code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def __A ( a_ : list[list] )-> list[list]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = current_set.copy() for row_index, row in enumerate(a_ ): SCREAMING_SNAKE_CASE : Dict = row[0] for column_index, column in enumerate(a_ ): if magnitude == 0: SCREAMING_SNAKE_CASE : Tuple = column continue SCREAMING_SNAKE_CASE : int = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE : Optional[int] = current_set[0] SCREAMING_SNAKE_CASE : str = [first_row] SCREAMING_SNAKE_CASE : Optional[int] = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(a_ ) continue for column_index in range(len(a_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(a_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE : List[str] = final_set[0] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE : List[Any] = simplify(a_ ) for i in range(len(a_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , a_ ) SCREAMING_SNAKE_CASE : List[str] = resultant return final_set def __A ( a_ : list[list] )-> list: '''simple docstring''' if len(a_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) SCREAMING_SNAKE_CASE : Dict = len(a_ ) + 1 if any(len(a_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(a_ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(a_ ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE : Dict = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE : Union[str, Any] = data_set.copy() SCREAMING_SNAKE_CASE : Any = [] for row_index, row in enumerate(a_ ): if 0 not in row: SCREAMING_SNAKE_CASE : Any = data_set.pop(a_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = data_set.copy() SCREAMING_SNAKE_CASE : List[Any] = simplify(a_ ) SCREAMING_SNAKE_CASE : Tuple = simplified[::-1] SCREAMING_SNAKE_CASE : list = [] for row in simplified: SCREAMING_SNAKE_CASE : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = row.copy()[: len(a_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(a_ ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE : Optional[Any] = temp_row[1::] SCREAMING_SNAKE_CASE : Optional[int] = temp_row[::-1] for column_index, column in enumerate(a_ ): current_solution -= column * solutions[column_index] solutions.append(a_ ) SCREAMING_SNAKE_CASE : int = [] for item in solutions: final.append(float(round(a_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : List[str] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
698
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
1
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = ["""image_processor"""] UpperCamelCase = """SamImageProcessor""" def __init__( self :Union[str, Any] , lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor SCREAMING_SNAKE_CASE : int = -10 SCREAMING_SNAKE_CASE : str = self.image_processor.size['''longest_edge'''] def __call__( self :str , lowerCamelCase_ :str=None , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , **lowerCamelCase_ :Dict , ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE : Any = encoding_image_processor['''original_sizes'''] if hasattr(lowerCamelCase_ , '''numpy''' ): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE : List[str] = original_sizes.numpy() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self._check_and_preprocess_points( input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , input_boxes=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = self._normalize_and_convert( lowerCamelCase_ , lowerCamelCase_ , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , input_boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) return encoding_image_processor def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Dict="pt" , ) -> Optional[int]: '''simple docstring''' if input_points is not None: if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = [ self._normalize_coordinates(self.target_size , lowerCamelCase_ , original_sizes[0] ) for point in input_points ] else: SCREAMING_SNAKE_CASE : Any = [ self._normalize_coordinates(self.target_size , lowerCamelCase_ , lowerCamelCase_ ) for point, original_size in zip(lowerCamelCase_ , lowerCamelCase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self._pad_points_and_labels(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = np.array(lowerCamelCase_ ) if input_labels is not None: SCREAMING_SNAKE_CASE : str = np.array(lowerCamelCase_ ) if input_boxes is not None: if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [ self._normalize_coordinates(self.target_size , lowerCamelCase_ , original_sizes[0] , is_bounding_box=lowerCamelCase_ ) for box in input_boxes ] else: SCREAMING_SNAKE_CASE : List[Any] = [ self._normalize_coordinates(self.target_size , lowerCamelCase_ , lowerCamelCase_ , is_bounding_box=lowerCamelCase_ ) for box, original_size in zip(lowerCamelCase_ , lowerCamelCase_ ) ] SCREAMING_SNAKE_CASE : Tuple = np.array(lowerCamelCase_ ) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(lowerCamelCase_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor(lowerCamelCase_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE : str = tf.expand_dims(lowerCamelCase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(lowerCamelCase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor(lowerCamelCase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(lowerCamelCase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(lowerCamelCase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE : Optional[int] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor(lowerCamelCase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(lowerCamelCase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = max([point.shape[0] for point in input_points] ) SCREAMING_SNAKE_CASE : Optional[int] = [] for i, point in enumerate(lowerCamelCase_ ): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processed_input_points return input_points, input_labels def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int]=False ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = original_size SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor._get_preprocess_shape(lowerCamelCase_ , longest_edge=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = deepcopy(lowerCamelCase_ ).astype(lowerCamelCase_ ) if is_bounding_box: SCREAMING_SNAKE_CASE : List[str] = coords.reshape(-1 , 2 , 2 ) SCREAMING_SNAKE_CASE : Dict = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE : int = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE : Union[str, Any] = coords.reshape(-1 , 4 ) return coords def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :int=None , lowerCamelCase_ :Tuple=None , ) -> Tuple: '''simple docstring''' if input_points is not None: if hasattr(lowerCamelCase_ , '''numpy''' ): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE : List[Any] = input_points.numpy().tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not isinstance(input_points[0] , lowerCamelCase_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) SCREAMING_SNAKE_CASE : Dict = [np.array(lowerCamelCase_ ) for input_point in input_points] else: SCREAMING_SNAKE_CASE : Optional[Any] = None if input_labels is not None: if hasattr(lowerCamelCase_ , '''numpy''' ): SCREAMING_SNAKE_CASE : Optional[int] = input_labels.numpy().tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not isinstance(input_labels[0] , lowerCamelCase_ ): raise ValueError('''Input labels must be a list of list integers.''' ) SCREAMING_SNAKE_CASE : int = [np.array(lowerCamelCase_ ) for label in input_labels] else: SCREAMING_SNAKE_CASE : Optional[Any] = None if input_boxes is not None: if hasattr(lowerCamelCase_ , '''numpy''' ): SCREAMING_SNAKE_CASE : Tuple = input_boxes.numpy().tolist() if ( not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not isinstance(input_boxes[0] , lowerCamelCase_ ) or not isinstance(input_boxes[0][0] , lowerCamelCase_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) SCREAMING_SNAKE_CASE : Dict = [np.array(lowerCamelCase_ ).astype(np.floataa ) for box in input_boxes] else: SCREAMING_SNAKE_CASE : str = None return input_points, input_labels, input_boxes @property def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(lowerCamelCase_ ) ) def __lowerCAmelCase ( self :List[str] , *lowerCamelCase_ :Optional[int] , **lowerCamelCase_ :Dict ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_masks(*lowerCamelCase_ , **lowerCamelCase_ )
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Any = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """canine""" def __init__( self :Tuple , lowerCamelCase_ :Any=7_68 , lowerCamelCase_ :Union[str, Any]=12 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Tuple=1_63_84 , lowerCamelCase_ :Dict=16 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Union[str, Any]=1E-12 , lowerCamelCase_ :str=0 , lowerCamelCase_ :Optional[Any]=0xE000 , lowerCamelCase_ :List[Any]=0xE001 , lowerCamelCase_ :str=4 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Any=8 , lowerCamelCase_ :Tuple=1_63_84 , lowerCamelCase_ :Tuple=1_28 , **lowerCamelCase_ :Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps # Character config: SCREAMING_SNAKE_CASE : Optional[int] = downsampling_rate SCREAMING_SNAKE_CASE : List[str] = upsampling_kernel_size SCREAMING_SNAKE_CASE : Tuple = num_hash_functions SCREAMING_SNAKE_CASE : Optional[Any] = num_hash_buckets SCREAMING_SNAKE_CASE : str = local_transformer_stride
698
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
1
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
1
"""simple docstring""" def __A ( a_ : list )-> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE : List[str] = grid[0] for row_n in range(1 , len(a_ ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = grid[row_n] SCREAMING_SNAKE_CASE : List[str] = fill_row(a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = grid[row_n] return grid[-1][-1] def __A ( a_ : list , a_ : list )-> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(a_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ : Tuple = logging.getLogger() def __A ( a_ : Path , a_ : list )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(a_ ) Path(a_ ).open('''w''' ).writelines(a_ ) lowerCamelCase__ : Dict = "patrickvonplaten/t5-tiny-random" lowerCamelCase__ : str = "sshleifer/bart-tiny-random" lowerCamelCase__ : Tuple = "sshleifer/tiny-mbart" lowerCamelCase__ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' SCREAMING_SNAKE_CASE : List[Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() SCREAMING_SNAKE_CASE : List[Any] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) SCREAMING_SNAKE_CASE : int = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' SCREAMING_SNAKE_CASE : str = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): run_generate() assert Path(lowerCamelCase_ ).exists() # os.remove(Path(output_file_name)) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' self.run_eval_tester(lowerCamelCase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[str] ) -> Any: '''simple docstring''' self.run_eval_tester(lowerCamelCase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' SCREAMING_SNAKE_CASE : Optional[Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() SCREAMING_SNAKE_CASE : Any = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } SCREAMING_SNAKE_CASE : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE : str = str(tmp_dir / '''scores.json''' ) SCREAMING_SNAKE_CASE : int = str(tmp_dir / '''val.target''' ) _dump_articles(lowerCamelCase_ , text['''en'''] ) _dump_articles(lowerCamelCase_ , text['''de'''] ) SCREAMING_SNAKE_CASE : int = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' SCREAMING_SNAKE_CASE : Any = f"\n run_eval_search.py\n {model}\n {str(lowerCamelCase_ )}\n {str(lowerCamelCase_ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE : int = [''' num_beams | length_penalty''', model, '''Best score args'''] SCREAMING_SNAKE_CASE : Tuple = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(lowerCamelCase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase_ ).exists() os.remove(Path(lowerCamelCase_ ) )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) def __A ( a_ : Union[tf.Tensor, np.ndarray] )-> List[int]: '''simple docstring''' if isinstance(a_ , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE : Tuple = tf.shape(a_ ) if tensor.shape == tf.TensorShape(a_ ): return dynamic SCREAMING_SNAKE_CASE : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a_ )] def __A ( a_ : tf.Tensor , a_ : Optional[int] = None , a_ : Optional[str] = None )-> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=a_ , name=a_ ) def __A ( a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Tuple , a_ : List[str]=1E-5 , a_ : List[Any]=-1 )-> Tuple: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a_ , a_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = tf.nn.moments(a_ , axes=[axis] , keepdims=a_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE : int = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE : Any = shape_list(a_ )[axis] SCREAMING_SNAKE_CASE : List[str] = tf.reshape(a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.reshape(a_ , a_ ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE : List[Any] = tf.nn.batch_normalization( a_ , a_ , a_ , offset=a_ , scale=a_ , variance_epsilon=a_ , ) return outputs def __A ( a_ : int , a_ : int=0 , a_ : Tuple=-1 )-> List[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE : List[Any] = tf.shape(a_ ) SCREAMING_SNAKE_CASE : Tuple = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a_ , a_ ) def __A ( a_ : tf.Tensor )-> tf.Tensor: '''simple docstring''' if not isinstance(a_ , tf.Tensor ): SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor(a_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE : str = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __A ( a_ : tf.Tensor , a_ : int , a_ : str = "input_ids" )-> None: '''simple docstring''' tf.debugging.assert_less( a_ , tf.cast(a_ , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(a_ )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def __A ( a_ : Dict , a_ : Union[str, Any] , a_ : List[str] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE : Dict = [x for x in data if len(a_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(a_ ) SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Optional[int] = np.array_split(a_ , a_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE : Tuple = np.array_split(a_ , a_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = chunk_data else: SCREAMING_SNAKE_CASE : List[str] = data def __A ( a_ : Tuple , a_ : Any )-> Optional[int]: '''simple docstring''' if name in group.attrs: SCREAMING_SNAKE_CASE : List[str] = [n.decode('''utf8''' ) if hasattr(a_ , '''decode''' ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(a_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' def _expand_single_ad_tensor(a_ : Dict ): if isinstance(a_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a_ )
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = {"vocab_file": "spiece.model"} lowerCamelCase__ : Optional[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowerCamelCase__ : int = {"bert_for_seq_generation": 512} class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = [] UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any]="<s>" , lowerCamelCase_ :int="</s>" , lowerCamelCase_ :Optional[Any]="<unk>" , lowerCamelCase_ :List[Any]="<pad>" , lowerCamelCase_ :Any="<::::>" , lowerCamelCase_ :Optional[Dict[str, Any]] = None , **lowerCamelCase_ :str , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[int] = None return state def __setstate__( self :List[str] , lowerCamelCase_ :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.IdToPiece(lowerCamelCase_ ) return token def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase_ ) + token SCREAMING_SNAKE_CASE : List[Any] = [] else: current_sub_tokens.append(lowerCamelCase_ ) out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def __lowerCAmelCase ( self :Any , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
698
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """owlvit_text_model""" def __init__( self :List[str] , lowerCamelCase_ :Union[str, Any]=4_94_08 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Dict=20_48 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :Dict=8 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :str="quick_gelu" , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :List[str]=1.0 , lowerCamelCase_ :Union[str, Any]=0 , lowerCamelCase_ :List[Any]=4_94_06 , lowerCamelCase_ :int=4_94_07 , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor @classmethod def __lowerCAmelCase ( cls :Optional[Any] , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": SCREAMING_SNAKE_CASE : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """owlvit_vision_model""" def __init__( self :Dict , lowerCamelCase_ :int=7_68 , lowerCamelCase_ :Dict=30_72 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :str=3 , lowerCamelCase_ :Optional[Any]=7_68 , lowerCamelCase_ :str=32 , lowerCamelCase_ :Union[str, Any]="quick_gelu" , lowerCamelCase_ :Tuple=1E-5 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :List[Any]=1.0 , **lowerCamelCase_ :Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : str = initializer_factor @classmethod def __lowerCAmelCase ( cls :Tuple , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": SCREAMING_SNAKE_CASE : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """owlvit""" UpperCamelCase = True def __init__( self :List[Any] , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Dict=5_12 , lowerCamelCase_ :Dict=2.6_5_9_2 , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :str , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if text_config is None: SCREAMING_SNAKE_CASE : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) SCREAMING_SNAKE_CASE : str = OwlViTTextConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = OwlViTVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = projection_dim SCREAMING_SNAKE_CASE : Any = logit_scale_init_value SCREAMING_SNAKE_CASE : List[str] = return_dict SCREAMING_SNAKE_CASE : Dict = 1.0 @classmethod def __lowerCAmelCase ( cls :Optional[Any] , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( cls :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , **lowerCamelCase_ :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Union[str, Any] = text_config SCREAMING_SNAKE_CASE : List[Any] = vision_config return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowerCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1E-4 def __lowerCAmelCase ( self :Any , lowerCamelCase_ :"ProcessorMixin" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , framework=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = super().generate_dummy_inputs( processor.image_processor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ ) return {**text_input_dict, **image_input_dict} @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' return 14
698
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : str = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = ["BeitFeatureExtractor"] lowerCamelCase__ : Optional[Any] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = {"vocab_file": "vocab.txt"} lowerCamelCase__ : str = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } lowerCamelCase__ : Any = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def __A ( a_ : Any )-> Union[str, Any]: '''simple docstring''' with open(a_ , '''r''' ) as f: SCREAMING_SNAKE_CASE : Tuple = f.read().splitlines() return [l.strip() for l in lines] class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :int="<unk>" , lowerCamelCase_ :Tuple="<cls>" , lowerCamelCase_ :Any="<pad>" , lowerCamelCase_ :Union[str, Any]="<mask>" , lowerCamelCase_ :List[str]="<eos>" , **lowerCamelCase_ :List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = load_vocab_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE : List[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE : Union[str, Any] = unk_token SCREAMING_SNAKE_CASE : List[str] = cls_token SCREAMING_SNAKE_CASE : Optional[int] = pad_token SCREAMING_SNAKE_CASE : Dict = mask_token SCREAMING_SNAKE_CASE : Dict = eos_token SCREAMING_SNAKE_CASE : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :str ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[str] , **lowerCamelCase_ :str ) -> Dict: '''simple docstring''' return text.split() def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[Any]=False ) -> Any: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :str ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :int ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List , lowerCamelCase_ :Optional[List] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE : Any = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase_ ) + [1] return mask def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[List[str], List[AddedToken]] , lowerCamelCase_ :bool = False ) -> int: '''simple docstring''' return super()._add_tokens(lowerCamelCase_ , special_tokens=lowerCamelCase_ )
