init from mihai generated h5 files
Browse files- .gitattributes +1 -0
 - bbox_dataset.py +166 -0
 - data_utils.py +149 -0
 - grasp_labels.hdf5 +3 -0
 - test_bbox_dataset.ipynb +0 -0
 - test_labels.hdf5 +3 -0
 - test_labels_limited.hdf5 +3 -0
 - test_novel_labels.hdf5 +3 -0
 - test_novel_labels_limited.hdf5 +3 -0
 - test_seen_labels.hdf5 +3 -0
 - test_seen_labels_limited.hdf5 +3 -0
 - test_seen_labels_overfitting.hdf5 +3 -0
 - test_similar_labels.hdf5 +3 -0
 - test_similar_labels_limited.hdf5 +3 -0
 - train_labels.hdf5 +3 -0
 - train_labels_limited.hdf5 +3 -0
 - train_labels_overfitting.hdf5 +3 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text 
     | 
|
| 53 | 
         
             
            *.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 54 | 
         
             
            *.jpeg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 55 | 
         
             
            *.webp filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
| 
         | 
|
| 53 | 
         
             
            *.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 54 | 
         
             
            *.jpeg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 55 | 
         
             
            *.webp filter=lfs diff=lfs merge=lfs -text
         
     | 
| 56 | 
         
            +
            *.hdf5 filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        bbox_dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,166 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """ GraspNet dataset processing.
         
     | 
| 2 | 
         
            +
            """
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import os
         
     | 
| 5 | 
         
            +
            import sys
         
     | 
| 6 | 
         
            +
            import numpy as np
         
     | 
| 7 | 
         
            +
            import numpy.ma as ma
         
     | 
| 8 | 
         
            +
            import scipy.io as scio
         
     | 
| 9 | 
         
            +
            from scipy.optimize import linear_sum_assignment
         
     | 
| 10 | 
         
            +
            from PIL import Image
         
     | 
| 11 | 
         
            +
            from skimage.measure import label, regionprops
         
     | 
| 12 | 
         
            +
            import cv2
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            import torch
         
     | 
| 15 | 
         
            +
            from collections import abc as container_abcs
         
     | 
| 16 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
            from torch.utils.data import DataLoader
         
     | 
| 19 | 
         
            +
            from time import time
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            BASE_DIR = os.path.dirname(os.path.abspath(__file__))
         
     | 
| 22 | 
         
            +
            from .data_utils import CameraInfo, transform_point_cloud, create_point_cloud_from_depth_image, \
         
     | 
| 23 | 
         
            +
                get_workspace_mask, remove_invisible_grasp_points
         
     | 
| 24 | 
         
            +
            import h5py
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            class GraspNetDataset(Dataset):
         
     | 
| 28 | 
         
            +
                def __init__(self, root, valid_obj_idxs, camera='kinect', split='train', remove_invisible=True,
         
     | 
| 29 | 
         
            +
                             augment=False, limited_data=False, overfitting=False, k_grasps=1, ground_truth_type="topk", caching=True):
         
     | 
| 30 | 
         
            +
                    self.root = root
         
     | 
| 31 | 
         
            +
                    self.split = split
         
     | 
| 32 | 
         
            +
                    self.remove_invisible = remove_invisible
         
     | 
| 33 | 
         
            +
                    self.valid_obj_idxs = valid_obj_idxs
         
     | 
| 34 | 
         
            +
                    self.camera = camera
         
     | 
| 35 | 
         
            +
                    self.augment = augment
         
     | 
| 36 | 
         
            +
                    self.k_grasps = k_grasps
         
     | 
| 37 | 
         
            +
                    self.ground_truth_type = ground_truth_type
         
     | 
| 38 | 
         
            +
                    self.overfitting = overfitting
         
     | 
| 39 | 
         
            +
                    self.caching = caching
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    if overfitting:
         
     | 
| 42 | 
         
            +
                        limited_data = True
         
     | 
| 43 | 
         
            +
                    self.limited_data = limited_data
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    if split == 'train':
         
     | 
| 46 | 
         
            +
                        self.sceneIds = list(range(100))
         
     | 
| 47 | 
         
            +
                    elif split == 'test':
         
     | 
| 48 | 
         
            +
                        self.sceneIds = list(range(100, 190))
         
     | 
| 49 | 
         
            +
                    elif split == 'test_seen':
         
     | 
| 50 | 
         
            +
                        self.sceneIds = list(range(100, 130))
         
