Datasets:

License:
File size: 15,584 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
; Modified 2 March 1997 by Will Clinger to add graphs-benchmark
; and to expand the four macros below.
; Modified 11 June 1997 by Will Clinger to eliminate assertions
; and to replace a use of "recur" with a named let.
;
; Performance note: (graphs-benchmark 7) allocates
;   34509143 pairs
;     389625 vectors with 2551590 elements
;   56653504 closures (not counting top level and known procedures)

(define (graphs-benchmark . rest)
  (let ((N (if (null? rest) 7 (car rest))))
    (run-benchmark (string-append "graphs" (number->string N))
                   (lambda ()
                     (fold-over-rdg N
                                    2 
                                    cons
                                    '())))))

; End of new code.

;;; ==== std.ss ====

; (define-syntax assert
;     (syntax-rules ()
; 	((assert test info-rest ...)
; 	    #F)))
; 
; (define-syntax deny
;     (syntax-rules ()
; 	((deny test info-rest ...)
; 	    #F)))
; 
; (define-syntax when
;     (syntax-rules ()
; 	((when test e-first e-rest ...)
; 	    (if test
; 		(begin e-first
; 		    e-rest ...)))))
; 
; (define-syntax unless
;     (syntax-rules ()
; 	((unless test e-first e-rest ...)
; 	    (if (not test)
; 		(begin e-first
; 		    e-rest ...)))))

(define assert
  (lambda (test . info)
    #f))

;;; ==== util.ss ====


; Fold over list elements, associating to the left.
(define fold
    (lambda (lst folder state)
	'(assert (list? lst)
	    lst)
	'(assert (procedure? folder)
	    folder)
	(do ((lst lst
		    (cdr lst))
		(state state
		    (folder (car lst)
			state)))
	    ((null? lst)
		state))))

; Given the size of a vector and a procedure which
; sends indicies to desired vector elements, create
; and return the vector.
(define proc->vector
  (lambda (size f)
    '(assert (and (integer? size)
                 (exact? size)
                 (>= size 0))
      size)
    '(assert (procedure? f)
      f)
    (if (zero? size)
        (vector)
        (let ((x (make-vector size (f 0))))
          (let loop ((i 1))
            (if (< i size) (begin               ; [wdc - was when]
              (vector-set! x i (f i))
              (loop (+ i 1)))))
          x))))

(define vector-fold
    (lambda (vec folder state)
	'(assert (vector? vec)
	    vec)
	'(assert (procedure? folder)
	    folder)
	(let ((len
		    (vector-length vec)))
	    (do ((i 0
			(+ i 1))
		    (state state
			(folder (vector-ref vec i)
			    state)))
		((= i len)
		    state)))))

(define vector-map
    (lambda (vec proc)
	(proc->vector (vector-length vec)
	    (lambda (i)
		(proc (vector-ref vec i))))))

; Given limit, return the list 0, 1, ..., limit-1.
(define giota
    (lambda (limit)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	(let -*-
	    ((limit
		    limit)
		(res
		    '()))
	    (if (zero? limit)
		res
		(let ((limit
			    (- limit 1)))
		    (-*- limit
			(cons limit res)))))))

; Fold over the integers [0, limit).
(define gnatural-fold
    (lambda (limit folder state)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? folder)
	    folder)
	(do ((i 0
		    (+ i 1))
		(state state
		    (folder i state)))
	    ((= i limit)
		state))))

; Iterate over the integers [0, limit).
(define gnatural-for-each
    (lambda (limit proc!)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? proc!)
	    proc!)
	(do ((i 0
		    (+ i 1)))
	    ((= i limit))
	    (proc! i))))

(define natural-for-all?
    (lambda (limit ok?)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((i 0))
	    (or (= i limit)
		(and (ok? i)
		    (-*- (+ i 1)))))))

(define natural-there-exists?
    (lambda (limit ok?)
	'(assert (and (integer? limit)
		(exact? limit)
		(>= limit 0))
	    limit)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((i 0))
	    (and (not (= i limit))
		(or (ok? i)
		    (-*- (+ i 1)))))))

