Modelos multilinguísticos para inferência

Existem vários modelos multilinguísticos no 🤗 Transformers e seus usos para inferência diferem dos modelos monolíngues. No entanto, nem todos os usos dos modelos multilíngues são tão diferentes. Alguns modelos, como o bert-base-multilingual-uncased, podem ser usados como se fossem monolíngues. Este guia irá te ajudar a usar modelos multilíngues cujo uso difere para o propósito de inferência.

XLM

O XLM tem dez checkpoints diferentes dos quais apenas um é monolíngue. Os nove checkpoints restantes do modelo são subdivididos em duas categorias: checkpoints que usam de language embeddings e os que não.

XLM com language embeddings

Os seguintes modelos de XLM usam language embeddings para especificar a linguagem utilizada para a inferência.

Os language embeddings são representados por um tensor de mesma dimensão que os input_ids passados ao modelo. Os valores destes tensores dependem do idioma utilizado e se identificam pelos atributos lang2id e id2lang do tokenizador.

Neste exemplo, carregamos o checkpoint xlm-clm-enfr-1024(Causal language modeling, English-French):

>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel

>>> tokenizer = XLMTokenizer.from_pretrained("xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("xlm-clm-enfr-1024")

O atributo lang2id do tokenizador mostra os idiomas deste modelo e seus ids:

>>> print(tokenizer.lang2id)
{'en': 0, 'fr': 1}

Em seguida, cria-se um input de exemplo:

>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")])  # batch size of 1

Estabelece-se o id do idioma, por exemplo "en", e utiliza-se o mesmo para definir a language embedding. A language embedding é um tensor preenchido com 0, que é o id de idioma para o inglês. Este tensor deve ser do mesmo tamanho que os input_ids.

>>> language_id = tokenizer.lang2id["en"]  # 0
>>> langs = torch.tensor([language_id] * input_ids.shape[1])  # torch.tensor([0, 0, 0, ..., 0])

>>> # We reshape it to be of size (batch_size, sequence_length)
>>> langs = langs.view(1, -1)  # is now of shape [1, sequence_length] (we have a batch size of 1)

Agora você pode passar os input_ids e a language embedding ao modelo:

>>> outputs = model(input_ids, langs=langs)

O script run_generation.py pode gerar um texto com language embeddings utilizando os checkpoints xlm-clm.

XLM sem language embeddings

Os seguintes modelos XLM não requerem o uso de language embeddings durante a inferência:

Estes modelos são utilizados para representações genéricas de frase diferentemente dos checkpoints XLM anteriores.

BERT

Os seguintes modelos do BERT podem ser utilizados para tarefas multilinguísticas:

Estes modelos não requerem language embeddings durante a inferência. Devem identificar a linguagem a partir do contexto e realizar a inferência em sequência.

XLM-RoBERTa

Os seguintes modelos do XLM-RoBERTa podem ser utilizados para tarefas multilinguísticas:

O XLM-RoBERTa foi treinado com 2,5 TB de dados do CommonCrawl recém-criados e testados em 100 idiomas. Proporciona fortes vantagens sobre os modelos multilinguísticos publicados anteriormente como o mBERT e o XLM em tarefas subsequentes como a classificação, a rotulagem de sequências e à respostas a perguntas.

M2M100

Os seguintes modelos de M2M100 podem ser utilizados para traduções multilinguísticas:

Neste exemplo, o checkpoint facebook/m2m100_418M é carregado para traduzir do mandarim ao inglês. É possível estabelecer o idioma de origem no tokenizador:

>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."

>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")

Tokenização do texto:

>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")

O M2M100 força o id do idioma de destino como o primeiro token gerado para traduzir ao idioma de destino. É definido o forced_bos_token_id como en no método generate para traduzir ao inglês.

>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'

MBart

Os seguintes modelos do MBart podem ser utilizados para tradução multilinguística:

Neste exemplo, carrega-se o checkpoint facebook/mbart-large-50-many-to-many-mmt para traduzir do finlandês ao inglês. Pode-se definir o idioma de origem no tokenizador:

>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")

Tokenizando o texto:

>>> encoded_en = tokenizer(en_text, return_tensors="pt")

O MBart força o id do idioma de destino como o primeiro token gerado para traduzir ao idioma de destino. É definido o forced_bos_token_id como en no método generate para traduzir ao inglês.

>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."

Se estiver usando o checkpoint facebook/mbart-large-50-many-to-one-mmt não será necessário forçar o id do idioma de destino como sendo o primeiro token generado, caso contrário a usagem é a mesma.