import os import subprocess import pandas as pd from datasets import Dataset def remove_repo(path): subprocess.call(f'rm -rf {path}') def download_git_or_zip(url, target_folder)->None: """ download git repo or zip file under self.projects_path """ if url.startswith("https://github.com"): subprocess.call(f"git clone {url}", cwd=target_folder, shell=True) else: subprocess.call(f"wget {url}", cwd=target_folder, shell=True) zip_name = url.split('/')[-1] subprocess.call(f"unzip {zip_name}", cwd=target_folder, shell=True) subprocess.call(f"rm -rf {zip_name}", cwd=target_folder, shell=True) class data_generator: def __init__(self): self.dataset_columns = ["repo_name", "file_path", "content"] self.important_extension = ['.c','.cpp','.cxx','.cc','cp','CPP','c++','.h','.hpp'] self.projects_path = "data/projects" self.data_path = "data/opensource_dataset.csv" targets = [ ['Framework', 'fprime', "https://github.com/nasa/fprime"], ['comm', 'asio', "https://github.com/boostorg/asio"], ['parsing', 'tinyxml2', "https://github.com/leethomason/tinyxml2"], ['parsing', 'inifile-cpp', "https://github.com/Rookfighter/inifile-cpp"], ['numerical analysis', 'oneAPI-samples', "https://github.com/oneapi-src/oneAPI-samples"], ['comm', 'rticonnextdds-examples', "https://d2vkrkwbbxbylk.cloudfront.net/sites/default/files/rti-examples/bundles/rticonnextdds-examples/rticonnextdds-examples.zip"], ['comm', 'rticonnextdds-robot-helpers', "https://github.com/rticommunity/rticonnextdds-robot-helpers"], ['comm', 'rticonnextdds-getting-started', "https://github.com/rticommunity/rticonnextdds-getting-started"], ['comm', 'rticonnextdds-usecases', "https://github.com/rticommunity/rticonnextdds-usecases"], ['xyz', 'PROJ', "https://github.com/OSGeo/PROJ"], ] self.targets = pd.DataFrame(targets, columns=('categori','target_lib','data_source')) if not os.path.isdir(self.projects_path): os.makedirs(self.projects_path, exist_ok=True) def process_file(self, project_name:str, dir_name:str, file_path:str): """Processes a single file""" try: with open(file_path, "r", encoding="utf-8") as file: content = file.read() if content.strip().startswith('\n/*\nWARNING: THIS FILE IS AUTO-GENERATED'): content="" elif content.strip().startswith('/*\nWARNING: THIS FILE IS AUTO-GENERATED'): content="" except Exception: content="" return { "repo_name": project_name.replace('/','_'), "file_path": file_path, "content": content, } def read_repository_files(self, project_name:str)->pd.DataFrame: """ project_name : str repo_df : pd.DataFrame """ repo_df = pd.DataFrame(columns=self.dataset_columns) file_paths = [] pwd = os.path.join(self.projects_path, project_name) for root, _, files in os.walk(pwd): for file in files: file_path = os.path.join(root, file) if file.endswith(tuple(self.important_extension)): file_paths.append((os.path.dirname(root), file_path)) print("#"*10, f"{project_name} Total file paths:{len(file_paths)}", "#"*10) for i, (dir_name, file_path) in enumerate(file_paths): file_content = self.process_file(project_name, dir_name, file_path) assert isinstance(file_content, dict) if file_content["content"] != "": tmp_df = pd.DataFrame.from_dict([file_content]) repo_df = pd.concat([repo_df, tmp_df]) if len(repo_df)==0: repo_df = { "repo_name": project_name, "file_path": "", "content": "", } repo_df = pd.DataFrame.from_dict([repo_df]) assert isinstance(repo_df, pd.DataFrame) return repo_df