     | 
| 51 | 
         
            +
                    elif split == 'test_similar':
         
     | 
| 52 | 
         
            +
                        self.sceneIds = list(range(130, 160))
         
     | 
| 53 | 
         
            +
                    elif split == 'test_novel':
         
     | 
| 54 | 
         
            +
                        self.sceneIds = list(range(160, 190))
         
     | 
| 55 | 
         
            +
                    if limited_data:
         
     | 
| 56 | 
         
            +
                        self.sceneIds = self.sceneIds[:10]
         
     | 
| 57 | 
         
            +
                    self.sceneIds = ['scene_{}'.format(str(x).zfill(4)) for x in self.sceneIds]
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    filename = f"dataset/{split}_labels"
         
     | 
| 60 | 
         
            +
                    if limited_data and not overfitting:
         
     | 
| 61 | 
         
            +
                        filename += "_limited"
         
     | 
| 62 | 
         
            +
                    if overfitting:
         
     | 
| 63 | 
         
            +
                        filename += "_overfitting"
         
     | 
| 64 | 
         
            +
                    filename += ".hdf5"
         
     | 
| 65 | 
         
            +
                    self.h5_filename = filename
         
     | 
| 66 | 
         
            +
                    self.h5_file = None
         
     | 
| 67 | 
         
            +
                    self.grasp_labels_filename = "dataset/grasp_labels.hdf5"
         
     | 
| 68 | 
         
            +
                    self.grasp_labels_file = None
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    with h5py.File(self.h5_filename, 'r') as f:
         
     | 
| 71 | 
         
            +
                        self.len = f['depthpath'].shape[0]
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def __len__(self):
         
     | 
| 74 | 
         
            +
                    return self.len
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def __getitem__(self, index):
         
     | 
| 77 | 
         
            +
                    if self.h5_file is None:
         
     | 
| 78 | 
         
            +
                        self.h5_file = h5py.File(self.h5_filename, 'r')
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                    ann_id = int(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[1][1:-4])
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    color = np.array(Image.open(self.h5_file['colorpath'][index]), dtype=np.float32) / 255.0
         
     | 
| 83 | 
         
            +
                    depth = np.array(Image.open(self.h5_file['depthpath'][index]))
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    # fixing depth image where value is 0
         
     | 
| 86 | 
         
            +
                    p99 = np.percentile(depth[depth != 0], 99)
         
     | 
| 87 | 
         
            +
                    # p1 = abs(np.percentile(depth[depth != 0], 1))
         
     | 
| 88 | 
         
            +
                    depth[depth > p99] = p99
         
     | 
| 89 | 
         
            +
                    depth[depth == 0] = p99
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    seg = np.array(Image.open(self.h5_file['labelpath'][index]))
         
     | 
| 92 | 
         
            +
                    meta = scio.loadmat(self.h5_file['metapath'][index])
         
     | 
| 93 | 
         
            +
                    scene = self.h5_file['scenename'][index]
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    main_path = str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0]
         
     | 
| 96 | 
         
            +
                    cam_extrinsics = np.load(os.path.join(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0],
         
     | 
| 97 | 
         
            +
                                                          'camera_poses.npy'))[ann_id]
         
     | 
| 98 | 
         
            +
                    cam_wrt_table = np.load(os.path.join(str(self.h5_file['metapath'][index], 'utf-8').split("meta")[0],
         
     | 
| 99 | 
         
            +
                                                         'cam0_wrt_table.npy'))
         
     | 
| 100 | 
         
            +
                    cam_extrinsics = cam_wrt_table.dot(cam_extrinsics).astype(np.float32)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    try:
         
     | 
| 103 | 
         
            +
                        obj_idxs = meta['cls_indexes'].flatten().astype(np.int32)
         
     | 
| 104 | 
         
            +
                        poses = meta['poses']
         
     | 
| 105 | 
         
            +
                        intrinsic = meta['intrinsic_matrix']
         
     | 
| 106 | 
         
            +
                        factor_depth = meta['factor_depth']
         
     | 
| 107 | 
         
            +
                    except Exception as e:
         
     | 
| 108 | 
         
            +
                        print(repr(e))
         
     | 
| 109 | 
         
            +
                        print(scene)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    # h_ratio = 800 / 720
         
     | 
| 112 | 
         
            +
                    # w_ratio = 1333 / 1280
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                    camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    ## generate cloud required to remove invisible grasp points
         