698
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase__( unittest.TestCase ): '''simple docstring''' def __init__( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=3 , lowerCamelCase_ :Dict=18 , lowerCamelCase_ :str=30 , lowerCamelCase_ :int=4_00 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[str]=[0.5, 0.5, 0.5] , lowerCamelCase_ :Any=[0.5, 0.5, 0.5] , lowerCamelCase_ :List[Any]=False , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''height''': 20, '''width''': 20} SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : Tuple = do_center_crop SCREAMING_SNAKE_CASE : List[Any] = crop_size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Any = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Tuple = do_reduce_labels def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : int = Image.open(dataset[0]['''file'''] ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open(dataset[1]['''file'''] ) return image, map def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : Tuple = Image.open(ds[0]['''file'''] ) SCREAMING_SNAKE_CASE : str = Image.open(ds[1]['''file'''] ) SCREAMING_SNAKE_CASE : int = Image.open(ds[2]['''file'''] ) SCREAMING_SNAKE_CASE : str = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BeitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BeitImageProcessingTester(self ) @property def __lowerCAmelCase ( self :int ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self :Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_std''' ) ) def __lowerCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Dict = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
"""simple docstring""" from __future__ import annotations def __A ( a_ : list[int] )-> list[int]: # This function is recursive '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE : List[str] = array[0] SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE : Optional[Any] = longest_subsequence(a_ ) if len(a_ ) > len(a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = temp_array else: i += 1 SCREAMING_SNAKE_CASE : List[str] = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE : Optional[int] = [pivot, *longest_subsequence(a_ )] if len(a_ ) > len(a_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
1
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __A ( a_ : Union[str, Any] , a_ : List[Any]=10 )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] for _ in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __A ( a_ : List[str] , a_ : str=10 )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for step in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[str] = os.path.join(a_ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , a_ ) SCREAMING_SNAKE_CASE : str = torch.load(a_ ) scheduler.load_state_dict(a_ ) return lrs @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] ) -> str: '''simple docstring''' self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for a, b in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertAlmostEqual(lowerCamelCase_ , lowerCamelCase_ , delta=lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : Tuple = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): SCREAMING_SNAKE_CASE : List[Any] = criterion(lowerCamelCase_ , lowerCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : Tuple = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : Dict = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase_ , weight_decay=0.0 , relative_step=lowerCamelCase_ , scale_parameter=lowerCamelCase_ , warmup_init=lowerCamelCase_ , ) for _ in range(10_00 ): SCREAMING_SNAKE_CASE : str = criterion(lowerCamelCase_ , lowerCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCamelCase = 10 def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any]=None ) -> int: '''simple docstring''' self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for a, b in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertAlmostEqual(lowerCamelCase_ , lowerCamelCase_ , delta=lowerCamelCase_ , msg=lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE : Union[str, Any] = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = data SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_func(self.optimizer , **lowerCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE : List[Any] = unwrap_schedule(lowerCamelCase_ , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase_ , lowerCamelCase_ , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_func(self.optimizer , **lowerCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase_ ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE : str = unwrap_and_save_reload_schedule(lowerCamelCase_ , self.num_steps ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ , msg=f"failed for {scheduler_func} in save and reload" ) class lowercase__: '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = fn def __call__( self :Union[str, Any] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Tuple ) -> Optional[Any]: '''simple docstring''' return self.fn(*lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(map(self , scheduler.lr_lambdas ) )
698
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Optional[int] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def __A ( a_ : Optional[int] , a_ : int , a_ : str=8 )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE : Dict = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[Any] , lowerCamelCase_ :MultilingualCLIP , lowerCamelCase_ :XLMRobertaTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase_ :VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ) -> str: '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE : Tuple = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE : Tuple = latents.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any=None , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE : str = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , truncation=lowerCamelCase_ , max_length=77 , return_attention_mask=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : str = text_inputs.input_ids SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(lowerCamelCase_ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_input_ids.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = text_inputs.attention_mask.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.text_encoder( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = prompt_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Any = text_mask.repeat_interleave(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE : str = [''''''] * batch_size elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !=" f" {type(lowerCamelCase_ )}." ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[str] = [negative_prompt] elif batch_size != len(lowerCamelCase_ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: SCREAMING_SNAKE_CASE : Tuple = negative_prompt SCREAMING_SNAKE_CASE : Dict = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=77 , truncation=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : int = uncond_input.input_ids.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = uncond_input.attention_mask.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.text_encoder( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE : Any = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE : int = negative_prompt_embeds.repeat(1 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase_ , 1 ) SCREAMING_SNAKE_CASE : int = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = uncond_text_mask.repeat_interleave(lowerCamelCase_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE : Dict = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Any=0 ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE : Any = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE : List[str] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Optional[Any]=0 ) -> Optional[Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) SCREAMING_SNAKE_CASE : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : str = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = cpu_offload_with_hook(self.safety_checker , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self :Optional[int] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 1_00 , lowerCamelCase_ :float = 4.0 , lowerCamelCase_ :int = 1 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 1 elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}" ) SCREAMING_SNAKE_CASE : Dict = self._execution_device SCREAMING_SNAKE_CASE : Dict = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE : Optional[int] = guidance_scale > 1.0 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self._encode_prompt( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = torch.cat(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : int = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE : Dict = self.unet.config.in_channels SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = get_new_h_w(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : List[str] = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} SCREAMING_SNAKE_CASE : Tuple = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , ).prev_sample # post-processing SCREAMING_SNAKE_CASE : str = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : int = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : List[Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
1
"""simple docstring""" from __future__ import annotations import requests lowerCamelCase__ : Tuple = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def __A ( a_ : str , a_ : int = 1 , a_ : str = "new" , a_ : list | None = None )-> dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a_ ) - valid_terms ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = F"Invalid search term: {invalid_search_terms}" raise ValueError(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError SCREAMING_SNAKE_CASE : Dict = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a_ )} SCREAMING_SNAKE_CASE : Any = {} for id_ in range(a_ ): SCREAMING_SNAKE_CASE : Dict = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def __A ( a_ : int , a_ : int , a_ : int )-> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) SCREAMING_SNAKE_CASE : List[str] = b * b - 4 * a * c SCREAMING_SNAKE_CASE : Optional[Any] = (-b + sqrt(a_ )) / (2 * a) SCREAMING_SNAKE_CASE : int = (-b - sqrt(a_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __A ( )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ ).loss SCREAMING_SNAKE_CASE : Optional[int] = -tf.math.reduce_mean(lowerCamelCase_ ).numpy() SCREAMING_SNAKE_CASE : Optional[int] = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
1
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __A ( a_ : str , a_ : Optional[Any] , a_ : List[str] )-> int: '''simple docstring''' if gpta_config_file == "": SCREAMING_SNAKE_CASE : int = GPTaConfig() else: SCREAMING_SNAKE_CASE : Dict = GPTaConfig.from_json_file(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = GPTaModel(a_ ) # Load weights from numpy load_tf_weights_in_gpta(a_ , a_ , a_ ) # Save pytorch-model SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , a_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCamelCase__ : str = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float , **lowerCamelCase_ :Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = feature_size SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : Tuple = padding_value SCREAMING_SNAKE_CASE : Any = kwargs.pop('''padding_side''' , '''right''' ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''return_attention_mask''' , lowerCamelCase_ ) super().__init__(**lowerCamelCase_ ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase_ :Union[bool, str, PaddingStrategy] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[bool] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , ) -> BatchFeature: '''simple docstring''' if isinstance(lowerCamelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): SCREAMING_SNAKE_CASE : List[str] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) SCREAMING_SNAKE_CASE : int = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase_ ) == 0: if return_attention_mask: SCREAMING_SNAKE_CASE : Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch SCREAMING_SNAKE_CASE : List[str] = required_input[0] if isinstance(lowerCamelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. SCREAMING_SNAKE_CASE : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = '''tf''' elif is_torch_tensor(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = '''pt''' elif isinstance(lowerCamelCase_ , (int, float, list, tuple, np.ndarray) ): SCREAMING_SNAKE_CASE : Any = '''np''' else: raise ValueError( f"type of {first_element} unknown: {type(lowerCamelCase_ )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): SCREAMING_SNAKE_CASE : List[str] = to_numpy(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = [to_numpy(lowerCamelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_padding_strategies(padding=lowerCamelCase_ , max_length=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) if not all(len(lowerCamelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) SCREAMING_SNAKE_CASE : str = [] for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[str] = {k: v[i] for k, v in processed_features.items()} # truncation SCREAMING_SNAKE_CASE : Any = self._truncate( lowerCamelCase_ , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , truncation=lowerCamelCase_ , ) truncated_inputs.append(lowerCamelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length SCREAMING_SNAKE_CASE : Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) SCREAMING_SNAKE_CASE : List[Any] = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE : int = {} for i in range(lowerCamelCase_ ): # padding SCREAMING_SNAKE_CASE : int = self._pad( truncated_inputs[i] , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: SCREAMING_SNAKE_CASE : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Any = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase_ ) return BatchFeature(lowerCamelCase_ , tensor_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[bool] = None , ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: SCREAMING_SNAKE_CASE : str = len(lowerCamelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE : int = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: SCREAMING_SNAKE_CASE : List[Any] = np.ones(len(lowerCamelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : Optional[Any] = max_length - len(lowerCamelCase_ ) if self.padding_side == "right": if return_attention_mask: SCREAMING_SNAKE_CASE : Optional[int] = np.pad( processed_features['''attention_mask'''] , (0, difference) ) SCREAMING_SNAKE_CASE : List[str] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) SCREAMING_SNAKE_CASE : Dict = np.pad( lowerCamelCase_ , lowerCamelCase_ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: SCREAMING_SNAKE_CASE : Tuple = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) SCREAMING_SNAKE_CASE : Optional[int] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) SCREAMING_SNAKE_CASE : Optional[Any] = np.pad( lowerCamelCase_ , lowerCamelCase_ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[bool] = None , ) -> Optional[int]: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) SCREAMING_SNAKE_CASE : str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) > max_length if needs_to_be_truncated: SCREAMING_SNAKE_CASE : Optional[int] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: SCREAMING_SNAKE_CASE : int = processed_features['''attention_mask'''][:max_length] return processed_features def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :int=None ) -> str: '''simple docstring''' if padding is not False: if padding is True: SCREAMING_SNAKE_CASE : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = PaddingStrategy(lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = padding else: SCREAMING_SNAKE_CASE : Dict = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
698
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self :str , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int = None , lowerCamelCase_ :int = None ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : str = pad_token_id SCREAMING_SNAKE_CASE : List[str] = max_length SCREAMING_SNAKE_CASE : Union[str, Any] = vocab SCREAMING_SNAKE_CASE : Optional[int] = merges SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( cls :str , lowerCamelCase_ :GPTaTokenizer , *lowerCamelCase_ :Any , **lowerCamelCase_ :str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [''' '''.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.get_vocab() return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( cls :Union[str, Any] , lowerCamelCase_ :Union[str, os.PathLike] , *lowerCamelCase_ :Dict , **lowerCamelCase_ :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( cls :str , lowerCamelCase_ :Dict ) -> Tuple: '''simple docstring''' return cls(**lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :int = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tf_tokenizer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = pad_model_inputs( lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
698