(define there-exists?
    (lambda (lst ok?)
	'(assert (list? lst)
	    lst)
	'(assert (procedure? ok?)
	    ok?)
	(let -*-
	    ((lst lst))
	    (and (not (null? lst))
		(or (ok? (car lst))
		    (-*- (cdr lst)))))))


;;; ==== ptfold.ss ====


; Fold over the tree of permutations of a universe.
; Each branch (from the root) is a permutation of universe.
; Each node at depth d corresponds to all permutations which pick the
; elements spelled out on the branch from the root to that node as
; the first d elements.
; Their are two components to the state:
;	The b-state is only a function of the branch from the root.
;	The t-state is a function of all nodes seen so far.
; At each node, b-folder is called via
;	(b-folder elem b-state t-state deeper accross)
; where elem is the next element of the universe picked.
; If b-folder can determine the result of the total tree fold at this stage,
; it should simply return the result.
; If b-folder can determine the result of folding over the sub-tree
; rooted at the resulting node, it should call accross via
;	(accross new-t-state)
; where new-t-state is that result.
; Otherwise, b-folder should call deeper via
;	(deeper new-b-state new-t-state)
; where new-b-state is the b-state for the new node and new-t-state is
; the new folded t-state.
; At the leaves of the tree, t-folder is called via
;	(t-folder b-state t-state accross)
; If t-folder can determine the result of the total tree fold at this stage,
; it should simply return that result.
; If not, it should call accross via
;	(accross new-t-state)
; Note, fold-over-perm-tree always calls b-folder in depth-first order.
; I.e., when b-folder is called at depth d, the branch leading to that
; node is the most recent calls to b-folder at all the depths less than d.
; This is a gross efficiency hack so that b-folder can use mutation to
; keep the current branch.
(define fold-over-perm-tree
    (lambda (universe b-folder b-state t-folder t-state)
	'(assert (list? universe)
	    universe)
	'(assert (procedure? b-folder)
	    b-folder)
	'(assert (procedure? t-folder)
	    t-folder)
	(let -*-
	    ((universe
		    universe)
		(b-state
		    b-state)
		(t-state
		    t-state)
		(accross
		    (lambda (final-t-state)
			final-t-state)))
	    (if (null? universe)
		(t-folder b-state t-state accross)
		(let -**-
		    ((in
			    universe)
			(out
			    '())
			(t-state
			    t-state))
		    (let* ((first
				(car in))
			    (rest
				(cdr in))
			    (accross
				(if (null? rest)
				    accross
				    (lambda (new-t-state)
					(-**- rest
					    (cons first out)
					    new-t-state)))))
			(b-folder first
			    b-state
			    t-state
			    (lambda (new-b-state new-t-state)
				(-*- (fold out cons rest)
				    new-b-state
				    new-t-state
				    accross))
			    accross)))))))


;;; ==== minimal.ss ====


; A directed graph is stored as a connection matrix (vector-of-vectors)
; where the first index is the `from' vertex and the second is the `to'
; vertex.  Each entry is a bool indicating if the edge exists.
; The diagonal of the matrix is never examined.
; Make-minimal? returns a procedure which tests if a labelling
; of the verticies is such that the matrix is minimal.
; If it is, then the procedure returns the result of folding over
; the elements of the automoriphism group.  If not, it returns #F.
; The folding is done by calling folder via
;	(folder perm state accross)
; If the folder wants to continue, it should call accross via
;	(accross new-state)
; If it just wants the entire minimal? procedure to return something,
; it should return that.
; The ordering used is lexicographic (with #T > #F) and entries
; are examined in the following order:
;	1->0, 0->1
;
;	2->0, 0->2
;	2->1, 1->2
;
;	3->0, 0->3
;	3->1, 1->3
;	3->2, 2->3
;	...
(define make-minimal?
    (lambda (max-size)
	'(assert (and (integer? max-size)
		(exact? max-size)
		(>= max-size 0))
	    max-size)
	(let ((iotas
		    (proc->vector (+ max-size 1)
			giota))
		(perm
		    (make-vector max-size 0)))
	    (lambda (size graph folder state)
		'(assert (and (integer? size)
			(exact? size)
			(<= 0 size max-size))
		    size
		    max-size)
		'(assert (vector? graph)
		    graph)
		'(assert (procedure? folder)
		    folder)
		(fold-over-perm-tree (vector-ref iotas size)
		    (lambda (perm-x x state deeper accross)
			(case (cmp-next-vertex graph perm x perm-x)
			    ((less)
				#F)
			    ((equal)
				(vector-set! perm x perm-x)
				(deeper (+ x 1)
				    state))
			    ((more)
				(accross state))
			    (else
				(assert #F))))
		    0
		    (lambda (leaf-depth state accross)
			'(assert (eqv? leaf-depth size)
			    leaf-depth
			    size)
			(folder perm state accross))
		    state)))))

