This page lists all the utility functions used by the tokenizers, mainly the class PreTrainedTokenizerBase that implements the common methods between PreTrainedTokenizer and PreTrainedTokenizerFast and the mixin SpecialTokensMixin.
Most of those are only useful if you are studying the code of the tokenizers in the library.
( **kwargs )
Parameters
int
, optional) —
The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is
loaded with from_pretrained(), this will be set to the
value stored for the associated model in max_model_input_sizes
(see above). If no value is provided, will
default to VERY_LARGE_INTEGER (int(1e30)
).
str
, optional) —
The side on which the model should have padding applied. Should be selected between [‘right’, ‘left’].
Default value is picked from the class attribute of the same name.
str
, optional) —
The side on which the model should have truncation applied. Should be selected between [‘right’, ‘left’].
Default value is picked from the class attribute of the same name.
List[string]
, optional) —
The list of inputs accepted by the forward pass of the model (like "token_type_ids"
or
"attention_mask"
). Default value is picked from the class attribute of the same name.
str
or tokenizers.AddedToken
, optional) —
A special token representing the beginning of a sentence. Will be associated to self.bos_token
and
self.bos_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token representing the end of a sentence. Will be associated to self.eos_token
and
self.eos_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token representing an out-of-vocabulary token. Will be associated to self.unk_token
and
self.unk_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token separating two different sentences in the same input (used by BERT for instance). Will be
associated to self.sep_token
and self.sep_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation. Will be associated to self.pad_token
and self.pad_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token representing the class of the input (used by BERT for instance). Will be associated to
self.cls_token
and self.cls_token_id
.
str
or tokenizers.AddedToken
, optional) —
A special token representing a masked token (used by masked-language modeling pretraining objectives, like
BERT). Will be associated to self.mask_token
and self.mask_token_id
.
str
or tokenizers.AddedToken
, optional) —
A tuple or a list of additional special tokens. Add them here to ensure they won’t be split by the
tokenization process. Will be associated to self.additional_special_tokens
and
self.additional_special_tokens_ids
.
Base class for PreTrainedTokenizer and PreTrainedTokenizerFast.
Handles shared (mostly boiler plate) methods for those two classes.
Class attributes (overridden by derived classes)
Dict[str, str]
) — A dictionary with, as keys, the __init__
keyword name of each
vocabulary file required by the model, and as associated values, the filename for saving the associated file
(string).Dict[str, Dict[str, str]]
) — A dictionary of dictionaries, with the
high-level keys being the __init__
keyword name of each vocabulary file required by the model, the
low-level being the short-cut-names
of the pretrained models with, as associated values, the url
to the
associated pretrained vocabulary file.Dict[str, Optional[int]]
) — A dictionary with, as keys, the short-cut-names
of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model,
or None
if the model has no maximum input size.Dict[str, Dict[str, Any]]
) — A dictionary with, as keys, the
short-cut-names
of the pretrained models, and as associated values, a dictionary of specific arguments to
pass to the __init__
method of the tokenizer class for this pretrained model when loading the tokenizer
with the from_pretrained() method.List[str]
) — A list of inputs expected in the forward pass of the model.str
) — The default value for the side on which the model should have padding applied.
Should be 'right'
or 'left'
.str
) — The default value for the side on which the model should have truncation
applied. Should be 'right'
or 'left'
.( text: typing.Union[str, typing.List[str], typing.List[typing.List[str]]] = None text_pair: typing.Union[str, typing.List[str], typing.List[typing.List[str]], NoneType] = None text_target: typing.Union[str, typing.List[str], typing.List[typing.List[str]]] = None text_pair_target: typing.Union[str, typing.List[str], typing.List[typing.List[str]], NoneType] = None add_special_tokens: bool = True padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = False truncation: typing.Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy] = None max_length: typing.Optional[int] = None stride: int = 0 is_split_into_words: bool = False pad_to_multiple_of: typing.Optional[int] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None return_token_type_ids: typing.Optional[bool] = None return_attention_mask: typing.Optional[bool] = None return_overflowing_tokens: bool = False return_special_tokens_mask: bool = False return_offsets_mapping: bool = False return_length: bool = False verbose: bool = True **kwargs ) → BatchEncoding
Parameters
str
, List[str]
, List[List[str]]
, optional) —
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
is_split_into_words=True
(to lift the ambiguity with a batch of sequences).