     | 
| 117 | 
         
            +
                    #cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    obj_bounding_boxes = []
         
     | 
| 120 | 
         
            +
                    for i, obj_idx in enumerate(obj_idxs):
         
     | 
| 121 | 
         
            +
                        if obj_idx not in self.valid_obj_idxs:
         
     | 
| 122 | 
         
            +
                            continue
         
     | 
| 123 | 
         
            +
                        if (seg == obj_idx).sum() < 50:
         
     | 
| 124 | 
         
            +
                            continue
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                        seg_cpy = seg.copy()
         
     | 
| 127 | 
         
            +
                        seg_cpy[seg != obj_idx] = 0
         
     | 
| 128 | 
         
            +
                        seg_cpy[seg == obj_idx] = 1
         
     | 
| 129 | 
         
            +
                        seg_labels = label(seg_cpy)
         
     | 
| 130 | 
         
            +
                        regions = regionprops(seg_labels)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                        # b has start_height, start_width, end_height, end_width = (x_min, y_min, x_max, y_max)
         
     | 
| 133 | 
         
            +
                        b = regions[0].bbox
         
     | 
| 134 | 
         
            +
                        # saved bbox has xyxy
         
     | 
| 135 | 
         
            +
                        H, W = seg.shape[0], seg.shape[1]
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                        obj_bounding_boxes.append(np.array([b[1] / W, b[0] / H, b[3] / W, b[2] / H])[None].repeat(self.k_grasps, 0))
         
     | 
| 138 | 
         
            +
                    obj_bounding_boxes = np.concatenate(obj_bounding_boxes, axis=0).astype(np.float32)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    ret_dict = {}
         
     | 
| 141 | 
         
            +
                    #ret_dict['point_cloud'] = cloud.transpose((2, 0, 1)).astype(np.float32)
         
     | 
| 142 | 
         
            +
                    ret_dict['color'] = color.transpose((2, 0, 1)).astype(np.float32)
         
     | 
| 143 | 
         
            +
                    ret_dict['depth'] = (depth / camera.scale).astype(np.float32)
         
     | 
| 144 | 
         
            +
                    ret_dict['objectness_label'] = seg.astype(np.int32)
         
     | 
| 145 | 
         
            +
                    ret_dict['obj_bounding_boxes'] = obj_bounding_boxes
         
     | 
| 146 | 
         
            +
                    ret_dict['camera_intrinsics'] = np.expand_dims(np.concatenate([intrinsic.reshape(-1), factor_depth[0]]), -1).astype(np.float32)
         
     | 
| 147 | 
         
            +
                    ret_dict['camera_extrinsics'] = cam_extrinsics.astype(np.float32)
         
     | 
| 148 | 
         
            +
                    #ret_dict['transformed_points'] = transformed_points.astype(np.float32)
         
     | 
| 149 | 
         
            +
                    ret_dict['obj_idxs'] = obj_idxs
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    return ret_dict
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            def load_valid_obj_idxs():
         
     | 
| 155 | 
         
            +
                obj_names = list(range(88))
         
     | 
| 156 | 
         
            +
                valid_obj_idxs = []
         
     | 
| 157 | 
         
            +
                for i, obj_name in enumerate(obj_names):
         
     | 
| 158 | 
         
            +
                    if i == 18: continue
         
     | 
| 159 | 
         
            +
                    valid_obj_idxs.append(i + 1)  # here align with label png
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                return valid_obj_idxs
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
            def my_worker_init_fn(worker_id):
         
     | 
| 165 | 
         
            +
                np.random.seed(np.random.get_state()[1][0] + worker_id)
         
     | 
| 166 | 
         
            +
                pass
         
     | 
    	
        data_utils.py
    ADDED
    
    | 
         @@ -0,0 +1,149 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """ Tools for data processing.
         
     | 
| 2 | 
         
            +
                Author: chenxi-wang
         
     | 
| 3 | 
         
            +
            """
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            class CameraInfo():
         
     | 
| 8 | 
         
            +
                """ Camera intrisics for point cloud creation. """
         
     | 
| 9 | 
         
            +
                def __init__(self, width, height, fx, fy, cx, cy, scale):
         
     | 
| 10 | 
         
            +
                    self.width = width
         
     | 
| 11 | 
         
            +
                    self.height = height
         
     | 
| 12 | 
         
            +
                    self.fx = fx
         
     | 
| 13 | 
         
            +
                    self.fy = fy
         
     | 
| 14 | 
         
            +
                    self.cx = cx
         
     | 
| 15 | 
         
            +
                    self.cy = cy
         
     | 
| 16 | 
         
            +
                    self.scale = scale
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def create_point_cloud_from_depth_image(depth, camera, organized=True):
         