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_ , '''num_attention_heads''' ) ) class lowercase__: '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict=13 , lowerCamelCase_ :Optional[int]=64 , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :str=2 , lowerCamelCase_ :Optional[Any]=1 , lowerCamelCase_ :Any=16 , lowerCamelCase_ :List[str]=[1_28, 2_56, 3_84] , lowerCamelCase_ :Any=[4, 6, 8] , lowerCamelCase_ :List[str]=[2, 3, 4] , lowerCamelCase_ :List[Any]=[16, 16, 16] , lowerCamelCase_ :str=0 , lowerCamelCase_ :Any=[2, 2, 2] , lowerCamelCase_ :Optional[Any]=[2, 2, 2] , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Any=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Optional[int]=2 , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : List[str] = stride SCREAMING_SNAKE_CASE : List[Any] = padding SCREAMING_SNAKE_CASE : List[Any] = hidden_sizes SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Any = key_dim SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = initializer_range def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = LevitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : Optional[int] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = LevitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def __lowerCAmelCase ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): SCREAMING_SNAKE_CASE : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : str = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Tuple = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : List[str] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :int=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase_ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCamelCase_ ).loss loss.backward() def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase_ ) model.train() SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(**lowerCamelCase_ ).loss loss.backward() def __lowerCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase_ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : Tuple = problem_type['''title'''] SCREAMING_SNAKE_CASE : int = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() SCREAMING_SNAKE_CASE : int = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : Optional[Any] = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) SCREAMING_SNAKE_CASE : Any = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase_ ) as warning_list: SCREAMING_SNAKE_CASE : str = model(**lowerCamelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def __lowerCAmelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = LevitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __A ( a_ : Dict , a_ : int , a_ : Union[str, Any] , a_ : int , a_ : Tuple )-> List[str]: '''simple docstring''' with open(a_ ) as metadata_file: SCREAMING_SNAKE_CASE : List[Any] = json.load(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = LukeConfig(use_entity_aware_attention=a_ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a_ , map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE : Any = load_original_entity_vocab(a_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken('''<ent>''' , lstrip=a_ , rstrip=a_ ) SCREAMING_SNAKE_CASE : Any = AddedToken('''<ent2>''' , lstrip=a_ , rstrip=a_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(a_ ) with open(os.path.join(a_ , '''tokenizer_config.json''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE : Any = json.load(a_ ) SCREAMING_SNAKE_CASE : List[Any] = '''MLukeTokenizer''' with open(os.path.join(a_ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) with open(os.path.join(a_ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(a_ , a_ ) SCREAMING_SNAKE_CASE : str = MLukeTokenizer.from_pretrained(a_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE : Tuple = state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE : Tuple = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[str] = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE : Any = state_dict[bias_name] SCREAMING_SNAKE_CASE : Any = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE : List[Any] = F"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE : Any = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : Optional[int] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : Tuple = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE : List[Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE : Any = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE : Dict = state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE : str = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE : Dict = LukeForMaskedLM(config=a_ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE : Any = state_dict[key] else: SCREAMING_SNAKE_CASE : str = state_dict[key] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = model.load_state_dict(a_ , strict=a_ ) if set(a_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(a_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE : Dict = MLukeTokenizer.from_pretrained(a_ , task='''entity_classification''' ) SCREAMING_SNAKE_CASE : List[str] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE : Optional[Any] = (0, 9) SCREAMING_SNAKE_CASE : Dict = tokenizer(a_ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = model(**a_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : str = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE : List[Any] = MLukeTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : List[str] = '''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE : List[str] = (24, 30) SCREAMING_SNAKE_CASE : List[str] = tokenizer(a_ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = model(**a_ ) SCREAMING_SNAKE_CASE : int = encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(a_ ) SCREAMING_SNAKE_CASE : str = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(a_ ) ) model.save_pretrained(a_ ) def __A ( a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE : List[Any] = [json.loads(a_ ) for line in open(a_ )] SCREAMING_SNAKE_CASE : Any = {} for entry in data: SCREAMING_SNAKE_CASE : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE : str = entity_id break SCREAMING_SNAKE_CASE : str = F"{language}:{entity_name}" SCREAMING_SNAKE_CASE : Optional[int] = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
698
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionSAGPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = False def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self :str , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int]=0 ) -> Any: '''simple docstring''' if str(lowerCamelCase_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sag_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : Optional[int] = output.images SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCAmelCase ( self :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Any = sag_pipe.to(lowerCamelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = '''.''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=lowerCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : str = output.images assert image.shape == (1, 5_12, 7_68, 3)
698
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
1
"""simple docstring""" import numpy as np import qiskit def __A ( a_ : int = 8 , a_ : int | None = None )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.default_rng(seed=a_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE : Optional[Any] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE : Optional[Any] = rng.integers(2 , size=a_ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE : List[Any] = rng.integers(2 , size=a_ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE : List[str] = rng.integers(2 , size=a_ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE : int = qiskit.QuantumCircuit(a_ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(a_ ): if alice_state[index] == 1: bbaa_circ.x(a_ ) if alice_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(a_ ): if bob_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE : int = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=1 , seed_simulator=a_ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE : Any = job.result().get_counts(a_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE : Tuple = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( a_ , a_ , a_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE : Union[str, Any] = gen_key[:key_len] if len(a_ ) >= key_len else gen_key.ljust(a_ , '''0''' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """facebook/bart-large-mnli""" UpperCamelCase = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) UpperCamelCase = """text_classifier""" UpperCamelCase = AutoTokenizer UpperCamelCase = AutoModelForSequenceClassification UpperCamelCase = ["""text""", ["""text"""]] UpperCamelCase = ["""text"""] def __lowerCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' super().setup() SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.config SCREAMING_SNAKE_CASE : List[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): SCREAMING_SNAKE_CASE : List[str] = int(lowerCamelCase_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Any , lowerCamelCase_ :List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = labels return self.pre_processor( [text] * len(lowerCamelCase_ ) , [f"This example is {label}" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 9 SCREAMING_SNAKE_CASE : Tuple = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : List[str] = kruskal(a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(a_ ) == sorted(a_ )
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( a_ : str , a_ : Dict )-> List[str]: '''simple docstring''' assert isinstance(a_ , a_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __A ( a_ : List[Any] , a_ : str , a_ : Dict )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Tuple = JsonDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_ ).read() _check_json_dataset(a_ , a_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __A ( a_ : Any , a_ : Any , a_ : Dict )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : int = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() _check_json_dataset(a_ , a_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __A ( a_ : Any , a_ : str , a_ : Dict )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} SCREAMING_SNAKE_CASE : List[Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : List[str] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Any = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() assert isinstance(a_ , a_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __A ( a_ : int , a_ : int )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} SCREAMING_SNAKE_CASE : List[str] = features.copy() SCREAMING_SNAKE_CASE : Tuple = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Dict = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() assert isinstance(a_ , a_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __A ( a_ : Union[str, Any] , a_ : Dict , a_ : str )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : List[str] = JsonDatasetReader(a_ , cache_dir=a_ , split=a_ ).read() _check_json_dataset(a_ , a_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __A ( a_ : Union[str, Any] , a_ : List[str] , a_ : Optional[Any] )-> Any: '''simple docstring''' if issubclass(a_ , a_ ): SCREAMING_SNAKE_CASE : List[str] = jsonl_path elif issubclass(a_ , a_ ): SCREAMING_SNAKE_CASE : List[Any] = [jsonl_path] SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Tuple = JsonDatasetReader(a_ , cache_dir=a_ ).read() _check_json_dataset(a_ , a_ ) def __A ( a_ : Optional[int] , a_ : str , a_ : List[str]=("train",) )-> Optional[int]: '''simple docstring''' assert isinstance(a_ , a_ ) for split in splits: SCREAMING_SNAKE_CASE : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __A ( a_ : Tuple , a_ : Union[str, Any] , a_ : List[str] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Any = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=a_ , keep_in_memory=a_ ).read() _check_json_datasetdict(a_ , a_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __A ( a_ : Tuple , a_ : Optional[Any] , a_ : Union[str, Any] )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Tuple = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[Any] = JsonDatasetReader({'''train''': jsonl_path} , features=a_ , cache_dir=a_ ).read() _check_json_datasetdict(a_ , a_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __A ( a_ : Any , a_ : Optional[Any] , a_ : Optional[int] )-> Tuple: '''simple docstring''' if split: SCREAMING_SNAKE_CASE : str = {split: jsonl_path} else: SCREAMING_SNAKE_CASE : Dict = '''train''' SCREAMING_SNAKE_CASE : int = {'''train''': jsonl_path, '''test''': jsonl_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE : Optional[int] = JsonDatasetReader(a_ , cache_dir=a_ ).read() _check_json_datasetdict(a_ , a_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __A ( a_ : Tuple )-> List[str]: '''simple docstring''' return json.load(a_ ) def __A ( a_ : Dict )-> List[Any]: '''simple docstring''' return [json.loads(a_ ) for line in buffer] class lowercase__: '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ) -> Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , lines=lowerCamelCase_ ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE : Any = load_json_function(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(exported_content[0] , lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict ) -> Dict: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , lines=lowerCamelCase_ , orient=lowerCamelCase_ ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE : Optional[int] = load_json(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCamelCase_ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , lines=lowerCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE : int = load_json_function(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(exported_content[0] , lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :List[str] ) -> Optional[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , lines=lowerCamelCase_ , orient=lowerCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE : List[str] = load_json(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCamelCase_ ) == 10 def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List[str] ) -> Optional[Any]: '''simple docstring''' with pytest.raises(lowerCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('''data''' ) / f"test.json.{extension}" SCREAMING_SNAKE_CASE : List[Any] = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(lowerCamelCase_ , lowerCamelCase_ , compression=lowerCamelCase_ ).write() with fsspec.open(lowerCamelCase_ , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() with fsspec.open(lowerCamelCase_ , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() assert exported_content == original_content
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Dict = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase__ : int = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Tuple , *lowerCamelCase_ :Tuple , **lowerCamelCase_ :Optional[int] ) -> Tuple: '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :int=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Any = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[str] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : int = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) SCREAMING_SNAKE_CASE : Optional[int] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ :str ) -> Union[str, Any]: '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f"Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''' ) SCREAMING_SNAKE_CASE : int = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Tuple = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Dict = None return model_inputs def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str]=None ) -> List[str]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , lowerCamelCase_ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): SCREAMING_SNAKE_CASE : str = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Dict = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : List[Any] = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[str] = { '''generated_text''': self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
698
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __A ( a_ : Tuple , a_ : Optional[Any] , a_ : int , a_ : str=10_24 )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = list(zip(a_ , a_ ) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = sorted_examples[0] def is_too_big(a_ : List[Any] ): return tok(a_ , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE : Tuple = new_src + ''' ''' + src SCREAMING_SNAKE_CASE : Optional[int] = new_tgt + ''' ''' + tgt if is_too_big(a_ ) or is_too_big(a_ ): # cant fit, finalize example finished_src.append(a_ ) finished_tgt.append(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a_ ) finished_tgt.append(a_ ) return finished_src, finished_tgt def __A ( a_ : Optional[int] , a_ : Path , a_ : int , a_ : List[Any] )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = Path(a_ ) save_path.mkdir(exist_ok=a_ ) for split in ["train"]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = data_dir / F"{split}.source", data_dir / F"{split}.target" SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in Path(a_ ).open().readlines()] SCREAMING_SNAKE_CASE : Optional[Any] = [x.rstrip() for x in Path(a_ ).open().readlines()] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = pack_examples(a_ , a_ , a_ , a_ ) print(F"packed {split} split from {len(a_ )} examples -> {len(a_ )}." ) Path(save_path / F"{split}.source" ).open('''w''' ).write('''\n'''.join(a_ ) ) Path(save_path / F"{split}.target" ).open('''w''' ).write('''\n'''.join(a_ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(a_ , save_path / F"{split}.source" ) shutil.copyfile(a_ , save_path / F"{split}.target" ) def __A ( )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=a_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=a_ , default=1_28 ) parser.add_argument('''--data_dir''' , type=a_ ) parser.add_argument('''--save_path''' , type=a_ ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(a_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import math def __A ( a_ : int )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __A ( a_ : float = 0.1 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : Dict = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(a_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" from __future__ import annotations import numpy as np def __A ( a_ : np.ndarray )-> tuple[np.ndarray, np.ndarray]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = np.shape(a_ ) if rows != columns: SCREAMING_SNAKE_CASE : Dict = ( '''\'table\' has to be of square shaped array but got a ''' F"{rows}x{columns} array:\n{table}" ) raise ValueError(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE : Any = np.zeros((rows, columns) ) for i in range(a_ ): for j in range(a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(a_ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) SCREAMING_SNAKE_CASE : List[Any] = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE : Optional[int] = 1 for j in range(a_ , a_ ): SCREAMING_SNAKE_CASE : Dict = sum(lower[i][k] * upper[k][j] for k in range(a_ ) ) SCREAMING_SNAKE_CASE : int = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
"""simple docstring""" def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def __A ( )-> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
698
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( a_ : List[Any] , a_ : Dict )-> str: '''simple docstring''' assert isinstance(a_ , a_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __A ( a_ : List[Any] , a_ : Tuple , a_ : Optional[Any] )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Union[str, Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = TextDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_ ).read() _check_text_dataset(a_ , a_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : Any )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Union[str, Any] = {'''text''': '''string'''} SCREAMING_SNAKE_CASE : Tuple = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Union[str, Any] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Union[str, Any] = TextDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() _check_text_dataset(a_ , a_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __A ( a_ : Dict , a_ : List[str] , a_ : Tuple )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Dict = {'''text''': '''string'''} SCREAMING_SNAKE_CASE : int = TextDatasetReader(a_ , cache_dir=a_ , split=a_ ).read() _check_text_dataset(a_ , a_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __A ( a_ : Optional[int] , a_ : Dict , a_ : int )-> Optional[Any]: '''simple docstring''' if issubclass(a_ , a_ ): SCREAMING_SNAKE_CASE : List[Any] = text_path elif issubclass(a_ , a_ ): SCREAMING_SNAKE_CASE : List[str] = [text_path] SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : int = {'''text''': '''string'''} SCREAMING_SNAKE_CASE : Tuple = TextDatasetReader(a_ , cache_dir=a_ ).read() _check_text_dataset(a_ , a_ ) def __A ( a_ : List[str] , a_ : Tuple , a_ : List[str]=("train",) )-> int: '''simple docstring''' assert isinstance(a_ , a_ ) for split in splits: SCREAMING_SNAKE_CASE : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __A ( a_ : Dict , a_ : Union[str, Any] , a_ : Any )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : Union[str, Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Tuple = TextDatasetReader({'''train''': text_path} , cache_dir=a_ , keep_in_memory=a_ ).read() _check_text_datasetdict(a_ , a_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __A ( a_ : Optional[int] , a_ : Tuple , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE : Dict = {'''text''': '''string'''} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Dict = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Tuple = TextDatasetReader({'''train''': text_path} , features=a_ , cache_dir=a_ ).read() _check_text_datasetdict(a_ , a_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __A ( a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Optional[int] )-> str: '''simple docstring''' if split: SCREAMING_SNAKE_CASE : Any = {split: text_path} else: SCREAMING_SNAKE_CASE : Optional[int] = '''train''' SCREAMING_SNAKE_CASE : List[Any] = {'''train''': text_path, '''test''': text_path} SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : List[str] = {'''text''': '''string'''} SCREAMING_SNAKE_CASE : str = TextDatasetReader(a_ , cache_dir=a_ ).read() _check_text_datasetdict(a_ , a_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
698
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
1