str
, List[str]
, List[List[str]]
, optional) —
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
is_split_into_words=True
(to lift the ambiguity with a batch of sequences).
str
, List[str]
, List[List[str]]
, optional) —
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set is_split_into_words=True
(to lift the ambiguity with a batch of sequences).
str
, List[str]
, List[List[str]]
, optional) —
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set is_split_into_words=True
(to lift the ambiguity with a batch of sequences).
bool
, optional, defaults to True
) —
Whether or not to encode the sequences with the special tokens relative to their model.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).bool
, str
or TruncationStrategy, optional, defaults to False
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).int
, optional) —
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to None
, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional, defaults to 0) —
If set to a number along with max_length
, the overflowing tokens returned when
return_overflowing_tokens=True
will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
bool
, optional, defaults to False
) —
Whether or not the input is already pre-tokenized (e.g., split into words). If set to True
, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
int
, optional) —
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, optional) —
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional) —
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional, defaults to False
) —
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first
or True
, an error is raised instead
of returning overflowing tokens.
bool
, optional, defaults to False
) —
Whether or not to return special tokens mask information.
bool
, optional, defaults to False
) —
Whether or not to return (char_start, char_end)
for each token.
This is only available on fast tokenizers inheriting from PreTrainedTokenizerFast, if using
Python’s tokenizer, this method will raise NotImplementedError
.
bool
, optional, defaults to False
) —
Whether or not to return the lengths of the encoded inputs.
bool
, optional, defaults to True
) —
Whether or not to print more information and warnings.
**kwargs — passed to the self.tokenize()
method
Returns
A BatchEncoding with the following fields:
input_ids — List of token ids to be fed to a model.
token_type_ids — List of token type ids to be fed to a model (when return_token_type_ids=True
or
if “token_type_ids” is in self.model_input_names
).
attention_mask — List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True
or if “attention_mask” is in self.model_input_names
).
overflowing_tokens — List of overflowing tokens sequences (when a max_length
is specified and
return_overflowing_tokens=True
).
num_truncated_tokens — Number of tokens truncated (when a max_length
is specified and
return_overflowing_tokens=True
).
special_tokens_mask — List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True
and return_special_tokens_mask=True
).
length — The length of the inputs (when return_length=True
)
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences.
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels.
(
sequences: typing.Union[typing.List[int], typing.List[typing.List[int]], ForwardRef('np.ndarray'), ForwardRef('torch.Tensor'), ForwardRef('tf.Tensor')]
skip_special_tokens: bool = False
clean_up_tokenization_spaces: bool = True
**kwargs
)
→
List[str]
Parameters
Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]
) —
List of tokenized input ids. Can be obtained using the __call__
method.
bool
, optional, defaults to False
) —
Whether or not to remove special tokens in the decoding.
bool
, optional, defaults to True
) —
Whether or not to clean up the tokenization spaces.
Returns
List[str]
The list of decoded sentences.
Convert a list of lists of token ids into a list of strings by calling decode.
