# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """personalized_passkey_retrieval: a synthetic dataset to evaluate long-context embeddings""" import json import gzip import datasets logger = datasets.logging.get_logger(__name__) # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @inproceedings{Wang2023ImprovingTE, title={Improving Text Embeddings with Large Language Models}, author={Liang Wang and Nan Yang and Xiaolong Huang and Linjun Yang and Rangan Majumder and Furu Wei}, year={2023}, } """ # You can copy an official description _DESCRIPTION = """\ This dataset contains synthetic data for personalized passkey retrieval. It is only intended for evaluation purposes, you should not use it for training. """ _URLS = { "train": "personalized_passkey_retrieval.jsonl.gz" } class Query2docMsmarco(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name='plain_text', version=VERSION, description='plain text') ] def _info(self): features = datasets.Features( { "query": datasets.Value("string"), "candidates": datasets.features.Sequence(datasets.Value("string")), "label": datasets.Value("int32"), "context_length": datasets.Value("int32"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) print(downloaded_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files["train"], "split": "train", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): id_ = 0 with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, { "query": example["query"], "candidates": example["candidates"], "label": example["label"], "context_length": example["context_length"], } id_ += 1