"""simple docstring""" import argparse import os import re lowerCamelCase__ : Union[str, Any] = "src/transformers" # Pattern that looks at the indentation in a line. lowerCamelCase__ : Tuple = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase__ : Union[str, Any] = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase__ : Optional[Any] = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase__ : str = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase__ : List[str] = re.compile(r"\[([^\]]+)\]") def __A ( a_ : Tuple )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = _re_indent.search(a_ ) return "" if search is None else search.groups()[0] def __A ( a_ : Union[str, Any] , a_ : Dict="" , a_ : Dict=None , a_ : List[Any]=None )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Any = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(a_ ): index += 1 SCREAMING_SNAKE_CASE : int = ['''\n'''.join(lines[:index] )] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE : List[str] = [lines[index]] index += 1 while index < len(a_ ) and (end_prompt is None or not lines[index].startswith(a_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(a_ ) ) if index < len(a_ ) - 1: SCREAMING_SNAKE_CASE : List[Any] = [lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE : Optional[Any] = [] else: blocks.append('''\n'''.join(a_ ) ) SCREAMING_SNAKE_CASE : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a_ ) > 0: blocks.append('''\n'''.join(a_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def __A ( a_ : Any )-> Optional[Any]: '''simple docstring''' def _inner(a_ : List[str] ): return key(a_ ).lower().replace('''_''' , '''''' ) return _inner def __A ( a_ : Union[str, Any] , a_ : Optional[int]=None )-> Optional[int]: '''simple docstring''' def noop(a_ : Any ): return x if key is None: SCREAMING_SNAKE_CASE : Any = noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE : Tuple = [obj for obj in objects if key(a_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE : Union[str, Any] = [obj for obj in objects if key(a_ )[0].isupper() and not key(a_ ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE : Optional[Any] = [obj for obj in objects if not key(a_ )[0].isupper()] SCREAMING_SNAKE_CASE : Union[str, Any] = ignore_underscore(a_ ) return sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) def __A ( a_ : Any )-> Optional[Any]: '''simple docstring''' def _replace(a_ : Tuple ): SCREAMING_SNAKE_CASE : int = match.groups()[0] if "," not in imports: return F"[{imports}]" SCREAMING_SNAKE_CASE : Dict = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(a_ )] ) + "]" SCREAMING_SNAKE_CASE : Union[str, Any] = import_statement.split('''\n''' ) if len(a_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE : List[str] = 2 if lines[1].strip() == '''[''' else 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [(i, _re_strip_line.search(a_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE : Optional[Any] = sort_objects(a_ , key=lambda a_ : x[1] ) SCREAMING_SNAKE_CASE : str = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE : Any = _re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = keys[:-1] SCREAMING_SNAKE_CASE : str = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(a_ )] ) return "\n".join(a_ ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE : int = _re_bracket_content.sub(_replace , a_ ) return import_statement def __A ( a_ : List[Any] , a_ : Tuple=True )-> Optional[int]: '''simple docstring''' with open(a_ , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE : List[str] = split_code_in_indented_blocks( a_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE : List[Any] = main_blocks[block_idx] SCREAMING_SNAKE_CASE : str = block.split('''\n''' ) # Get to the start of the imports. SCREAMING_SNAKE_CASE : List[str] = 0 while line_idx < len(a_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE : Dict = len(a_ ) else: line_idx += 1 if line_idx >= len(a_ ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE : List[Any] = '''\n'''.join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE : Union[str, Any] = split_code_in_indented_blocks(a_ , indent_level=a_ ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE : List[str] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE : List[str] = [(pattern.search(a_ ).groups()[0] if pattern.search(a_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE : Dict = [(i, key) for i, key in enumerate(a_ ) if key is not None] SCREAMING_SNAKE_CASE : List[str] = [x[0] for x in sorted(a_ , key=lambda a_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(a_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a_ ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE : int = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a_ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(a_ ) ) def __A ( a_ : Optional[int]=True )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE : Optional[Any] = sort_imports(os.path.join(a_ , '''__init__.py''' ) , check_only=a_ ) if result: SCREAMING_SNAKE_CASE : List[str] = [os.path.join(a_ , '''__init__.py''' )] if len(a_ ) > 0: raise ValueError(F"Would overwrite {len(a_ )} files, run `make style`." ) if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase__ : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
698
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
1
"""simple docstring""" def __A ( a_ : int )-> bool: '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = str(a_ ) SCREAMING_SNAKE_CASE : List[str] = ''''''.join(sorted(a_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __A ( a_ : float = 99 )-> int: '''simple docstring''' if not 0 < percent < 1_00: raise ValueError('''solution() only accepts values from 0 to 100''' ) SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 1 while True: if check_bouncy(a_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
1
"""simple docstring""" import numpy as np class lowercase__: '''simple docstring''' def __init__( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = (0, 0) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 def __eq__( self :Dict , lowerCamelCase_ :List[str] ) -> int: '''simple docstring''' return self.position == cell.position def __lowerCAmelCase ( self :List[Any] ) -> str: '''simple docstring''' print(self.position ) class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :int=(5, 5) ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = np.zeros(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = world_size[0] SCREAMING_SNAKE_CASE : Union[str, Any] = world_size[1] def __lowerCAmelCase ( self :str ) -> int: '''simple docstring''' print(self.w ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE : Optional[Any] = cell.position[0] SCREAMING_SNAKE_CASE : Optional[Any] = cell.position[1] SCREAMING_SNAKE_CASE : Any = [] for n in neughbour_cord: SCREAMING_SNAKE_CASE : Dict = current_x + n[0] SCREAMING_SNAKE_CASE : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE : int = Cell() SCREAMING_SNAKE_CASE : Dict = (x, y) SCREAMING_SNAKE_CASE : List[str] = cell neighbours.append(lowerCamelCase_ ) return neighbours def __A ( a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Tuple )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] _open.append(a_ ) while _open: SCREAMING_SNAKE_CASE : Optional[int] = np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE : int = _open[min_f] _closed.append(_open.pop(a_ ) ) if current == goal: break for n in world.get_neigbours(a_ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE : List[str] = current.g + 1 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = n.position SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = goal.position SCREAMING_SNAKE_CASE : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE : Tuple = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a_ ) SCREAMING_SNAKE_CASE : Any = [] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE : Dict = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase__ : Dict = Gridworld() # Start position and goal lowerCamelCase__ : Union[str, Any] = Cell() lowerCamelCase__ : List[Any] = (0, 0) lowerCamelCase__ : List[str] = Cell() lowerCamelCase__ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') lowerCamelCase__ : Optional[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase__ : List[Any] = 1 print(world.w)
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
1
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Optional[Any]=7 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :Any=True , lowerCamelCase_ :str=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Tuple=99 , lowerCamelCase_ :List[str]=64 , lowerCamelCase_ :Dict=32 , lowerCamelCase_ :List[str]=5 , lowerCamelCase_ :str=4 , lowerCamelCase_ :Union[str, Any]=37 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :str=4 , lowerCamelCase_ :int=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Dict = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Tuple = embedding_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def __lowerCAmelCase ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = MegatronBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MegatronBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = MegatronBertForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MegatronBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = MegatronBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , next_sentence_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = MegatronBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = MegatronBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = MegatronBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = MegatronBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True # test_resize_embeddings = False UpperCamelCase = False def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :int=False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase_ ) def __A ( a_ : List[str] )-> str: '''simple docstring''' return torch.tensor( a_ , dtype=torch.long , device=a_ , ) lowerCamelCase__ : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE : Tuple = os.path.join(os.environ['''MYDIR'''] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = MegatronBertModel.from_pretrained(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.half() SCREAMING_SNAKE_CASE : str = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE : Union[str, Any] = output[0, ii, jj] SCREAMING_SNAKE_CASE : Union[str, Any] = expected[3 * ii + jj] SCREAMING_SNAKE_CASE : List[str] = '''ii={} jj={} a={} b={}'''.format(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.assertTrue(math.isclose(lowerCamelCase_ , lowerCamelCase_ , rel_tol=lowerCamelCase_ , abs_tol=lowerCamelCase_ ) , msg=lowerCamelCase_ )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __A ( a_ : Any )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a_ , a_ ) def __A ( a_ : int )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: SCREAMING_SNAKE_CASE : List[str] = s_dict.pop(a_ ) elif "subsample" in key: SCREAMING_SNAKE_CASE : Tuple = s_dict.pop(a_ ) def __A ( a_ : str )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = emb.weight.shape SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : int = emb.weight.data return lin_layer def __A ( a_ : Dict , a_ : str )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = torch.load(a_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Tuple = mam_aaa['''args'''] SCREAMING_SNAKE_CASE : Optional[int] = mam_aaa['''model'''] SCREAMING_SNAKE_CASE : Any = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(a_ ) rename_keys(a_ ) SCREAMING_SNAKE_CASE : Any = state_dict['''decoder.embed_tokens.weight'''].shape[0] SCREAMING_SNAKE_CASE : Optional[int] = args.share_decoder_input_output_embed SCREAMING_SNAKE_CASE : Optional[int] = [int(a_ ) for i in args.conv_kernel_sizes.split(''',''' )] SCREAMING_SNAKE_CASE : int = SpeechaTextConfig( vocab_size=a_ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(a_ ) , conv_channels=args.conv_channels , conv_kernel_sizes=a_ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=a_ , num_beams=5 , max_length=2_00 , use_cache=a_ , decoder_start_token_id=2 , early_stopping=a_ , ) SCREAMING_SNAKE_CASE : Any = SpeechaTextForConditionalGeneration(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = model.model.load_state_dict(a_ , strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F" but all the following weights are missing {missing}" ) if tie_embeds: SCREAMING_SNAKE_CASE : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE : Optional[Any] = lm_head_weights model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCamelCase__ : Union[str, Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) SCREAMING_SNAKE_CASE : List[str] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __lowerCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE : int = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
698
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
1
"""simple docstring""" from manim import * class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : str = Rectangle(height=0.2_5 , width=0.2_5 ) SCREAMING_SNAKE_CASE : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[str] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : int = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : Optional[Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : int = Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE : int = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): rect.set_stroke(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCamelCase_ , buff=0.0 ) self.add(lowerCamelCase_ ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Dict = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Any = Text('''Loaded Checkpoint''' , font_size=24 ) SCREAMING_SNAKE_CASE : Optional[int] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = fill.copy().set_fill(lowerCamelCase_ , opacity=0.7 ) target.move_to(lowerCamelCase_ ) ckpt_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[int] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : int = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text('''Disk''' , font_size=24 ) SCREAMING_SNAKE_CASE : List[Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , Write(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) ) SCREAMING_SNAKE_CASE : str = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) self.play( FadeOut(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , *lowerCamelCase_ ) , ) self.wait()
698
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase__: '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :List[str]=64 , lowerCamelCase_ :Union[str, Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = np.random.default_rng(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = length SCREAMING_SNAKE_CASE : List[str] = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE : str = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self :Optional[int] ) -> Any: '''simple docstring''' return self.length def __getitem__( self :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowercase__( torch.nn.Module ): '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Optional[Any]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE : int = True def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Union[str, Any]=None ) -> str: '''simple docstring''' if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE : List[str] = False return x * self.a[0] + self.b[0] class lowercase__( torch.nn.Module ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :str=0 , lowerCamelCase_ :Any=False ) -> Dict: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) SCREAMING_SNAKE_CASE : Tuple = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) SCREAMING_SNAKE_CASE : Tuple = True def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[int]=None ) -> Dict: '''simple docstring''' if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = False return x * self.a + self.b def __A ( a_ : Dict , a_ : int = 16 )-> List[str]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} SCREAMING_SNAKE_CASE : List[Any] = load_dataset('''csv''' , data_files=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = datasets['''train'''].unique('''label''' ) SCREAMING_SNAKE_CASE : List[Any] = {v: i for i, v in enumerate(a_ )} def tokenize_function(a_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=a_ , max_length=a_ , padding='''max_length''' ) if "label" in examples: SCREAMING_SNAKE_CASE : Tuple = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : Any = datasets.map( a_ , batched=a_ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(a_ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(a_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : List[Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=a_ , collate_fn=a_ , batch_size=2 ) SCREAMING_SNAKE_CASE : Optional[int] = DataLoader(tokenized_datasets['''validation'''] , shuffle=a_ , collate_fn=a_ , batch_size=1 ) return train_dataloader, eval_dataloader
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" lowerCamelCase__ : Dict = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
698
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :int , *lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Union[str, Any]=None , **lowerCamelCase_ :Tuple ) -> Optional[int]: '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[Any] = post_process_function def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :str=None , lowerCamelCase_ :str = "eval" ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : Dict = self.get_eval_dataloader(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : int = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE : Optional[Any] = time.time() try: SCREAMING_SNAKE_CASE : int = eval_loop( lowerCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: SCREAMING_SNAKE_CASE : int = compute_metrics SCREAMING_SNAKE_CASE : int = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : List[Any] = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE : Optional[Any] = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase_ ) return metrics def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , lowerCamelCase_ :str = "test" ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : str = self.compute_metrics SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE : List[Any] = time.time() try: SCREAMING_SNAKE_CASE : int = eval_loop( lowerCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[str] = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Union[str, Any] = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions , '''predict''' ) SCREAMING_SNAKE_CASE : List[str] = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase_ )
