|
import os |
|
import subprocess |
|
import pandas as pd |
|
from datasets import Dataset |
|
|
|
def remove_repo(path): |
|
subprocess.call(f'rm -rf {path}') |
|
|
|
def download_git_or_zip(url, target_folder)->None: |
|
""" |
|
download git repo or zip file |
|
under self.projects_path |
|
""" |
|
|
|
if url.startswith("https://github.com"): |
|
subprocess.call(f"git clone {url}", cwd=target_folder, shell=True) |
|
else: |
|
subprocess.call(f"wget {url}", cwd=target_folder, shell=True) |
|
zip_name = url.split('/')[-1] |
|
subprocess.call(f"unzip {zip_name}", cwd=target_folder, shell=True) |
|
subprocess.call(f"rm -rf {zip_name}", cwd=target_folder, shell=True) |
|
|
|
class data_generator: |
|
def __init__(self): |
|
self.dataset_columns = ["repo_name", "file_path", "content"] |
|
self.important_extension = ['.c','.cpp','.cxx','.cc','cp','CPP','c++','.h','.hpp'] |
|
self.projects_path = "data/projects" |
|
self.data_path = "data/opensource_dataset.csv" |
|
|
|
targets = [ |
|
['Framework', 'fprime', "https://github.com/nasa/fprime"], |
|
['comm', 'asio', "https://github.com/boostorg/asio"], |
|
['parsing', 'tinyxml2', "https://github.com/leethomason/tinyxml2"], |
|
['parsing', 'inifile-cpp', "https://github.com/Rookfighter/inifile-cpp"], |
|
['numerical analysis', 'oneAPI-samples', "https://github.com/oneapi-src/oneAPI-samples"], |
|
['comm', 'rticonnextdds-examples', "https://d2vkrkwbbxbylk.cloudfront.net/sites/default/files/rti-examples/bundles/rticonnextdds-examples/rticonnextdds-examples.zip"], |
|
['comm', 'rticonnextdds-robot-helpers', "https://github.com/rticommunity/rticonnextdds-robot-helpers"], |
|
['comm', 'rticonnextdds-getting-started', "https://github.com/rticommunity/rticonnextdds-getting-started"], |
|
['comm', 'rticonnextdds-usecases', "https://github.com/rticommunity/rticonnextdds-usecases"], |
|
['xyz', 'PROJ', "https://github.com/OSGeo/PROJ"], |
|
] |
|
self.targets = pd.DataFrame(targets, columns=('categori','target_lib','data_source')) |
|
|
|
if not os.path.isdir(self.projects_path): |
|
os.makedirs(self.projects_path, exist_ok=True) |
|
|
|
def process_file(self, project_name:str, dir_name:str, file_path:str): |
|
"""Processes a single file""" |
|
|
|
try: |
|
with open(file_path, "r", encoding="utf-8") as file: |
|
content = file.read() |
|
if content.strip().startswith('\n/*\nWARNING: THIS FILE IS AUTO-GENERATED'): |
|
content="" |
|
elif content.strip().startswith('/*\nWARNING: THIS FILE IS AUTO-GENERATED'): |
|
content="" |
|
|
|
except Exception: |
|
content="" |
|
|
|
return { |
|
"repo_name": project_name.replace('/','_'), |
|
"file_path": file_path, |
|
"content": content, |
|
} |
|
|
|
def read_repository_files(self, project_name:str)->pd.DataFrame: |
|
""" |
|
project_name : str |
|
repo_df : pd.DataFrame |
|
""" |
|
repo_df = pd.DataFrame(columns=self.dataset_columns) |
|
file_paths = [] |
|
pwd = os.path.join(self.projects_path, project_name) |
|
for root, _, files in os.walk(pwd): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
|
|
if file.endswith(tuple(self.important_extension)): |
|
file_paths.append((os.path.dirname(root), file_path)) |
|
|
|
print("#"*10, f"{project_name} Total file paths:{len(file_paths)}", "#"*10) |
|
|
|
for i, (dir_name, file_path) in enumerate(file_paths): |
|
file_content = self.process_file(project_name, dir_name, file_path) |
|
assert isinstance(file_content, dict) |
|
if file_content["content"] != "": |
|
tmp_df = pd.DataFrame.from_dict([file_content]) |
|
repo_df = pd.concat([repo_df, tmp_df]) |
|
if len(repo_df)==0: |
|
repo_df = { |
|
"repo_name": project_name, |
|
"file_path": "", |
|
"content": "", |
|
} |
|
repo_df = pd.DataFrame.from_dict([repo_df]) |
|
assert isinstance(repo_df, pd.DataFrame) |
|
return repo_df |