; Given a graph, a partial permutation vector, the next input and the next
; output, return 'less, 'equal or 'more depending on the lexicographic
; comparison between the permuted and un-permuted graph.
(define cmp-next-vertex
    (lambda (graph perm x perm-x)
	(let ((from-x
		    (vector-ref graph x))
		(from-perm-x
		    (vector-ref graph perm-x)))
	    (let -*-
		((y
			0))
		(if (= x y)
		    'equal
		    (let ((x->y?
				(vector-ref from-x y))
			    (perm-y
				(vector-ref perm y)))
			(cond ((eq? x->y?
				    (vector-ref from-perm-x perm-y))
				(let ((y->x?
					    (vector-ref (vector-ref graph y)
						x)))
				    (cond ((eq? y->x?
						(vector-ref (vector-ref graph perm-y)
						    perm-x))
					    (-*- (+ y 1)))
					(y->x?
					    'less)
					(else
					    'more))))
			    (x->y?
				'less)
			    (else
				'more))))))))


;;; ==== rdg.ss ====


; Fold over rooted directed graphs with bounded out-degree.
; Size is the number of verticies (including the root).  Max-out is the
; maximum out-degree for any vertex.  Folder is called via
;	(folder edges state)
; where edges is a list of length size.  The ith element of the list is
; a list of the verticies j for which there is an edge from i to j.
; The last vertex is the root.
(define fold-over-rdg
    (lambda (size max-out folder state)
	'(assert (and (exact? size)
		(integer? size)
		(> size 0))
	    size)
	'(assert (and (exact? max-out)
		(integer? max-out)
		(>= max-out 0))
	    max-out)
	'(assert (procedure? folder)
	    folder)
	(let* ((root
		    (- size 1))
		(edge?
		    (proc->vector size
			(lambda (from)
			    (make-vector size #F))))
		(edges
		    (make-vector size '()))
		(out-degrees
		    (make-vector size 0))
		(minimal-folder
		    (make-minimal? root))
		(non-root-minimal?
		    (let ((cont
				(lambda (perm state accross)
				    '(assert (eq? state #T)
					state)
				    (accross #T))))
			(lambda (size)
			    (minimal-folder size
				edge?
				cont
				#T))))
		(root-minimal?
		    (let ((cont
				(lambda (perm state accross)
				    '(assert (eq? state #T)
					state)
				    (case (cmp-next-vertex edge? perm root root)
					((less)
					    #F)
					((equal more)
					    (accross #T))
					(else
					    (assert #F))))))
			(lambda ()
			    (minimal-folder root
				edge?
				cont
				#T)))))
	    (let -*-
		((vertex
			0)
		    (state
			state))
		(cond ((not (non-root-minimal? vertex))
			state)
		    ((= vertex root)
			'(assert
			    (begin
				(gnatural-for-each root
				    (lambda (v)
					'(assert (= (vector-ref out-degrees v)
						(length (vector-ref edges v)))
					    v
					    (vector-ref out-degrees v)
					    (vector-ref edges v))))
				#T))
			(let ((reach?
				    (make-reach? root edges))
				(from-root
				    (vector-ref edge? root)))
			    (let -*-
				((v
					0)
				    (outs
					0)
				    (efr
					'())
				    (efrr
					'())
				    (state
					state))
				(cond ((not (or (= v root)
						(= outs max-out)))
					(vector-set! from-root v #T)
					(let ((state
						    (-*- (+ v 1)
							(+ outs 1)
							(cons v efr)
							(cons (vector-ref reach? v)
							    efrr)
							state)))
					    (vector-set! from-root v #F)
					    (-*- (+ v 1)
						outs
						efr
						efrr
						state)))
				    ((and (natural-for-all? root
						(lambda (v)
						    (there-exists? efrr
							(lambda (r)
							    (vector-ref r v)))))