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCamelCase__ : Any = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def __A ( a_ : str = "dhaka" , a_ : int = 5 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = min(a_ , 50 ) # Prevent abuse! SCREAMING_SNAKE_CASE : Union[str, Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } SCREAMING_SNAKE_CASE : Dict = requests.get('''https://www.google.com/search''' , params=a_ , headers=a_ ) SCREAMING_SNAKE_CASE : Any = BeautifulSoup(html.text , '''html.parser''' ) SCREAMING_SNAKE_CASE : List[str] = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = json.dumps(a_ ) SCREAMING_SNAKE_CASE : int = json.loads(a_ ) SCREAMING_SNAKE_CASE : int = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , a_ , ) if not matched_google_image_data: return 0 SCREAMING_SNAKE_CASE : Optional[int] = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(a_ ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , a_ , ) for index, fixed_full_res_image in enumerate(a_ ): if index >= max_images: return index SCREAMING_SNAKE_CASE : Union[str, Any] = bytes(a_ , '''ascii''' ).decode( '''unicode-escape''' ) SCREAMING_SNAKE_CASE : Any = bytes(a_ , '''ascii''' ).decode( '''unicode-escape''' ) SCREAMING_SNAKE_CASE : str = urllib.request.build_opener() SCREAMING_SNAKE_CASE : Dict = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(a_ ) SCREAMING_SNAKE_CASE : str = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(a_ ): os.makedirs(a_ ) urllib.request.urlretrieve( # noqa: S310 a_ , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: lowerCamelCase__ : str = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = (DPMSolverSinglestepScheduler,) UpperCamelCase = (("""num_inference_steps""", 25),) def __lowerCAmelCase ( self :List[Any] , **lowerCamelCase_ :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCamelCase_ ) return config def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Optional[Any]=0 , **lowerCamelCase_ :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''num_inference_steps''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.dummy_sample SCREAMING_SNAKE_CASE : str = 0.1 * sample SCREAMING_SNAKE_CASE : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Any = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self :Tuple ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self :Any , lowerCamelCase_ :str=0 , **lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : int = kwargs.pop('''num_inference_steps''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :Optional[int] ) -> List[str]: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = 10 SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Tuple = 50 SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def __lowerCAmelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : List[Any] = self.full_loop(scheduler=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 SCREAMING_SNAKE_CASE : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Dict = self.full_loop(scheduler=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='''dpmsolver++''' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> int: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase_ ) self.check_over_configs(variance_type='''learned_range''' ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.full_loop() SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.full_loop(use_karras_sigmas=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase__ : Dict = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __A ( a_ : Optional[Any] , a_ : List[Any] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : Dict = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(a_ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(1_00 ).repartition(1 ) SCREAMING_SNAKE_CASE : List[str] = Spark(a_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : Dict = spark.range(10 ).repartition(2 ) SCREAMING_SNAKE_CASE : List[Any] = [1, 0] SCREAMING_SNAKE_CASE : Dict = _generate_iterable_examples(a_ , a_ ) # Reverse the partitions. SCREAMING_SNAKE_CASE : int = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , a_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : Union[str, Any] = spark.range(10 ).repartition(1 ) SCREAMING_SNAKE_CASE : List[Any] = SparkExamplesIterable(a_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(a_ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : Any = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: SCREAMING_SNAKE_CASE : Optional[int] = lambda a_ : x.reverse() SCREAMING_SNAKE_CASE : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [2, 1, 0] ) SCREAMING_SNAKE_CASE : List[str] = SparkExamplesIterable(a_ ).shuffle_data_sources(a_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(a_ ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : Union[str, Any] = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(a_ ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(a_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(a_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(a_ ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __A ( )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE : int = spark.range(1_00 ).repartition(1 ) SCREAMING_SNAKE_CASE : Tuple = Spark(a_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
698
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any]=13 , lowerCamelCase_ :Tuple=7 , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :int=99 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :str=37 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :List[Any]=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Tuple=0.0_2 , lowerCamelCase_ :str=False , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]="None" , lowerCamelCase_ :Union[str, Any]=3 , lowerCamelCase_ :str=4 , lowerCamelCase_ :Dict=None , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : str = num_choices SCREAMING_SNAKE_CASE : str = relative_attention SCREAMING_SNAKE_CASE : List[Any] = position_biased_input SCREAMING_SNAKE_CASE : Union[str, Any] = pos_att_type SCREAMING_SNAKE_CASE : Union[str, Any] = scope def __lowerCAmelCase ( self :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFDebertaVaModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFDebertaVaForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFDebertaVaForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFDebertaVaForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def __lowerCAmelCase ( self :Tuple ) -> List[Any]: '''simple docstring''' pass @slow def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Tuple = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1E-4 )
698
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCamelCase__ : Dict = Lock() def __A ( a_ : Optional[int] , a_ : Tuple , a_ : List[Any] , a_ : Optional[Any] , a_ : int , a_ : str , a_ : Optional[int] )-> List[str]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , a_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE : Union[str, Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE : int = max(a_ , a_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(a_ ) def __A ( a_ : List[Any] )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE : List[Any] = Pipe() SCREAMING_SNAKE_CASE : Optional[int] = Pipe() process_array_.append( Process( target=a_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE : Any = temp_rs SCREAMING_SNAKE_CASE : str = temp_rr for i in range(1 , len(a_ ) - 1 ): SCREAMING_SNAKE_CASE : Union[str, Any] = Pipe() SCREAMING_SNAKE_CASE : Optional[Any] = Pipe() process_array_.append( Process( target=a_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE : List[Any] = temp_rs SCREAMING_SNAKE_CASE : Any = temp_rr process_array_.append( Process( target=a_ , args=( len(a_ ) - 1, arr[len(a_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a_ ) ): SCREAMING_SNAKE_CASE : int = result_pipe[p][0].recv() process_array_[p].join() return arr def __A ( )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*a_ ) SCREAMING_SNAKE_CASE : List[Any] = odd_even_transposition(a_ ) print('''Sorted List\n''' ) print(*a_ ) if __name__ == "__main__": main()
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__: '''simple docstring''' def __init__( self :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict=13 , lowerCamelCase_ :Union[str, Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :Optional[Any]=99 , lowerCamelCase_ :Any=16 , lowerCamelCase_ :Union[str, Any]=36 , lowerCamelCase_ :Optional[Any]=6 , lowerCamelCase_ :Any=6 , lowerCamelCase_ :int=6 , lowerCamelCase_ :int=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :List[Any]=5_12 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :Optional[int]=None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : List[Any] = embedding_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_hidden_groups SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : Any = num_choices SCREAMING_SNAKE_CASE : Tuple = scope def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = AlbertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = AlbertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , sentence_order_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = AlbertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AlbertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = AlbertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : Any = AlbertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_choices SCREAMING_SNAKE_CASE : Any = AlbertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple=False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = AlbertModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Any ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :List[Any] ) -> str: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = AlbertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = AlbertModel.from_pretrained('''albert-base-v2''' ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1E-4 ) )
698
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __A ( a_ : List[str] , a_ : List[str]=False )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = OmegaConf.load(a_ ) if display: print(yaml.dump(OmegaConf.to_container(a_ ) ) ) return config def __A ( a_ : Optional[Any] , a_ : Dict=None , a_ : int=None )-> str: '''simple docstring''' if conf_path is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.yaml''' SCREAMING_SNAKE_CASE : str = load_config(a_ , display=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE : List[str] = '''./model_checkpoints/vqgan_only.pt''' SCREAMING_SNAKE_CASE : int = torch.load(a_ , map_location=a_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE : Optional[int] = sd['''state_dict'''] model.load_state_dict(a_ , strict=a_ ) model.to(a_ ) del sd return model def __A ( a_ : List[Any] , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = model.encode(a_ ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) SCREAMING_SNAKE_CASE : Any = model.decode(a_ ) return xrec def __A ( a_ : Tuple , a_ : Optional[int]=False )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = string.rsplit('''.''' , 1 ) if reload: SCREAMING_SNAKE_CASE : Dict = importlib.import_module(a_ ) importlib.reload(a_ ) return getattr(importlib.import_module(a_ , package=a_ ) , cls ) def __A ( a_ : List[Any] )-> int: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def __A ( a_ : Dict , a_ : Any , a_ : List[str]=True , a_ : Any=True )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = instantiate_from_config(a_ ) if sd is not None: model.load_state_dict(a_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __A ( a_ : int , a_ : Dict , a_ : str , a_ : List[Any] )-> Dict: '''simple docstring''' if ckpt: SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = pl_sd['''global_step'''] print(F"loaded model from global step {global_step}." ) else: SCREAMING_SNAKE_CASE : str = {'''state_dict''': None} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=a_ , eval_mode=a_ )['''model'''] return model, global_step
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
"""simple docstring""" def __A ( a_ : Optional[int] )-> Optional[int]: # noqa: E741 '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = len(a_ ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = [0] * n SCREAMING_SNAKE_CASE : Optional[int] = [False] * n SCREAMING_SNAKE_CASE : List[str] = [False] * n def dfs(a_ : int , a_ : Optional[Any] , a_ : List[Any] , a_ : List[Any] ): if parent == root: out_edge_count += 1 SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = at for to in l[at]: if to == parent: pass elif not visited[to]: SCREAMING_SNAKE_CASE : str = dfs(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[str] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: SCREAMING_SNAKE_CASE : Optional[Any] = True # AP found via cycle if at == low[to]: SCREAMING_SNAKE_CASE : List[Any] = True else: SCREAMING_SNAKE_CASE : List[str] = min(low[at] , a_ ) return out_edge_count for i in range(a_ ): if not visited[i]: SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : int = dfs(a_ , a_ , -1 , a_ ) SCREAMING_SNAKE_CASE : str = out_edge_count > 1 for x in range(len(a_ ) ): if is_art[x] is True: print(a_ ) # Adjacency list of graph lowerCamelCase__ : int = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
698
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """vit_msn""" def __init__( self :int , lowerCamelCase_ :Optional[int]=7_68 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :str="gelu" , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :List[Any]=0.0_2 , lowerCamelCase_ :List[Any]=1E-06 , lowerCamelCase_ :Optional[Any]=2_24 , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :int=3 , lowerCamelCase_ :Dict=True , **lowerCamelCase_ :Any , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : int = qkv_bias
698
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase__ : Union[str, Any] = get_logger(__name__) lowerCamelCase__ : Tuple = Path(__file__).parent / "model_card_template.md" lowerCamelCase__ : Tuple = uuida().hex lowerCamelCase__ : Union[str, Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase__ : Optional[Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase__ : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def __A ( a_ : Union[Dict, str, None] = None )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = F"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"; torch/{_torch_version}" if is_flax_available(): ua += F"; jax/{_jax_version}" ua += F"; flax/{_flax_version}" if is_onnx_available(): ua += F"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_ ): ua += "; " + "; ".join(F"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(a_ , a_ ): ua += "; " + user_agent return ua def __A ( a_ : str , a_ : Optional[str] = None , a_ : Optional[str] = None )-> Dict: '''simple docstring''' if token is None: SCREAMING_SNAKE_CASE : List[Any] = HfFolder.get_token() if organization is None: SCREAMING_SNAKE_CASE : List[str] = whoami(a_ )['''name'''] return F"{username}/{model_id}" else: return F"{organization}/{model_id}" def __A ( a_ : Tuple , a_ : Optional[int] )-> Optional[int]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(a_ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return SCREAMING_SNAKE_CASE : List[str] = args.hub_token if hasattr(a_ , '''hub_token''' ) else None SCREAMING_SNAKE_CASE : int = get_full_repo_name(a_ , token=a_ ) SCREAMING_SNAKE_CASE : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(args.output_dir , '''README.md''' ) model_card.save(a_ ) def __A ( a_ : Optional[str] , a_ : Optional[str] = None )-> str: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash SCREAMING_SNAKE_CASE : Optional[int] = str(Path(a_ ).as_posix() ) SCREAMING_SNAKE_CASE : int = re.search(r'''snapshots/([^/]+)/''' , a_ ) if search is None: return None SCREAMING_SNAKE_CASE : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase__ : Optional[int] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) lowerCamelCase__ : Any = os.path.join(hf_cache_home, "diffusers") def __A ( a_ : Optional[str] = None , a_ : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: SCREAMING_SNAKE_CASE : Optional[int] = DIFFUSERS_CACHE if old_cache_dir is None: SCREAMING_SNAKE_CASE : List[str] = old_diffusers_cache SCREAMING_SNAKE_CASE : Any = Path(a_ ).expanduser() SCREAMING_SNAKE_CASE : Any = Path(a_ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): SCREAMING_SNAKE_CASE : Dict = new_cache_dir / old_blob_path.relative_to(a_ ) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_ ) os.replace(a_ , a_ ) try: os.symlink(a_ , a_ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): lowerCamelCase__ : Dict = 0 else: with open(cache_version_file) as f: try: lowerCamelCase__ : int = int(f.read()) except ValueError: lowerCamelCase__ : List[str] = 0 if cache_version < 1: lowerCamelCase__ : str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: lowerCamelCase__ : Tuple = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def __A ( a_ : str , a_ : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: SCREAMING_SNAKE_CASE : Any = weights_name.split('''.''' ) SCREAMING_SNAKE_CASE : str = splits[:-1] + [variant] + splits[-1:] SCREAMING_SNAKE_CASE : Any = '''.'''.join(a_ ) return weights_name def __A ( a_ : List[str] , *, a_ : str , a_ : Union[str, Any] , a_ : str , a_ : Optional[int] , a_ : int , a_ : Tuple , a_ : List[str] , a_ : List[Any] , a_ : List[Any] , a_ : List[str] , a_ : Any=None , )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = str(a_ ) if os.path.isfile(a_ ): return pretrained_model_name_or_path elif os.path.isdir(a_ ): if os.path.isfile(os.path.join(a_ , a_ ) ): # Load from a PyTorch checkpoint SCREAMING_SNAKE_CASE : Any = os.path.join(a_ , a_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_ ) ): SCREAMING_SNAKE_CASE : List[str] = os.path.join(a_ , a_ , a_ ) return model_file else: raise EnvironmentError( F"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_ ).base_version ) >= version.parse('''0.20.0''' ) ): try: SCREAMING_SNAKE_CASE : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_ ) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_ )}' so that the correct variant file can be added." , a_ , ) try: # 2. Load model file as usual SCREAMING_SNAKE_CASE : int = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' F"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( F"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( F"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" F" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" F" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " F"containing a file named {weights_name}" )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
1
"""simple docstring""" from torch import nn class lowercase__( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = class_size SCREAMING_SNAKE_CASE : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.mlp(lowerCamelCase_ ) return logits
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : str = "▁" lowerCamelCase__ : Optional[Any] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } lowerCamelCase__ : Dict = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } lowerCamelCase__ : List[Any] = { "facebook/s2t-small-librispeech-asr": 1024, } lowerCamelCase__ : Tuple = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] lowerCamelCase__ : int = {"mustc": MUSTC_LANGS} class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = MAX_MODEL_INPUT_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = [] def __init__( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :int="<s>" , lowerCamelCase_ :str="</s>" , lowerCamelCase_ :Dict="<pad>" , lowerCamelCase_ :List[str]="<unk>" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , **lowerCamelCase_ :List[str] , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , do_upper_case=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , lang_codes=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Any = do_upper_case SCREAMING_SNAKE_CASE : str = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = load_json(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : Dict = spm_file SCREAMING_SNAKE_CASE : List[str] = load_spm(lowerCamelCase_ , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE : Tuple = lang_codes SCREAMING_SNAKE_CASE : Union[str, Any] = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE : Optional[Any] = [f"<lang:{lang}>" for lang in self.langs] SCREAMING_SNAKE_CASE : str = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} SCREAMING_SNAKE_CASE : Tuple = self.lang_tokens SCREAMING_SNAKE_CASE : List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE : Any = {} @property def __lowerCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return len(self.encoder ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Optional[Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase_ ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE : Dict = [lang_code_id] def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.encoder.get(lowerCamelCase_ , self.encoder[self.unk_token] ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :int ) -> str: '''simple docstring''' return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE : Dict = self.sp_model.decode(lowerCamelCase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE : Union[str, Any] = [] else: current_sub_tokens.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.sp_model.decode(lowerCamelCase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self :int , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def __lowerCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Dict = None return state def __setstate__( self :Tuple , lowerCamelCase_ :Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = Path(lowerCamelCase_ ) assert save_dir.is_dir(), f"{save_directory} should be a directory" SCREAMING_SNAKE_CASE : str = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowerCamelCase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase_ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (str(lowerCamelCase_ ), str(lowerCamelCase_ )) def __A ( a_ : str , a_ : Dict[str, Any] )-> sentencepiece.SentencePieceProcessor: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def __A ( a_ : str )-> Union[Dict, List]: '''simple docstring''' with open(a_ , '''r''' ) as f: return json.load(a_ ) def __A ( a_ : Dict , a_ : str )-> None: '''simple docstring''' with open(a_ , '''w''' ) as f: json.dump(a_ , a_ , indent=2 )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase__: '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :Optional[Any]=7 , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :int=37 , lowerCamelCase_ :List[str]="gelu" , lowerCamelCase_ :Tuple=0.1 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :List[Any]=5_12 , lowerCamelCase_ :Any=16 , lowerCamelCase_ :str=2 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=0 , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : List[str] = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : str = projection_dim def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TFDPRContextEncoder(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = TFDPRQuestionEncoder(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFDPRReader(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self :str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = TFDPRContextEncoder.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = TFDPRContextEncoder.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = TFDPRQuestionEncoder.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Union[str, Any] = TFDPRReader.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) SCREAMING_SNAKE_CASE : List[str] = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase__( unittest.TestCase ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int]=13 , lowerCamelCase_ :Dict=7 , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :str=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :int=32 , lowerCamelCase_ :Optional[Any]=5 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[int]=37 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Optional[Any]=5_12 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Union[str, Any]=0.0_2 , lowerCamelCase_ :Tuple=4 , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Tuple = use_attention_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : int = num_choices def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = True UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self :Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = FlaxRoFormerModelTester(self ) @slow def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) SCREAMING_SNAKE_CASE : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Any = 5_00_00 SCREAMING_SNAKE_CASE : str = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
