      (initialize-processes)
      (for-each proc processes)))
  
  ;; -- parses
  (define *parses* '())
  (define (get-parses)
    *parses*)
  (define (initialize-parses)
    (set! *parses* '()))
  (define (add-parse parse)
    (set! *parses* (cons parse *parses*)))
    

  (define (push delta new-category lvalue stack tok)
    (let* ((stack     (drop stack (* delta 2)))
           (state     (car stack))
           (new-state (cdr (assv new-category (vector-ref ___gtable state)))))
        (cons new-state (cons (note-source-location lvalue tok) stack))))
  
  (define (reduce state stack)
    ((vector-ref ___rtable state) stack ___gtable push))
  
  (define (shift state symbol stack)
    (cons state (cons symbol stack)))
  
  (define (get-actions token action-list)
    (let ((pair (assoc token action-list)))
      (if pair 
          (cdr pair)
          (cdar action-list)))) ;; get the default action
  

  (define (run)
    (let loop-tokens ()
      (consume)
      (let ((symbol (token-category *input*)))
        (for-all-processes
         (lambda (process)
           (let loop ((stacks (list process)) (active-stacks '()))
             (cond ((pair? stacks)
                    (let* ((stack   (car stacks))
                           (state   (car stack)))
                      (let actions-loop ((actions      (get-actions symbol (vector-ref ___atable state)))
                                         (active-stacks active-stacks))
                        (if (pair? actions)
                            (let ((action        (car actions))
                                  (other-actions (cdr actions)))
                              (cond ((eq? action '*error*)
                                     (actions-loop other-actions active-stacks))
                                    ((eq? action 'accept)
                                     (add-parse (car (take-right stack 2)))
                                     (actions-loop other-actions active-stacks))
                                    ((>= action 0)
                                     (let ((new-stack (shift action *input* stack)))
                                       (add-process new-stack))
                                     (actions-loop other-actions active-stacks))
                                    (else
                                     (let ((new-stack (reduce (- action) stack)))
                                      (actions-loop other-actions (cons new-stack active-stacks))))))
                            (loop (cdr stacks) active-stacks)))))
                   ((pair? active-stacks)
                    (loop (reverse active-stacks) '())))))))
      (if (pair? (get-processes))
          (loop-tokens))))

  
  (lambda (lexerp errorp)
    (set! ___errorp errorp)
    (initialize-lexer lexerp)
    (initialize-processes)
    (initialize-parses)
    (add-process '(0))
    (run)
    (get-parses)))


(define (drop l n)
  (cond ((and (> n 0) (pair? l))
	 (drop (cdr l) (- n 1)))
	(else
	 l)))

(define (take-right l n)
  (drop l (- (length l) n)))