File size: 14,176 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013-2015, 2017-2021 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Helper facilities for working with graphs over intsets and intmaps.
;;;
;;; Code:
(define-module (language cps graphs)
#:use-module (ice-9 control)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (language cps intset)
#:use-module (language cps intmap)
#:export (;; Various utilities.
fold1 fold2
trivial-intset
intmap-map
intmap-keys
invert-bijection invert-partition
rename-keys rename-intset rename-graph
intset->intmap
intmap-select
worklist-fold
fixpoint
;; Flow analysis.
invert-graph
compute-reverse-post-order
compute-strongly-connected-components
compute-sorted-strongly-connected-components
compute-reverse-control-flow-order
solve-flow-equations
compute-live-variables))
(define-inlinable (fold1 f l s0)
(let lp ((l l) (s0 s0))
(match l
(() s0)
((elt . l) (lp l (f elt s0))))))
(define-inlinable (fold2 f l s0 s1)
(let lp ((l l) (s0 s0) (s1 s1))
(match l
(() (values s0 s1))
((elt . l)
(call-with-values (lambda () (f elt s0 s1))
(lambda (s0 s1)
(lp l s0 s1)))))))
(define (trivial-intset set)
"Returns the sole member of @var{set}, if @var{set} has exactly one
member, or @code{#f} otherwise."
(let ((first (intset-next set)))
(and first
(not (intset-next set (1+ first)))
first)))
(define (intmap-map proc map)
(persistent-intmap
(intmap-fold (lambda (k v out) (intmap-add! out k (proc k v)))
map
empty-intmap)))
(define (intmap-keys map)
"Return an intset of the keys in @var{map}."
(persistent-intset
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
(define (invert-bijection map)
"Assuming the values of @var{map} are integers and are unique, compute
a map in which each value maps to its key. If the values are not
unique, an error will be signaled."
(persistent-intmap
(intmap-fold (lambda (k v out) (intmap-add! out v k)) map empty-intmap)))
(define (invert-partition map)
"Assuming the values of @var{map} are disjoint intsets, compute a map
in which each member of each set maps to its key. If the values are not
disjoint, an error will be signaled."
(intmap-fold (lambda (k v* out)
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
map empty-intmap))
(define (intset->intmap f set)
(persistent-intmap
(intset-fold (lambda (label preds)
(intmap-add! preds label (f label)))
set empty-intmap)))
(define (intmap-select map set)
(persistent-intmap
(intset-fold (lambda (label out)
(intmap-add! out label (intmap-ref map label)))
set empty-intmap)))
(define worklist-fold
(case-lambda
((f in out)
(let lp ((in in) (out out))
(if (eq? in empty-intset)
out
(call-with-values (lambda () (f in out)) lp))))
((f in out0 out1)
(let lp ((in in) (out0 out0) (out1 out1))
(if (eq? in empty-intset)
(values out0 out1)
(call-with-values (lambda () (f in out0 out1)) lp))))))
(define fixpoint
(case-lambda
((f x)
(let lp ((x x))
(let ((x* (f x)))
(if (eq? x x*) x* (lp x*)))))
((f x0 x1)
(let lp ((x0 x0) (x1 x1))
(call-with-values (lambda () (f x0 x1))
(lambda (x0* x1*)
(if (and (eq? x0 x0*) (eq? x1 x1*))
(values x0* x1*)
(lp x0* x1*))))))))
(define (compute-reverse-post-order succs start)
"Compute a reverse post-order numbering for a depth-first walk over
nodes reachable from the start node."
(let visit ((label start) (order '()) (visited empty-intset))
(call-with-values
(lambda ()
(intset-fold (lambda (succ order visited)
(if (intset-ref visited succ)
(values order visited)
(visit succ order visited)))
(intmap-ref succs label)
order
(intset-add! visited label)))
(lambda (order visited)
;; After visiting successors, add label to the reverse post-order.
(values (cons label order) visited)))))
(define (invert-graph succs)
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
intset of successors, return a graph SUCC->PRED...."
(intmap-fold (lambda (pred succs preds)
(intset-fold
(lambda (succ preds)
(intmap-add preds succ pred intset-add))
succs
preds))
succs
(intmap-map (lambda (label _) empty-intset) succs)))
(define (rename-keys map old->new)
"Return a fresh intmap containing F(K) -> V for K and V in MAP, where
F is looking up K in the intmap OLD->NEW."
(persistent-intmap
(intmap-fold (lambda (k v out)
(intmap-add! out (intmap-ref old->new k) v))
map
empty-intmap)))
(define (rename-intset set old->new)
"Return a fresh intset of F(K) for K in SET, where F is looking up K
in the intmap OLD->NEW."
(intset-fold (lambda (old set) (intset-add set (intmap-ref old->new old)))
set empty-intset))
(define (rename-graph graph old->new)
"Return a fresh intmap containing F(K) -> intset(F(V)...) for K and
intset(V...) in GRAPH, where F is looking up K in the intmap OLD->NEW."
(persistent-intmap
(intmap-fold (lambda (pred succs out)
(intmap-add! out
(intmap-ref old->new pred)
(rename-intset succs old->new)))
graph
empty-intmap)))
(define (compute-strongly-connected-components succs start)
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
partitioning the labels into strongly connected components (SCCs)."