     | 
| 19 | 
         
            +
                """ Generate point cloud using depth image only.
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                    Input:
         
     | 
| 22 | 
         
            +
                        depth: [numpy.ndarray, (H,W), numpy.float32]
         
     | 
| 23 | 
         
            +
                            depth image
         
     | 
| 24 | 
         
            +
                        camera: [CameraInfo]
         
     | 
| 25 | 
         
            +
                            camera intrinsics
         
     | 
| 26 | 
         
            +
                        organized: bool
         
     | 
| 27 | 
         
            +
                            whether to keep the cloud in image shape (H,W,3)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    Output:
         
     | 
| 30 | 
         
            +
                        cloud: [numpy.ndarray, (H,W,3)/(H*W,3), numpy.float32]
         
     | 
| 31 | 
         
            +
                            generated cloud, (H,W,3) for organized=True, (H*W,3) for organized=False
         
     | 
| 32 | 
         
            +
                """
         
     | 
| 33 | 
         
            +
                assert(depth.shape[0] == camera.height and depth.shape[1] == camera.width)
         
     | 
| 34 | 
         
            +
                xmap = np.arange(camera.width)
         
     | 
| 35 | 
         
            +
                ymap = np.arange(camera.height)
         
     | 
| 36 | 
         
            +
                xmap, ymap = np.meshgrid(xmap, ymap)
         
     | 
| 37 | 
         
            +
                points_z = depth / camera.scale
         
     | 
| 38 | 
         
            +
                points_x = (xmap - camera.cx) * points_z / camera.fx
         
     | 
| 39 | 
         
            +
                points_y = (ymap - camera.cy) * points_z / camera.fy
         
     | 
| 40 | 
         
            +
                cloud = np.stack([points_x, points_y, points_z], axis=-1)
         
     | 
| 41 | 
         
            +
                if not organized:
         
     | 
| 42 | 
         
            +
                    cloud = cloud.reshape([-1, 3])
         
     | 
| 43 | 
         
            +
                return cloud
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            def transform_point_cloud(cloud, transform, format='4x4'):
         
     | 
| 46 | 
         
            +
                """ Transform points to new coordinates with transformation matrix.
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    Input:
         
     | 
| 49 | 
         
            +
                        cloud: [np.ndarray, (N,3), np.float32]
         
     | 
| 50 | 
         
            +
                            points in original coordinates
         
     | 
| 51 | 
         
            +
                        transform: [np.ndarray, (3,3)/(3,4)/(4,4), np.float32]
         
     | 
| 52 | 
         
            +
                            transformation matrix, could be rotation only or rotation+translation
         
     | 
| 53 | 
         
            +
                        format: [string, '3x3'/'3x4'/'4x4']
         
     | 
| 54 | 
         
            +
                            the shape of transformation matrix
         
     | 
| 55 | 
         
            +
                            '3x3' --> rotation matrix
         
     | 
| 56 | 
         
            +
                            '3x4'/'4x4' --> rotation matrix + translation matrix
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    Output:
         
     | 
| 59 | 
         
            +
                        cloud_transformed: [np.ndarray, (N,3), np.float32]
         
     | 
| 60 | 
         
            +
                            points in new coordinates
         
     | 
| 61 | 
         
            +
                """
         
     | 
| 62 | 
         
            +
                if not (format == '3x3' or format == '4x4' or format == '3x4'):
         
     | 
| 63 | 
         
            +
                    raise ValueError('Unknown transformation format, only support \'3x3\' or \'4x4\' or \'3x4\'.')
         