( batch_text_or_text_pairs: typing.Union[typing.List[str], typing.List[typing.Tuple[str, str]], typing.List[typing.List[str]], typing.List[typing.Tuple[typing.List[str], typing.List[str]]], typing.List[typing.List[int]], typing.List[typing.Tuple[typing.List[int], typing.List[int]]]] add_special_tokens: bool = True padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = False truncation: typing.Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy] = None max_length: typing.Optional[int] = None stride: int = 0 is_split_into_words: bool = False pad_to_multiple_of: typing.Optional[int] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None return_token_type_ids: typing.Optional[bool] = None return_attention_mask: typing.Optional[bool] = None return_overflowing_tokens: bool = False return_special_tokens_mask: bool = False return_offsets_mapping: bool = False return_length: bool = False verbose: bool = True **kwargs ) → BatchEncoding
Parameters
List[str]
, List[Tuple[str, str]]
, List[List[str]]
, List[Tuple[List[str], List[str]]]
, and for not-fast tokenizers, also List[List[int]]
, List[Tuple[List[int], List[int]]]
) —
Batch of sequences or pair of sequences to be encoded. This can be a list of
string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see
details in encode_plus
).
bool
, optional, defaults to True
) —
Whether or not to encode the sequences with the special tokens relative to their model.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).bool
, str
or TruncationStrategy, optional, defaults to False
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).int
, optional) —
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to None
, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional, defaults to 0) —
If set to a number along with max_length
, the overflowing tokens returned when
return_overflowing_tokens=True
will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
bool
, optional, defaults to False
) —
Whether or not the input is already pre-tokenized (e.g., split into words). If set to True
, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
int
, optional) —
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, optional) —
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional) —
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional, defaults to False
) —
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first
or True
, an error is raised instead
of returning overflowing tokens.
bool
, optional, defaults to False
) —
Whether or not to return special tokens mask information.
bool
, optional, defaults to False
) —
Whether or not to return (char_start, char_end)
for each token.
This is only available on fast tokenizers inheriting from PreTrainedTokenizerFast, if using
Python’s tokenizer, this method will raise NotImplementedError
.
bool
, optional, defaults to False
) —
Whether or not to return the lengths of the encoded inputs.
bool
, optional, defaults to True
) —
Whether or not to print more information and warnings.
**kwargs — passed to the self.tokenize()
method
Returns
A BatchEncoding with the following fields:
input_ids — List of token ids to be fed to a model.
token_type_ids — List of token type ids to be fed to a model (when return_token_type_ids=True
or
if “token_type_ids” is in self.model_input_names
).
attention_mask — List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True
or if “attention_mask” is in self.model_input_names
).
overflowing_tokens — List of overflowing tokens sequences (when a max_length
is specified and
return_overflowing_tokens=True
).
num_truncated_tokens — Number of tokens truncated (when a max_length
is specified and
return_overflowing_tokens=True
).
special_tokens_mask — List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True
and return_special_tokens_mask=True
).
length — The length of the inputs (when return_length=True
)
Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.
This method is deprecated, __call__
should be used instead.
(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
→
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens.
This implementation does not add special tokens and this method should be overridden in a subclass.
(
out_string: str
)
→
str
Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.
(
tokens: typing.List[str]
)
→
str
Converts a sequence of tokens in a single string. The most simple way to do it is " ".join(tokens)
but we
often want to remove sub-word tokenization artifacts at the same time.
(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
→
List[int]
Create the token type IDs corresponding to the sequences passed. What are token type IDs?
Should be overridden in a subclass if the model has a special way of building those.
(
token_ids: typing.Union[int, typing.List[int], ForwardRef('np.ndarray'), ForwardRef('torch.Tensor'), ForwardRef('tf.Tensor')]
skip_special_tokens: bool = False
clean_up_tokenization_spaces: bool = True
**kwargs
)
→
str
Parameters
Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]
) —
List of tokenized input ids. Can be obtained using the __call__
method.
bool
, optional, defaults to False
) —
Whether or not to remove special tokens in the decoding.
bool
, optional, defaults to True
) —
Whether or not to clean up the tokenization spaces.
Returns
str
The decoded sentence.
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces.
Similar to doing self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))
.