698
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
1
"""simple docstring""" def __A ( a_ : bytes )-> str: '''simple docstring''' return "".join([hex(a_ )[2:].zfill(2 ).upper() for byte in list(a_ )] ) def __A ( a_ : str )-> bytes: '''simple docstring''' if (len(a_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase__ : Union[str, Any] = datasets.load_iris() lowerCamelCase__ : List[Any] = np.array(data["data"]) lowerCamelCase__ : List[str] = np.array(data["target"]) lowerCamelCase__ : Tuple = data["target_names"] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = train_test_split(X, y) def __A ( a_ : List[Any] , a_ : Tuple )-> List[Any]: '''simple docstring''' return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def __A ( a_ : int , a_ : Optional[Any] , a_ : str , a_ : Tuple , a_ : List[Any]=5 )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = zip(a_ , a_ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE : str = [] for data_point in data: SCREAMING_SNAKE_CASE : int = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE : Optional[Any] = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE : List[Any] = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __A ( a_ : np.ndarray , a_ : tuple[int, int] , a_ : tuple[int, int] , a_ : bool , )-> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = grid.shape SCREAMING_SNAKE_CASE : Optional[Any] = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE : int = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = [(0, source)], set() SCREAMING_SNAKE_CASE : Any = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = np.empty((rows, cols) , dtype=a_ ) SCREAMING_SNAKE_CASE : str = None while queue: ((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Tuple = heappop(a_ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE : Tuple = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(a_ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a_ ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a_ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE : int = dist + 1 SCREAMING_SNAKE_CASE : Tuple = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase__ : Union[str, Any] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowerCamelCase__ : Union[str, Any] = {"facebook/blenderbot_small-90M": 512} def __A ( a_ : Optional[int] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : str = char SCREAMING_SNAKE_CASE : Optional[int] = set(a_ ) return pairs class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str="__start__" , lowerCamelCase_ :Any="__end__" , lowerCamelCase_ :Optional[Any]="__unk__" , lowerCamelCase_ :List[Any]="__null__" , **lowerCamelCase_ :int , ) -> Optional[int]: '''simple docstring''' super().__init__(unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : Optional[Any] = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE : List[Any] = merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Tuple = {} @property def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.encoder ) def __lowerCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : int = re.sub('''([.,!?()])''' , R''' \1''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = re.sub('''(\')''' , R''' \1 ''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCamelCase_ ) if "\n" in token: SCREAMING_SNAKE_CASE : Optional[Any] = token.replace('''\n''' , ''' __newln__''' ) SCREAMING_SNAKE_CASE : List[str] = token.split(''' ''' ) SCREAMING_SNAKE_CASE : Any = [] for token in tokens: if not len(lowerCamelCase_ ): continue SCREAMING_SNAKE_CASE : Any = token.lower() SCREAMING_SNAKE_CASE : Any = tuple(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(lowerCamelCase_ ) if not pairs: words.append(lowerCamelCase_ ) continue while True: SCREAMING_SNAKE_CASE : List[str] = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = bigram SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Any = 0 while i < len(lowerCamelCase_ ): try: SCREAMING_SNAKE_CASE : Optional[int] = word.index(lowerCamelCase_ , lowerCamelCase_ ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : Union[str, Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Optional[Any] = tuple(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = new_word if len(lowerCamelCase_ ) == 1: break else: SCREAMING_SNAKE_CASE : List[str] = get_pairs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = '''@@ '''.join(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = word[:-4] SCREAMING_SNAKE_CASE : Any = word words.append(lowerCamelCase_ ) return " ".join(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = re.findall(R'''\S+\n?''' , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(''' ''' ) ) ) return split_tokens def __lowerCAmelCase ( self :Any , lowerCamelCase_ :str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = token.lower() return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :int ) -> str: '''simple docstring''' return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ''' '''.join(lowerCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowerCAmelCase ( self :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : int = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) SCREAMING_SNAKE_CASE : List[str] = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE : int = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
698
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
1
"""simple docstring""" def __A ( a_ : int , a_ : int , a_ : int )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __A ( )-> List[str]: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
698
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = "▁" lowerCamelCase__ : Tuple = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} lowerCamelCase__ : Optional[Any] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } lowerCamelCase__ : Union[str, Any] = {"vinai/bartpho-syllable": 1024} class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Union[str, Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Any="<s>" , lowerCamelCase_ :Optional[int]="</s>" , lowerCamelCase_ :Union[str, Any]="</s>" , lowerCamelCase_ :List[str]="<s>" , lowerCamelCase_ :Dict="<unk>" , lowerCamelCase_ :Optional[int]="<pad>" , lowerCamelCase_ :Optional[Any]="<mask>" , lowerCamelCase_ :Optional[Dict[str, Any]] = None , **lowerCamelCase_ :Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE : Tuple = monolingual_vocab_file SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[str] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE : Optional[Any] = cnt cnt += 1 with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): SCREAMING_SNAKE_CASE : Dict = line.strip().split()[0] SCREAMING_SNAKE_CASE : Dict = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE : List[str] = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self :List[str] , lowerCamelCase_ :Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[str] ) -> List[str]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : str = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : int = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(lowerCamelCase_ )} \n" ) return out_vocab_file, out_monolingual_vocab_file
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE : List[str] = tf_top_k_top_p_filtering(lowerCamelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE : Optional[int] = output[output != -float('''inf''' )] SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast( tf.where(tf.not_equal(lowerCamelCase_ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , rtol=1E-12 ) tf.debugging.assert_equal(lowerCamelCase_ , lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase , _UpperCAmelCase ): '''simple docstring''' if is_tf_available(): UpperCamelCase = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Dict = 2 class lowercase__( tf.Module ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :int ) -> int: '''simple docstring''' super(lowerCamelCase_ , self ).__init__() SCREAMING_SNAKE_CASE : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=lowerCamelCase_ , ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model.generate( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , max_new_tokens=lowerCamelCase_ , return_dict_in_generate=lowerCamelCase_ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : Union[str, Any] = [[2, 0], [1_02, 1_03]] SCREAMING_SNAKE_CASE : int = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE : Union[str, Any] = DummyModel(model=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase_ , lowerCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) SCREAMING_SNAKE_CASE : List[Any] = tf.saved_model.load(lowerCamelCase_ ).signatures['''serving_default'''] for batch_size in range(1 , len(lowerCamelCase_ ) + 1 ): SCREAMING_SNAKE_CASE : Optional[Any] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE : Optional[Any] = serving_func(**lowerCamelCase_ )['''sequences'''] SCREAMING_SNAKE_CASE : int = test_model.generate(**lowerCamelCase_ , max_new_tokens=lowerCamelCase_ ) tf.debugging.assert_equal(lowerCamelCase_ , lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 2 class lowercase__( tf.Module ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :Dict ) -> int: '''simple docstring''' super(lowerCamelCase_ , self ).__init__() SCREAMING_SNAKE_CASE : Tuple = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=lowerCamelCase_ , ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model.generate( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , max_new_tokens=lowerCamelCase_ , return_dict_in_generate=lowerCamelCase_ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : List[str] = [[2], [1_02, 1_03]] SCREAMING_SNAKE_CASE : List[Any] = [[1], [1, 1]] SCREAMING_SNAKE_CASE : List[str] = DummyModel(model=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCamelCase_ , lowerCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) SCREAMING_SNAKE_CASE : Any = tf.saved_model.load(lowerCamelCase_ ).signatures['''serving_default'''] for input_row in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE : List[str] = serving_func(**lowerCamelCase_ )['''sequences'''] SCREAMING_SNAKE_CASE : List[Any] = test_model.generate(**lowerCamelCase_ , max_new_tokens=lowerCamelCase_ ) tf.debugging.assert_equal(lowerCamelCase_ , lowerCamelCase_ ) @slow @require_tensorflow_text def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=lowerCamelCase_ ) class lowercase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self :int ) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCamelCase_ , '''spiece.model''' ) , '''rb''' ).read() ) SCREAMING_SNAKE_CASE : Any = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :str , *lowerCamelCase_ :str , **lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.tokenize(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = text.pad_model_inputs( lowerCamelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) return self.tokenizer.detokenize(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) SCREAMING_SNAKE_CASE : str = complete_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.Model(lowerCamelCase_ , lowerCamelCase_ ) keras_model.save(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } SCREAMING_SNAKE_CASE : Optional[int] = 14 SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : str = '''Hello, my dog is cute and''' SCREAMING_SNAKE_CASE : str = tokenizer(lowerCamelCase_ , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : int = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Any = model.generate(**lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = [6_38, 1_98] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : str = model.generate(**lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE : str = '''Hugging Face is a technology company based in New York and Paris.''' SCREAMING_SNAKE_CASE : Optional[int] = bart_tokenizer(lowerCamelCase_ , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : Tuple = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE : List[Any] = bart_model.generate(lowerCamelCase_ ).numpy() class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict=None , **lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' return super().call(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE : Optional[Any] = bart_model.generate(lowerCamelCase_ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(lowerCamelCase_ , lowerCamelCase_ ) ) class lowercase__( bart_model.model.encoder.__class__ ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :str , **lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' return super().call(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE : Optional[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE : Tuple = bart_model.generate(lowerCamelCase_ ).numpy() with self.assertRaises(lowerCamelCase_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCamelCase_ , foo='''bar''' )
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase__ : List[Any] = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Whether tp freeze the encoder."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) UpperCamelCase = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=1_28 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) UpperCamelCase = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) UpperCamelCase = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) UpperCamelCase = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Source language id for translation."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """Target language id for translation."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """# num_beams to use for evaluation."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __A ( a_ : Optional[Any] , a_ : List[str] , a_ : str )-> str: '''simple docstring''' logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(a_ , os.path.join(a_ , F"{split}_results.json" ) ) def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(a_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , a_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : List[str] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(a_ , a_ , a_ ): assert hasattr(a_ , a_ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(a_ , a_ , getattr(a_ , a_ ) ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=a_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(a_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(a_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(a_ , a_ ): SCREAMING_SNAKE_CASE : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(a_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE : Optional[int] = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE : int = ( dataset_class( a_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( dataset_class( a_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE : Tuple = ( dataset_class( a_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = ( build_compute_metrics_fn(data_args.task , a_ ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE : Tuple = SeqaSeqTrainer( model=a_ , args=a_ , data_args=a_ , train_dataset=a_ , eval_dataset=a_ , data_collator=SeqaSeqDataCollator( a_ , a_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=a_ , tokenizer=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE : str = train_result.metrics SCREAMING_SNAKE_CASE : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , a_ , training_args.output_dir ) all_metrics.update(a_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : str = trainer.evaluate(metric_key_prefix='''val''' ) SCREAMING_SNAKE_CASE : Any = data_args.n_val SCREAMING_SNAKE_CASE : List[str] = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , a_ , training_args.output_dir ) all_metrics.update(a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) SCREAMING_SNAKE_CASE : int = trainer.predict(test_dataset=a_ , metric_key_prefix='''test''' ) SCREAMING_SNAKE_CASE : int = test_output.metrics SCREAMING_SNAKE_CASE : List[str] = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE : str = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , a_ , training_args.output_dir ) all_metrics.update(a_ ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = lmap(str.strip , a_ ) write_txt_file(a_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(a_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __A ( a_ : Optional[int] )-> Optional[int]: '''simple docstring''' main() if __name__ == "__main__": main()
698
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ : Tuple = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def __A ( a_ : Tuple , a_ : Optional[Any] )-> Dict: '''simple docstring''' warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) return (preds == labels).mean() def __A ( a_ : Optional[int] , a_ : Tuple )-> int: '''simple docstring''' warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) SCREAMING_SNAKE_CASE : List[str] = simple_accuracy(a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = fa_score(y_true=a_ , y_pred=a_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __A ( a_ : Optional[int] , a_ : Optional[int] )-> List[Any]: '''simple docstring''' warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = pearsonr(a_ , a_ )[0] SCREAMING_SNAKE_CASE : List[Any] = spearmanr(a_ , a_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __A ( a_ : Any , a_ : Optional[int] , a_ : Dict )-> Union[str, Any]: '''simple docstring''' warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) assert len(a_ ) == len(a_ ), F"Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}" if task_name == "cola": return {"mcc": matthews_corrcoef(a_ , a_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "mrpc": return acc_and_fa(a_ , a_ ) elif task_name == "sts-b": return pearson_and_spearman(a_ , a_ ) elif task_name == "qqp": return acc_and_fa(a_ , a_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(a_ , a_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(a_ , a_ )} elif task_name == "qnli": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "rte": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "wnli": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "hans": return {"acc": simple_accuracy(a_ , a_ )} else: raise KeyError(a_ ) def __A ( a_ : str , a_ : List[str] , a_ : List[Any] )-> Any: '''simple docstring''' warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) if len(a_ ) != len(a_ ): raise ValueError(F"Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}" ) if task_name == "xnli": return {"acc": simple_accuracy(a_ , a_ )} else: raise KeyError(a_ )