     | 
| 64 | 
         
            +
                if format == '3x3':
         
     | 
| 65 | 
         
            +
                    cloud_transformed = np.dot(transform, cloud.T).T
         
     | 
| 66 | 
         
            +
                elif format == '4x4' or format == '3x4':
         
     | 
| 67 | 
         
            +
                    ones = np.ones(cloud.shape[0])[:, np.newaxis]
         
     | 
| 68 | 
         
            +
                    cloud_ = np.concatenate([cloud, ones], axis=1)
         
     | 
| 69 | 
         
            +
                    cloud_transformed = np.dot(transform, cloud_.T).T
         
     | 
| 70 | 
         
            +
                    cloud_transformed = cloud_transformed[:, :3]
         
     | 
| 71 | 
         
            +
                return cloud_transformed
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def compute_point_dists(A, B):
         
     | 
| 74 | 
         
            +
                """ Compute pair-wise point distances in two matrices.
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    Input:
         
     | 
| 77 | 
         
            +
                        A: [np.ndarray, (N,3), np.float32]
         
     | 
| 78 | 
         
            +
                            point cloud A
         
     | 
| 79 | 
         
            +
                        B: [np.ndarray, (M,3), np.float32]
         
     | 
| 80 | 
         
            +
                            point cloud B
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    Output:
         
     | 
| 83 | 
         
            +
                        dists: [np.ndarray, (N,M), np.float32]
         
     | 
| 84 | 
         
            +
                            distance matrix
         
     | 
| 85 | 
         
            +
                """
         
     | 
| 86 | 
         
            +
                A = A[:, np.newaxis, :]
         
     | 
| 87 | 
         
            +
                B = B[np.newaxis, :, :]
         
     | 
| 88 | 
         
            +
                dists = np.linalg.norm(A-B, axis=-1)
         
     | 
| 89 | 
         
            +
                return dists
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            def remove_invisible_grasp_points(cloud, grasp_points, pose, th=0.01):
         
     | 
| 92 | 
         
            +
                """ Remove invisible part of object model according to scene point cloud.
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    Input:
         
     | 
| 95 | 
         
            +
                        cloud: [np.ndarray, (N,3), np.float32]
         
     | 
| 96 | 
         
            +
                            scene point cloud
         
     | 
| 97 | 
         
            +
                        grasp_points: [np.ndarray, (M,3), np.float32]
         
     | 
| 98 | 
         
            +
                            grasp point label in object coordinates
         
     | 
| 99 | 
         
            +
                        pose: [np.ndarray, (4,4), np.float32]
         
     | 
| 100 | 
         
            +
                            transformation matrix from object coordinates to world coordinates
         
     | 
| 101 | 
         
            +
                        th: [float]
         
     | 
| 102 | 
         
            +
                            if the minimum distance between a grasp point and the scene points is greater than outlier, the point will be removed
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    Output:
         
     | 
| 105 | 
         
            +
                        visible_mask: [np.ndarray, (M,), np.bool]
         
     | 
| 106 | 
         
            +
                            mask to show the visible part of grasp points
         
     | 
| 107 | 
         
            +
                """
         
     | 
| 108 | 
         
            +
                grasp_points_trans = transform_point_cloud(grasp_points, pose)
         
     | 
| 109 | 
         
            +
                dists = compute_point_dists(grasp_points_trans, cloud)
         
     | 
| 110 | 
         
            +
                min_dists = dists.min(axis=1)
         
     | 
| 111 | 
         
            +
                visible_mask = (min_dists < th)
         
     | 
| 112 | 
         
            +
                return visible_mask
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            def get_workspace_mask(cloud, seg, trans=None, organized=True, outlier=0):
         
     | 
| 115 | 
         
            +
                """ Keep points in workspace as input.
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    Input:
         
     | 
| 118 | 
         
            +
                        cloud: [np.ndarray, (H,W,3), np.float32]
         
     | 
| 119 | 
         
            +
                            scene point cloud
         
     | 
| 120 | 
         
            +
                        seg: [np.ndarray, (H,W,), np.uint8]
         
     | 
| 121 | 
         
            +
                            segmantation label of scene points
         
     | 
| 122 | 
         
            +
                        trans: [np.ndarray, (4,4), np.float32]
         
     | 
| 123 | 
         
            +
                            transformation matrix for scene points, default: None.
         
     | 
| 124 | 
         
            +
                        organized: [bool]
         
     | 
| 125 | 
         
            +
                            whether to keep the cloud in image shape (H,W,3)
         
     | 
| 126 | 
         
            +
                        outlier: [float]
         
     | 
| 127 | 
         
            +
                            if the distance between a point and workspace is greater than outlier, the point will be removed
         
     | 
| 128 | 
         
            +
                            
         
     | 
| 129 | 
         
            +
                    Output:
         
     | 
| 130 | 
         
            +
                        workspace_mask: [np.ndarray, (H,W)/(H*W,), np.bool]
         
     | 
| 131 | 
         
            +
                            mask to indicate whether scene points are in workspace
         
     | 
| 132 | 
         
            +
                """
         
