Estado da Arte para Aprendizado de Máquina em PyTorch, TensorFlow e JAX.
O 🤗 Transformers disponibiliza APIs para facilmente baixar e treinar modelos pré-treinados de última geração.
O uso de modelos pré-treinados pode diminuir os seus custos de computação, a sua pegada de carbono, além de economizar o
tempo necessário para se treinar um modelo do zero. Os modelos podem ser usados para diversas tarefas:
📝 Textos: classificação, extração de informações, perguntas e respostas, resumir, traduzir e gerar textos em mais de 100 idiomas.
🖼 Imagens: classificação, deteção de objetos, e segmentação.
🗣 Audio: reconhecimento de fala e classificação de áudio.
🐙 Multimodal: perguntas tabeladas e respsostas, reconhecimento ótico de charactéres, extração de informação de
documentos escaneados, classificação de vídeo, perguntas e respostas visuais.
Nossa biblioteca aceita integração contínua entre três das bibliotecas mais populares de aprendizado profundo:
Our library supports seamless integration between three of the most popular deep learning libraries:
PyTorch, TensorFlow e JAX.
Treine seu modelo em três linhas de código em um framework, e carregue-o para execução em outro.
Cada arquitetura 🤗 Transformers é definida em um módulo individual do Python, para que seja facilmente customizável para pesquisa e experimentos.
Se você estiver procurando suporte do time da Hugging Face, acesse
INÍCIO contém um tour rápido de instalação e instruções para te dar um empurrão inicial com os 🤗 Transformers.
TUTORIAIS são perfeitos para começar a aprender sobre a nossa biblioteca. Essa seção irá te ajudar a desenvolver
habilidades básicas necessárias para usar o 🤗 Transformers.
GUIAS PRÁTICOS irão te mostrar como alcançar um certo objetivo, como o fine-tuning de um modelo pré-treinado
para modelamento de idioma, ou como criar um cabeçalho personalizado para um modelo.
GUIAS CONCEITUAIS te darão mais discussões e explicações dos conceitos fundamentais e idéias por trás dos modelos,
tarefas e da filosofia de design por trás do 🤗 Transformers.
API descreve o funcionamento de cada classe e função, agrupada em:
CLASSES PRINCIPAIS para as classes que expõe as APIs importantes da biblioteca.
MODELOS para as classes e funções relacionadas à cada modelo implementado na biblioteca.
AUXILIARES INTERNOS para as classes e funções usadas internamente.
Atualmente a biblioteca contém implementações do PyTorch, TensorFlow e JAX, pesos para modelos pré-treinados e scripts de uso e conversão de utilidades para os seguintes modelos:
BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
ConvNeXT (from Facebook AI) released with the paper A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
ImageGPT (from OpenAI) released with the paper Generative Pretraining from Pixels by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
Perceiver IO (from Deepmind) released with the paper Perceiver IO: A General Architecture for Structured Inputs & Outputs by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
PoolFormer (from Sea AI Labs) released with the paper MetaFormer is Actually What You Need for Vision by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
RegNet (from META Platforms) released with the paper Designing Network Design Space by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
RoBERTa (from Facebook), released together with the paper RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
T5v1.1 (from Google AI) released in the repository google-research/text-to-text-transfer-transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
VAN (from Tsinghua University and Nankai University) released with the paper Visual Attention Network by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
WavLM (from Microsoft Research) released with the paper WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
XGLM (From Facebook AI) released with the paper Few-shot Learning with Multilingual Language Models by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
A tabela abaixo representa a lista de suporte na biblioteca para cada um dos seguintes modelos, caso tenham um tokenizer
do Python (chamado de “slow”), ou um tokenizer construído em cima da biblioteca 🤗 Tokenizers (chamado de “fast”). Além
disso, são diferenciados pelo suporte em diferentes frameworks: JAX (por meio do Flax); PyTorch; e/ou Tensorflow.