698
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : int = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) lowerCamelCase__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __A ( a_ : str )-> Union[str, Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE : Optional[Any] = model_type_to_module_name(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(a_ , a_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a_ , '''__name__''' , a_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE : int = importlib.import_module('''transformers''' ) if hasattr(a_ , a_ ): return getattr(a_ , a_ ) return None def __A ( a_ : Union[str, os.PathLike] , a_ : Optional[Union[str, os.PathLike]] = None , a_ : bool = False , a_ : bool = False , a_ : Optional[Dict[str, str]] = None , a_ : Optional[Union[bool, str]] = None , a_ : Optional[str] = None , a_ : bool = False , **a_ : Dict , )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = get_file_from_repo( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(a_ , encoding='''utf-8''' ) as reader: return json.load(a_ ) class lowercase__: '''simple docstring''' def __init__( self :Any ) -> Optional[int]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase_ ) def __lowerCAmelCase ( cls :Union[str, Any] , lowerCamelCase_ :int , **lowerCamelCase_ :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = kwargs.pop('''config''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''trust_remote_code''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = ImageProcessingMixin.get_image_processor_dict(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = config_dict.get('''image_processor_type''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE : List[Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE : str = config_dict.pop('''feature_extractor_type''' , lowerCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE : Dict = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE : Any = getattr(lowerCamelCase_ , '''image_processor_type''' , lowerCamelCase_ ) if hasattr(lowerCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE : Union[str, Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE : List[Any] = image_processor_class_from_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = image_processor_auto_map is not None SCREAMING_SNAKE_CASE : Any = image_processor_class is not None or type(lowerCamelCase_ ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE : Union[str, Any] = resolve_trust_remote_code( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE : Tuple = get_class_from_dynamic_module( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''code_revision''' , lowerCamelCase_ ) if os.path.isdir(lowerCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE : Optional[Any] = IMAGE_PROCESSOR_MAPPING[type(lowerCamelCase_ )] return image_processor_class.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowerCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(lowerCamelCase_ , lowerCamelCase_ )
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = RobertaTokenizer UpperCamelCase = RobertaTokenizerFast UpperCamelCase = True UpperCamelCase = {"""cls_token""": """<s>"""} def __lowerCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] SCREAMING_SNAKE_CASE : List[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE : str = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __lowerCAmelCase ( self :Dict , **lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] , **lowerCamelCase_ :Dict ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''lower newer''' SCREAMING_SNAKE_CASE : Any = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self :List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Dict = '''lower newer''' SCREAMING_SNAKE_CASE : List[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __lowerCAmelCase ( self :str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained('''roberta-base''' ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = '''Encode this sequence.''' SCREAMING_SNAKE_CASE : int = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : int = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space SCREAMING_SNAKE_CASE : str = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = '''Encode <mask> sequence''' SCREAMING_SNAKE_CASE : Any = '''Encode <mask>sequence''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = encoded.index(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = encoded.index(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = '''A, <mask> AllenNLP sentence.''' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Dict = f"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : int = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
698
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Any = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase__ : List[str] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase__ : Optional[Any] = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = bs[:] SCREAMING_SNAKE_CASE : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE : Tuple = [chr(a_ ) for n in cs] return dict(zip(a_ , a_ ) ) def __A ( a_ : List[Any] )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : Dict = char return pairs class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :str="replace" , lowerCamelCase_ :Dict="<s>" , lowerCamelCase_ :Any="</s>" , lowerCamelCase_ :Optional[Any]="</s>" , lowerCamelCase_ :int="<s>" , lowerCamelCase_ :Optional[Any]="<unk>" , lowerCamelCase_ :Tuple="<pad>" , lowerCamelCase_ :Any="<mask>" , lowerCamelCase_ :Optional[int]=False , **lowerCamelCase_ :Union[str, Any] , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : Tuple = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : List[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : Union[str, Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE : int = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : List[str] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' return len(self.encoder ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : Optional[Any] = tuple(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : str = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = bigram SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCamelCase_ ): try: SCREAMING_SNAKE_CASE : int = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : Tuple = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: SCREAMING_SNAKE_CASE : Optional[int] = get_pairs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = ''' '''.join(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = word return word def __lowerCAmelCase ( self :str , lowerCamelCase_ :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for token in re.findall(self.pat , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(''' ''' ) ) return bpe_tokens def __lowerCAmelCase ( self :int , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ''''''.join(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Any = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) SCREAMING_SNAKE_CASE : List[str] = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE : Dict = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __lowerCAmelCase ( self :Any , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : Any = ''' ''' + text return (text, kwargs) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> Union[str, Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self :Any , lowerCamelCase_ :"Conversation" ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = ''' '''.join(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.encode(lowerCamelCase_ ) if len(lowerCamelCase_ ) > self.model_max_length: SCREAMING_SNAKE_CASE : Optional[int] = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Tuple = logging.get_logger(__name__) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : str , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = original_name.split('''.''' )[0] SCREAMING_SNAKE_CASE : int = key.split('''.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = int(key_list[key_list.index(a_ ) - 2] ) SCREAMING_SNAKE_CASE : int = int(key_list[key_list.index(a_ ) - 1] ) SCREAMING_SNAKE_CASE : Any = orig_block_num - offset SCREAMING_SNAKE_CASE : Any = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def __A ( a_ : List[str] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): SCREAMING_SNAKE_CASE : int = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = key[: key.find('''proj''' )] SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace(a_ , F"patch_embeddings.{total_embed_found}." ) SCREAMING_SNAKE_CASE : Dict = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE : Dict = '''poolformer.encoder.''' + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE : Dict = replace_key_with_offset(a_ , a_ , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE : Any = replace_key_with_offset(a_ , a_ , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: SCREAMING_SNAKE_CASE : List[str] = replace_key_with_offset(a_ , a_ , '''norm1''' , '''before_norm''' ) if "norm2" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = replace_key_with_offset(a_ , a_ , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE : Any = replace_key_with_offset(a_ , a_ , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE : Optional[int] = replace_key_with_offset(a_ , a_ , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''head''' , '''classifier''' ) SCREAMING_SNAKE_CASE : Tuple = value return new_state_dict def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def __A ( a_ : List[str] , a_ : Union[str, Any] , a_ : List[str] )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : str = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE : List[str] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Any = model_name[-3:] SCREAMING_SNAKE_CASE : Dict = 10_00 SCREAMING_SNAKE_CASE : Optional[Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Any = (1, 10_00) # set config attributes SCREAMING_SNAKE_CASE : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Tuple = {int(a_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE : str = [2, 2, 6, 2] SCREAMING_SNAKE_CASE : Optional[int] = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : str = 4.0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE : Any = [4, 4, 12, 4] SCREAMING_SNAKE_CASE : Tuple = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : Dict = 4.0 SCREAMING_SNAKE_CASE : Optional[Any] = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE : Optional[Any] = [6, 6, 18, 6] SCREAMING_SNAKE_CASE : Optional[Any] = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : List[str] = 4.0 SCREAMING_SNAKE_CASE : Any = 1E-6 SCREAMING_SNAKE_CASE : List[Any] = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE : int = [6, 6, 18, 6] SCREAMING_SNAKE_CASE : str = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE : str = 4.0 SCREAMING_SNAKE_CASE : Any = 1E-6 SCREAMING_SNAKE_CASE : List[Any] = 0.95 elif size == "m48": SCREAMING_SNAKE_CASE : List[Any] = [8, 8, 24, 8] SCREAMING_SNAKE_CASE : List[str] = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE : Tuple = 4.0 SCREAMING_SNAKE_CASE : int = 1E-6 SCREAMING_SNAKE_CASE : Dict = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerImageProcessor(crop_pct=a_ ) # Prepare image SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=a_ , return_tensors='''pt''' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict SCREAMING_SNAKE_CASE : List[str] = torch.load(a_ , map_location=torch.device('''cpu''' ) ) # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = rename_keys(a_ ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : Union[str, Any] = PoolFormerForImageClassification(a_ ) model.load_state_dict(a_ ) model.eval() # Define image processor SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerImageProcessor(crop_pct=a_ ) SCREAMING_SNAKE_CASE : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass SCREAMING_SNAKE_CASE : List[Any] = model(a_ ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": SCREAMING_SNAKE_CASE : int = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": SCREAMING_SNAKE_CASE : int = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a_ , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCamelCase__ : str = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
698
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCamelCase__ : List[Any] = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase__ : Any = "pt" elif is_tf_available(): lowerCamelCase__ : List[str] = "tf" else: lowerCamelCase__ : Optional[Any] = "jax" class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PerceiverTokenizer UpperCamelCase = False def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __lowerCAmelCase ( self :str , **lowerCamelCase_ :Optional[Any] ) -> PerceiverTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :int=20 , lowerCamelCase_ :Any=5 ) -> Tuple[str, list]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(len(lowerCamelCase_ ) ): try: SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE : int = list(filter(lambda lowerCamelCase_ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase_ ) , lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: SCREAMING_SNAKE_CASE : Tuple = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: SCREAMING_SNAKE_CASE : str = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE : Dict = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE : int = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: SCREAMING_SNAKE_CASE : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE : str = ''' ''' + output_txt SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def __lowerCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE : Optional[Any] = '''Unicode €.''' SCREAMING_SNAKE_CASE : Tuple = tokenizer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_ ) # decoding SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , '''[CLS]Unicode €.[SEP]''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE : List[str] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_ ) # decoding SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __lowerCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.perceiver_tokenizer SCREAMING_SNAKE_CASE : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE : Tuple = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE : Any = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE : str = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE : str = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCamelCase_ ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE : Optional[int] = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE : List[Any] = tokenizer( text_target=lowerCamelCase_ , max_length=32 , padding='''max_length''' , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __lowerCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Any = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE : str = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE : Optional[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE : List[str] = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [f"<extra_id_{i}>" for i in range(1_25 )] SCREAMING_SNAKE_CASE : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE : Dict = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE : Tuple = tokenizer_class.from_pretrained( lowerCamelCase_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE : List[str] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCamelCase_ )] SCREAMING_SNAKE_CASE : Any = tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , '''�''' ) def __lowerCAmelCase ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' pass def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE : int = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """lxmert""" UpperCamelCase = {} def __init__( self :Union[str, Any] , lowerCamelCase_ :Union[str, Any]=3_05_22 , lowerCamelCase_ :Any=7_68 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Dict=95_00 , lowerCamelCase_ :List[Any]=16_00 , lowerCamelCase_ :int=4_00 , lowerCamelCase_ :List[str]=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :int=1E-12 , lowerCamelCase_ :Any=9 , lowerCamelCase_ :int=5 , lowerCamelCase_ :Union[str, Any]=5 , lowerCamelCase_ :Tuple=20_48 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :str=6.6_7 , lowerCamelCase_ :str=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Tuple=True , **lowerCamelCase_ :Any , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = num_qa_labels SCREAMING_SNAKE_CASE : Tuple = num_object_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_attr_labels SCREAMING_SNAKE_CASE : int = l_layers SCREAMING_SNAKE_CASE : str = x_layers SCREAMING_SNAKE_CASE : List[Any] = r_layers SCREAMING_SNAKE_CASE : Dict = visual_feat_dim SCREAMING_SNAKE_CASE : Optional[int] = visual_pos_dim SCREAMING_SNAKE_CASE : str = visual_loss_normalizer SCREAMING_SNAKE_CASE : List[Any] = task_matched SCREAMING_SNAKE_CASE : Optional[int] = task_mask_lm SCREAMING_SNAKE_CASE : Optional[int] = task_obj_predict SCREAMING_SNAKE_CASE : Dict = task_qa SCREAMING_SNAKE_CASE : Tuple = visual_obj_loss SCREAMING_SNAKE_CASE : int = visual_attr_loss SCREAMING_SNAKE_CASE : Union[str, Any] = visual_feat_loss SCREAMING_SNAKE_CASE : Tuple = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**lowerCamelCase_ )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
1
"""simple docstring""" import argparse lowerCamelCase__ : Optional[int] = "docs/source/_static/js/custom.js" def __A ( a_ : Tuple )-> Any: '''simple docstring''' with open(a_ , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : str = f.readlines() SCREAMING_SNAKE_CASE : Tuple = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 SCREAMING_SNAKE_CASE : Optional[int] = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a_ ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") lowerCamelCase__ : int = parser.parse_args() update_custom_js(args.version)
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCamelCase__ : Union[str, Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """tapas""" def __init__( self :Union[str, Any] , lowerCamelCase_ :str=3_05_22 , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[str]=30_72 , lowerCamelCase_ :Optional[Any]="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Any=10_24 , lowerCamelCase_ :List[Any]=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :str=1E-12 , lowerCamelCase_ :str=0 , lowerCamelCase_ :Optional[Any]=1_0.0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int=1.0 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :int=1.0 , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Union[str, Any]=1.0 , lowerCamelCase_ :List[str]=1.0 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :str=False , lowerCamelCase_ :Dict="ratio" , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=64 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Dict=None , lowerCamelCase_ :Any=None , **lowerCamelCase_ :Any , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_sizes SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE : Dict = positive_label_weight SCREAMING_SNAKE_CASE : Any = num_aggregation_labels SCREAMING_SNAKE_CASE : int = aggregation_loss_weight SCREAMING_SNAKE_CASE : Optional[int] = use_answer_as_supervision SCREAMING_SNAKE_CASE : Dict = answer_loss_importance SCREAMING_SNAKE_CASE : Any = use_normalized_answer_loss SCREAMING_SNAKE_CASE : Dict = huber_loss_delta SCREAMING_SNAKE_CASE : str = temperature SCREAMING_SNAKE_CASE : int = aggregation_temperature SCREAMING_SNAKE_CASE : List[str] = use_gumbel_for_cells SCREAMING_SNAKE_CASE : str = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE : Optional[Any] = average_approximation_function SCREAMING_SNAKE_CASE : Union[str, Any] = cell_selection_preference SCREAMING_SNAKE_CASE : List[str] = answer_loss_cutoff SCREAMING_SNAKE_CASE : int = max_num_rows SCREAMING_SNAKE_CASE : Optional[int] = max_num_columns SCREAMING_SNAKE_CASE : Union[str, Any] = average_logits_per_cell SCREAMING_SNAKE_CASE : Union[str, Any] = select_one_column SCREAMING_SNAKE_CASE : Optional[int] = allow_empty_column_selection SCREAMING_SNAKE_CASE : List[Any] = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE : Optional[Any] = reset_position_index_per_cell SCREAMING_SNAKE_CASE : Optional[int] = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE : Tuple = aggregation_labels SCREAMING_SNAKE_CASE : Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = {int(lowerCamelCase_ ): v for k, v in aggregation_labels.items()}