     | 
| 133 | 
         
            +
                if organized:
         
     | 
| 134 | 
         
            +
                    h, w, _ = cloud.shape
         
     | 
| 135 | 
         
            +
                    cloud = cloud.reshape([h*w, 3])
         
     | 
| 136 | 
         
            +
                    seg = seg.reshape(h*w)
         
     | 
| 137 | 
         
            +
                if trans is not None:
         
     | 
| 138 | 
         
            +
                    cloud = transform_point_cloud(cloud, trans)
         
     | 
| 139 | 
         
            +
                foreground = cloud[seg>0]
         
     | 
| 140 | 
         
            +
                xmin, ymin, zmin = foreground.min(axis=0)
         
     | 
| 141 | 
         
            +
                xmax, ymax, zmax = foreground.max(axis=0)
         
     | 
| 142 | 
         
            +
                mask_x = ((cloud[:,0] > xmin-outlier) & (cloud[:,0] < xmax+outlier))
         
     | 
| 143 | 
         
            +
                mask_y = ((cloud[:,1] > ymin-outlier) & (cloud[:,1] < ymax+outlier))
         
     | 
| 144 | 
         
            +
                mask_z = ((cloud[:,2] > zmin-outlier) & (cloud[:,2] < zmax+outlier))
         
     | 
| 145 | 
         
            +
                workspace_mask = (mask_x & mask_y & mask_z)
         
     | 
| 146 | 
         
            +
                if organized:
         
     | 
| 147 | 
         
            +
                    workspace_mask = workspace_mask.reshape([h, w])
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                return workspace_mask
         
     | 
    	
        grasp_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6c2cb4478af68123236739f784c430432558bb1984240c810519501b43e5ba73
         
     | 
| 3 | 
         
            +
            size 27649926048
         
     | 
    	
        test_bbox_dataset.ipynb
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        test_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:cce93092c5d48ace0ffbc34a800a0c8997cc12fd9161382ea9dca36187d26d0b
         
     | 
| 3 | 
         
            +
            size 13738218528
         
     | 
    	
        test_labels_limited.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:57f845819b33566b49137e16669fb21a47d193310d9229b9ed94e03707f5948b
         
     | 
| 3 | 
         
            +
            size 1847477632
         
     | 
    	
        test_novel_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7b6ab6d23ba11440f2c37d895bec769751841551796ffbf19e9a09f8b3e760e4
         
     | 
| 3 | 
         
            +
            size 3820886464
         
     | 
    	
        test_novel_labels_limited.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:e99e19baddac4480def00e03cc3a5829abce9e06266b4190478f21ef23554399
         
     | 
| 3 | 
         
            +
            size 1221612544
         
     | 
    	
        test_seen_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a56ab3f596b08bdcee0b55eb90b52193f0f18463f7aed58e37c7b1b98b0865fa
         
     | 
| 3 | 
         
            +
            size 5767926784
         
     | 
    	
        test_seen_labels_limited.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:57f845819b33566b49137e16669fb21a47d193310d9229b9ed94e03707f5948b
         
     | 
| 3 | 
         
            +
            size 1847477632
         
     | 
    	
        test_seen_labels_overfitting.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:4accd843326975e7ba805ee390104c19f671617991c73ec814aaaadca9f0ce36
         
     | 
| 3 | 
         
            +
            size 1845877136
         
     | 
    	
        test_similar_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:37698bc1d5568b85eccf659cc568796865a50e2b1973f224741cf571324977f5
         
     | 
| 3 | 
         
            +
            size 4149426496
         
     | 
    	
        test_similar_labels_limited.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:3ad322ac599799601be38ce79dce25955e33a01641d178cfa1efd2c89977e7d1
         
     | 
| 3 | 
         
            +
            size 1699060928
         
     | 
    	
        train_labels.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:62a5ff1adba287d590d364ecd38d4d28679d998e1fe56143cdb2d5a3aec9123e
         
     | 
| 3 | 
         
            +
            size 17807294464
         
     | 
    	
        train_labels_limited.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a3bc086730b39a2c2957d4d029adc30fcb87a3791f6f3968eb1a5a181d447dd3
         
     | 
| 3 | 
         
            +
            size 1623629632
         
     | 
    	
        train_labels_overfitting.hdf5
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:0216e80f3596d8050ed4113e7d3176398356ba313b47ceca3f86eed6e51d53d7
         
     | 
| 3 | 
         
            +
            size 1622029136
         
     |