(let ((preds (invert-graph succs)))
(define (visit-scc scc sccs-by-label)
(let visit ((label scc) (sccs-by-label sccs-by-label))
(if (intmap-ref sccs-by-label label (lambda (_) #f))
sccs-by-label
(intset-fold visit
(intmap-ref preds label)
(intmap-add sccs-by-label label scc)))))
(intmap-fold
(lambda (label scc sccs)
(let ((labels (intset-add empty-intset label)))
(intmap-add sccs scc labels intset-union)))
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
empty-intmap)))
(define (compute-sorted-strongly-connected-components edges)
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
connected components in sorted order."
(define nodes
(intmap-keys edges))
;; Add a "start" node that links to all nodes in the graph, and then
;; remove it from the result.
(define start
(if (eq? nodes empty-intset)
0
(1+ (intset-prev nodes))))
(define components
(intmap-remove
(compute-strongly-connected-components (intmap-add edges start nodes)
start)
start))
(define node-components
(intmap-fold (lambda (id nodes out)
(intset-fold (lambda (node out) (intmap-add out node id))
nodes out))
components
empty-intmap))
(define (node-component node)
(intmap-ref node-components node))
(define (component-successors id nodes)
(intset-remove
(intset-fold (lambda (node out)
(intset-fold
(lambda (successor out)
(intset-add out (node-component successor)))
(intmap-ref edges node)
out))
nodes
empty-intset)
id))
(define component-edges
(intmap-map component-successors components))
(define preds
(invert-graph component-edges))
(define roots
(intmap-fold (lambda (id succs out)
(if (eq? empty-intset succs)
(intset-add out id)
out))
component-edges
empty-intset))
;; As above, add a "start" node that links to the roots, and remove it
;; from the result.
(match (compute-reverse-post-order (intmap-add preds start roots) start)
(((? (lambda (id) (eqv? id start))) . ids)
(map (lambda (id) (intmap-ref components id)) ids))))
(define (compute-reverse-control-flow-order preds)
"Return a LABEL->ORDER bijection where ORDER is a contiguous set of
integers starting from 0 and incrementing in sort order. There is a
precondition that labels in PREDS are already renumbered in reverse post
order."
(define (has-back-edge? preds)
(let/ec return
(intmap-fold (lambda (label labels)
(intset-fold (lambda (pred)
(if (<= label pred)
(return #t)
(values)))
labels)
(values))
preds)
#f))
(if (has-back-edge? preds)
;; This is more involved than forward control flow because not all
;; live labels are reachable from the tail.
(persistent-intmap
(fold2 (lambda (component order n)
(intset-fold (lambda (label order n)
(values (intmap-add! order label n)
(1+ n)))
component order n))
(reverse (compute-sorted-strongly-connected-components preds))
empty-intmap 0))
;; Just reverse forward control flow.
(let ((max (intmap-prev preds)))
(intmap-map (lambda (label labels) (- max label)) preds))))
(define (intset-pop set)
(match (intset-next set)
(#f (values set #f))
(i (values (intset-remove set i) i))))
(define* (solve-flow-equations succs in out kill gen subtract add meet
#:optional (worklist (intmap-keys succs)))
"Find a fixed point for flow equations for SUCCS, where INIT is the
initial state at each node in SUCCS. KILL and GEN are intmaps
indicating the state that is killed or defined at every node, and
SUBTRACT, ADD, and MEET operates on that state."
(define (visit label in out)
(let* ((in-1 (intmap-ref in label))
(kill-1 (intmap-ref kill label))
(gen-1 (intmap-ref gen label))
(out-1 (intmap-ref out label))
(out-1* (add (subtract in-1 kill-1) gen-1)))
(if (eq? out-1 out-1*)
(values empty-intset in out)
(let ((out (intmap-replace! out label out-1*)))
(call-with-values
(lambda ()
(intset-fold (lambda (succ in changed)
(let* ((in-1 (intmap-ref in succ))
(in-1* (meet in-1 out-1*)))
(if (eq? in-1 in-1*)
(values in changed)
(values (intmap-replace! in succ in-1*)
(intset-add changed succ)))))
(intmap-ref succs label) in empty-intset))
(lambda (in changed)
(values changed in out)))))))
(let run ((worklist worklist) (in in) (out out))
(call-with-values (lambda () (intset-pop worklist))
(lambda (worklist popped)
(if popped
(call-with-values (lambda () (visit popped in out))
(lambda (changed in out)
(run (intset-union worklist changed) in out)))
(values (persistent-intmap in)
(persistent-intmap out)))))))
(define (compute-live-variables preds defs uses)
"Compute and return two values mapping LABEL->VAR..., where VAR... are
the definitions that are live before and after LABEL, as intsets."
(let* ((old->new (compute-reverse-control-flow-order preds))
(init (persistent-intmap (intmap-fold
(lambda (old new init)
(intmap-add! init new empty-intset))
old->new empty-intmap))))
(call-with-values
(lambda ()
(solve-flow-equations (rename-graph preds old->new)
init init
(rename-keys defs old->new)
(rename-keys uses old->new)
intset-subtract intset-union intset-union))
(lambda (in out)
;; As a reverse control-flow problem, the values flowing into a
;; node are actually the live values after the node executes.
;; Funny, innit? So we return them in the reverse order.
(let ((new->old (invert-bijection old->new)))
(values (rename-keys out new->old)
(rename-keys in new->old)))))))
|