698
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def __A ( a_ : Optional[int] )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor(a_ ) SCREAMING_SNAKE_CASE : str = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __A ( a_ : int )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(a_ ) SCREAMING_SNAKE_CASE : Any = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE : Any = tf.cast(0.04_4715 , x.dtype ) SCREAMING_SNAKE_CASE : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a_ , 3 )) )) return x * cdf def __A ( a_ : Union[str, Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor(a_ ) return x * tf.tanh(tf.math.softplus(a_ ) ) def __A ( a_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(0.04_4715 , x.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __A ( a_ : Tuple )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __A ( a_ : Tuple )-> str: '''simple docstring''' return tf.clip_by_value(_gelu(a_ ) , -10 , 10 ) def __A ( a_ : Union[str, Any] , a_ : int=-1 )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = tf.split(a_ , 2 , axis=a_ ) return a * tf.math.sigmoid(a_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __A ( a_ : str )-> str: '''simple docstring''' return tf.keras.activations.gelu(a_ , approximate=a_ ) lowerCamelCase__ : Any = tf.keras.activations.gelu lowerCamelCase__ : int = approximate_gelu_wrap else: lowerCamelCase__ : int = _gelu lowerCamelCase__ : Any = _gelu_new lowerCamelCase__ : List[Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __A ( a_ : Optional[Any] )-> Tuple: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
698
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :Tuple ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __lowerCAmelCase ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Dict ) -> Optional[Any]: '''simple docstring''' def extract(*lowerCamelCase_ :int , **lowerCamelCase_ :List[Any] ): class lowercase__: '''simple docstring''' def __init__( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = torch.ones([0] ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Dict = self.dummy_cond_unet SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.dummy_vae SCREAMING_SNAKE_CASE : str = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCamelCase_ , )[0] SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCamelCase_ , )[0] SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : Any = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCAmelCase ( self :Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_vae SCREAMING_SNAKE_CASE : Tuple = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 SCREAMING_SNAKE_CASE : Union[str, Any] = unet.half() SCREAMING_SNAKE_CASE : Optional[Any] = vae.half() SCREAMING_SNAKE_CASE : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[Any] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) SCREAMING_SNAKE_CASE : Any = 40_03_66_03_46 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = '''padme amidala taking a bath artwork, safe for work, no nudity''' SCREAMING_SNAKE_CASE : Optional[Any] = 27_34_97_17_55 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) SCREAMING_SNAKE_CASE : List[str] = 10_44_35_52_34 SCREAMING_SNAKE_CASE : List[Any] = 12 SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase__: '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str ) -> Tuple: '''simple docstring''' return None class lowercase__: '''simple docstring''' def __lowerCAmelCase ( self :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' return None class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , '''tf''' , 12 , **lowerCamelCase_ ) @require_torch @slow def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , '''pt''' , 12 , **lowerCamelCase_ ) @require_torch @slow def __lowerCAmelCase ( self :Any ) -> List[Any]: '''simple docstring''' from transformers import BertModel SCREAMING_SNAKE_CASE : Optional[Any] = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(lowerCamelCase_ ) ) vocab_file.flush() SCREAMING_SNAKE_CASE : int = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , '''pt''' , 12 , lowerCamelCase_ ) @require_tf @slow def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE : List[str] = self._test_export(lowerCamelCase_ , '''tf''' , 12 , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def __lowerCAmelCase ( self :Tuple ) -> Dict: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE : str = self._test_export(lowerCamelCase_ , '''pt''' , 12 , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : Any = Path(lowerCamelCase_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def __lowerCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel SCREAMING_SNAKE_CASE : Union[str, Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) SCREAMING_SNAKE_CASE : Tuple = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , '''pt''' ) @require_tf @require_tokenizers @slow def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' from transformers import TFBertModel SCREAMING_SNAKE_CASE : List[Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , '''tf''' ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
698
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
1
"""simple docstring""" from manim import * class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : int = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : int = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Any = Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE : Optional[Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, rect in enumerate(lowerCamelCase_ ): rect.set_stroke(lowerCamelCase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase_ , buff=0.0 ) self.add(lowerCamelCase_ ) cpu_targs.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : int = Text('''Loaded Checkpoint''' , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , aligned_edge=lowerCamelCase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : str = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.play(Write(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) ) SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[int] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = fill.copy().set_fill(lowerCamelCase_ , opacity=0.7 ) target.move_to(lowerCamelCase_ ) first_animations.append(GrowFromCenter(lowerCamelCase_ , run_time=1 ) ) SCREAMING_SNAKE_CASE : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
698
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase__( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionControlNetImgaImgPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE : str = CLIPTextModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Optional[int] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int]=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : str = torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor(control_image.shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionControlNetImgaImgPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCamelCase_ :str ): if isinstance(lowerCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : List[str] = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE : Optional[int] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int]=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : int = torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), ] SCREAMING_SNAKE_CASE : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Any = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = 1_0.0 SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = steps SCREAMING_SNAKE_CASE : Optional[int] = scale SCREAMING_SNAKE_CASE : List[str] = pipe(**lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = steps SCREAMING_SNAKE_CASE : int = scale SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = steps SCREAMING_SNAKE_CASE : Optional[int] = scale SCREAMING_SNAKE_CASE : List[str] = pipe(**lowerCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = steps SCREAMING_SNAKE_CASE : str = scale SCREAMING_SNAKE_CASE : int = pipe(**lowerCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self :Tuple ) -> str: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :List[str] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCamelCase_ , controlnet=lowerCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = '''evil space-punk bird''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) ) SCREAMING_SNAKE_CASE : Any = pipe( lowerCamelCase_ , lowerCamelCase_ , control_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (5_12, 5_12, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Any = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blip_text_model""" def __init__( self :Optional[Any] , lowerCamelCase_ :List[Any]=3_05_24 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Optional[int]=7_68 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :Any=8 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=1E-12 , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :Optional[Any]=3_05_22 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Any=0 , lowerCamelCase_ :Union[str, Any]=1_02 , lowerCamelCase_ :Any=True , lowerCamelCase_ :Dict=True , **lowerCamelCase_ :List[Any] , ) -> Dict: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , sep_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = projection_dim SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = is_decoder SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache @classmethod def __lowerCAmelCase ( cls :str , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :str ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": SCREAMING_SNAKE_CASE : Optional[int] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blip_vision_model""" def __init__( self :Tuple , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :Optional[int]=30_72 , lowerCamelCase_ :List[Any]=5_12 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Tuple=3_84 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Optional[Any]=1E-5 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :Any=1E-10 , **lowerCamelCase_ :List[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = projection_dim SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": SCREAMING_SNAKE_CASE : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blip""" UpperCamelCase = True def __init__( self :str , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=5_12 , lowerCamelCase_ :Tuple=2.6_5_9_2 , lowerCamelCase_ :Optional[Any]=2_56 , **lowerCamelCase_ :int , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if text_config is None: SCREAMING_SNAKE_CASE : Optional[int] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: SCREAMING_SNAKE_CASE : Optional[int] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) SCREAMING_SNAKE_CASE : List[str] = BlipTextConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = BlipVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.vision_config.hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = projection_dim SCREAMING_SNAKE_CASE : Optional[int] = logit_scale_init_value SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 SCREAMING_SNAKE_CASE : Optional[int] = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = image_text_hidden_size @classmethod def __lowerCAmelCase ( cls :str , lowerCamelCase_ :BlipTextConfig , lowerCamelCase_ :BlipVisionConfig , **lowerCamelCase_ :int ) -> int: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_config.to_dict() SCREAMING_SNAKE_CASE : List[str] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ : List[Any] )-> List[Any]: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[Any] )-> Optional[Any]: '''simple docstring''' return max(metric_fn(a_ , a_ ) for gt in ground_truths ) def __A ( a_ : int , a_ : Tuple , a_ : Dict )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : List[str] = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : Any = pd.read_csv(a_ , sep='''\t''' , header=a_ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : Optional[int] = ast.literal_eval(a_ ) answers.append(a_ ) else: SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : List[Any] = [[reference] for reference in references] SCREAMING_SNAKE_CASE : int = 0 for prediction, ground_truths in zip(a_ , a_ ): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_ ) fa += metric_max_over_ground_truths(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[str] = 100.0 * em / total SCREAMING_SNAKE_CASE : Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __A ( a_ : int , a_ : Optional[int] , a_ : Tuple )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = args.k SCREAMING_SNAKE_CASE : Dict = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : str = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : str = 0 for hypo, reference in zip(a_ , a_ ): SCREAMING_SNAKE_CASE : Any = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE : Union[str, Any] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Dict = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __A ( a_ : List[str] , a_ : Any , a_ : Optional[Any] )-> List[str]: '''simple docstring''' def strip_title(a_ : Any ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE : Optional[int] = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE : Any = title[:-1] return title SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE : Optional[Any] = rag_model.rag.question_encoder(a_ ) SCREAMING_SNAKE_CASE : int = question_enc_outputs[0] SCREAMING_SNAKE_CASE : Optional[Any] = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : List[Any] = [] for docs in all_docs: SCREAMING_SNAKE_CASE : Optional[Any] = [strip_title(a_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_ ) ) return provenance_strings def __A ( a_ : int , a_ : Any , a_ : str )-> Dict: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : Dict = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : List[Any] = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE : int = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) if args.print_predictions: for q, a in zip(a_ , a_ ): logger.info('''Q: {} - A: {}'''.format(a_ , a_ ) ) return answers def __A ( )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __A ( a_ : Union[str, Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {} if args.model_type is None: SCREAMING_SNAKE_CASE : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Any = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Optional[int] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Optional[Any] = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : str = args.index_path else: SCREAMING_SNAKE_CASE : Optional[int] = BartForConditionalGeneration SCREAMING_SNAKE_CASE : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_ ) SCREAMING_SNAKE_CASE : int = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE : Optional[Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(a_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(a_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(a_ , **a_ ) SCREAMING_SNAKE_CASE : int = model_class.from_pretrained(a_ , retriever=a_ , **a_ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(a_ , **a_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE : Dict = [] for line in tqdm(a_ ): questions.append(line.strip() ) if len(a_ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE : Dict = [] if len(a_ ) > 0: SCREAMING_SNAKE_CASE : Dict = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) ) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ : int = get_args() main(args)
698
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
1
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __A ( a_ : np.ndarray )-> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __A ( a_ : np.ndarray )-> np.ndarray: '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def __A ( a_ : np.ndarray , a_ : np.ndarray )-> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = np.zeros_like(a_ ) SCREAMING_SNAKE_CASE : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE : Optional[int] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE : int = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCamelCase__ : Union[str, Any] = Path(__file__).resolve().parent / "image_data" / "lena.jpg" lowerCamelCase__ : Optional[int] = np.array(Image.open(lena_path)) # kernel to be applied lowerCamelCase__ : Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCamelCase__ : Optional[int] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCamelCase__ : Optional[Any] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
698
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
1
"""simple docstring""" class lowercase__: '''simple docstring''' def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} def __lowerCAmelCase ( self :Optional[int] ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCamelCase_ , ''' -> ''' , ''' -> '''.join([str(lowerCamelCase_ ) for j in self.vertex[i]] ) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase_ ) else: # else make a new vertex SCREAMING_SNAKE_CASE : Union[str, Any] = [to_vertex] def __lowerCAmelCase ( self :Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :list ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = True print(lowerCamelCase_ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": lowerCamelCase__ : int = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
698
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) lowerCamelCase__ : Dict = ["names", "prefix"] lowerCamelCase__ : List[str] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowerCamelCase__ : Optional[int] = ["encoding_errors", "on_bad_lines"] lowerCamelCase__ : int = ["date_format"] @dataclass class lowercase__( datasets.BuilderConfig ): '''simple docstring''' UpperCamelCase = "," UpperCamelCase = None UpperCamelCase = "infer" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = False UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None UpperCamelCase = "." UpperCamelCase = None UpperCamelCase = '"' UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 0 UpperCamelCase = True UpperCamelCase = False UpperCamelCase = None UpperCamelCase = 1_00_00 UpperCamelCase = None UpperCamelCase = "strict" UpperCamelCase = "error" UpperCamelCase = None def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' if self.delimiter is not None: SCREAMING_SNAKE_CASE : Dict = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE : List[Any] = self.column_names @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowercase__( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCamelCase = CsvConfig def __lowerCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_ , (str, list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = data_files if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [files] SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE : List[str] = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [files] SCREAMING_SNAKE_CASE : int = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self :int , lowerCamelCase_ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase_ ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : Optional[Any] = table_cast(lowerCamelCase_ , lowerCamelCase_ ) return pa_table def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE : Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Any = pd.read_csv(lowerCamelCase_ , iterator=lowerCamelCase_ , dtype=lowerCamelCase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = pa.Table.from_pandas(lowerCamelCase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(lowerCamelCase_ )}: {e}" ) raise
698
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
1