					    (root-minimal?))
					(vector-set! edges root efr)
					(folder
					    (proc->vector size
						(lambda (i)
						    (vector-ref edges i)))
					    state))
				    (else
					state)))))
		    (else
			(let ((from-vertex
				    (vector-ref edge? vertex)))
			    (let -**-
				((sv
					0)
				    (outs
					0)
				    (state
					state))
				(if (= sv vertex)
				    (begin
					(vector-set! out-degrees vertex outs)
					(-*- (+ vertex 1)
					    state))
				    (let* ((state
						; no sv->vertex, no vertex->sv
						(-**- (+ sv 1)
						    outs
						    state))
					    (from-sv
						(vector-ref edge? sv))
					    (sv-out
						(vector-ref out-degrees sv))
					    (state
						(if (= sv-out max-out)
						    state
						    (begin
							(vector-set! edges
							    sv
							    (cons vertex
								(vector-ref edges sv)))
							(vector-set! from-sv vertex #T)
							(vector-set! out-degrees sv (+ sv-out 1))
							(let* ((state
								    ; sv->vertex, no vertex->sv
								    (-**- (+ sv 1)
									outs
									state))
								(state
								    (if (= outs max-out)
									state
									(begin
									    (vector-set! from-vertex sv #T)
									    (vector-set! edges
										vertex
										(cons sv
										    (vector-ref edges vertex)))
									    (let ((state
											; sv->vertex, vertex->sv
											(-**- (+ sv 1)
											    (+ outs 1)
											    state)))
										(vector-set! edges
										    vertex
										    (cdr (vector-ref edges vertex)))
										(vector-set! from-vertex sv #F)
										state)))))
							    (vector-set! out-degrees sv sv-out)
							    (vector-set! from-sv vertex #F)
							    (vector-set! edges
								sv
								(cdr (vector-ref edges sv)))
							    state)))))
					(if (= outs max-out)
					    state
					    (begin
						(vector-set! edges
						    vertex
						    (cons sv
							(vector-ref edges vertex)))
						(vector-set! from-vertex sv #T)
						(let ((state
							    ; no sv->vertex, vertex->sv
							    (-**- (+ sv 1)
								(+ outs 1)
								state)))
						    (vector-set! from-vertex sv #F)
						    (vector-set! edges
							vertex
							(cdr (vector-ref edges vertex)))
						    state)))))))))))))

; Given a vector which maps vertex to out-going-edge list,
; return a vector  which gives reachability.
(define make-reach?
    (lambda (size vertex->out)
	(let ((res
		    (proc->vector size
			(lambda (v)
			    (let ((from-v
					(make-vector size #F)))
				(vector-set! from-v v #T)
				(for-each
				    (lambda (x)
					(vector-set! from-v x #T))
				    (vector-ref vertex->out v))
				from-v)))))
	    (gnatural-for-each size
		(lambda (m)
		    (let ((from-m
				(vector-ref res m)))
			(gnatural-for-each size
			    (lambda (f)
				(let ((from-f
					    (vector-ref res f)))
				    (if (vector-ref from-f m); [wdc - was when]
                                       (begin
					(gnatural-for-each size
					    (lambda (t)
						(if (vector-ref from-m t)
                                                   (begin ; [wdc - was when]
						    (vector-set! from-f t #T)))))))))))))
	    res)))


;;; ==== test input ====

; Produces all directed graphs with N verticies, distinguished root,
; and out-degree bounded by 2, upto isomorphism (there are 44).

;(define go
;  (let ((N 7))
;    (fold-over-rdg N
;      2 
;      cons
;      '())))