(
text: typing.Union[str, typing.List[str], typing.List[int]]
text_pair: typing.Union[str, typing.List[str], typing.List[int], NoneType] = None
add_special_tokens: bool = True
padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = False
truncation: typing.Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy] = None
max_length: typing.Optional[int] = None
stride: int = 0
return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None
**kwargs
)
→
List[int]
, torch.Tensor
, tf.Tensor
or np.ndarray
Parameters
str
, List[str]
or List[int]
) —
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
tokenize
method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).
str
, List[str]
or List[int]
, optional) —
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
the tokenize
method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).
bool
, optional, defaults to True
) —
Whether or not to encode the sequences with the special tokens relative to their model.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).bool
, str
or TruncationStrategy, optional, defaults to False
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).int
, optional) —
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to None
, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional, defaults to 0) —
If set to a number along with max_length
, the overflowing tokens returned when
return_overflowing_tokens=True
will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
bool
, optional, defaults to False
) —
Whether or not the input is already pre-tokenized (e.g., split into words). If set to True
, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
int
, optional) —
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.**kwargs — Passed along to the .tokenize()
method.
Returns
List[int]
, torch.Tensor
, tf.Tensor
or np.ndarray
The tokenized ids of the text.
Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.
Same as doing self.convert_tokens_to_ids(self.tokenize(text))
.
( text: typing.Union[str, typing.List[str], typing.List[int]] text_pair: typing.Union[str, typing.List[str], typing.List[int], NoneType] = None add_special_tokens: bool = True padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = False truncation: typing.Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy] = None max_length: typing.Optional[int] = None stride: int = 0 is_split_into_words: bool = False pad_to_multiple_of: typing.Optional[int] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None return_token_type_ids: typing.Optional[bool] = None return_attention_mask: typing.Optional[bool] = None return_overflowing_tokens: bool = False return_special_tokens_mask: bool = False return_offsets_mapping: bool = False return_length: bool = False verbose: bool = True **kwargs ) → BatchEncoding
Parameters
str
, List[str]
or List[int]
(the latter only for not-fast tokenizers)) —
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
tokenize
method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).
str
, List[str]
or List[int]
, optional) —
Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
the tokenize
method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).
bool
, optional, defaults to True
) —
Whether or not to encode the sequences with the special tokens relative to their model.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).bool
, str
or TruncationStrategy, optional, defaults to False
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).int
, optional) —
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to None
, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional, defaults to 0) —
If set to a number along with max_length
, the overflowing tokens returned when
return_overflowing_tokens=True
will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
bool
, optional, defaults to False
) —
Whether or not the input is already pre-tokenized (e.g., split into words). If set to True
, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
int
, optional) —
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, optional) —
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional) —
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional, defaults to False
) —
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first
or True
, an error is raised instead
of returning overflowing tokens.
bool
, optional, defaults to False
) —
Whether or not to return special tokens mask information.
bool
, optional, defaults to False
) —
Whether or not to return (char_start, char_end)
for each token.
This is only available on fast tokenizers inheriting from PreTrainedTokenizerFast, if using
Python’s tokenizer, this method will raise NotImplementedError
.
bool
, optional, defaults to False
) —
Whether or not to return the lengths of the encoded inputs.
bool
, optional, defaults to True
) —
Whether or not to print more information and warnings.
**kwargs — passed to the self.tokenize()
method
Returns
A BatchEncoding with the following fields:
input_ids — List of token ids to be fed to a model.
token_type_ids — List of token type ids to be fed to a model (when return_token_type_ids=True
or
if “token_type_ids” is in self.model_input_names
).
attention_mask — List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True
or if “attention_mask” is in self.model_input_names
).
overflowing_tokens — List of overflowing tokens sequences (when a max_length
is specified and
return_overflowing_tokens=True
).
num_truncated_tokens — Number of tokens truncated (when a max_length
is specified and
return_overflowing_tokens=True
).
special_tokens_mask — List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True
and return_special_tokens_mask=True
).
length — The length of the inputs (when return_length=True
)
Tokenize and prepare for the model a sequence or a pair of sequences.
This method is deprecated, __call__
should be used instead.
( pretrained_model_name_or_path: typing.Union[str, os.PathLike] *init_inputs **kwargs )
Parameters
str
or os.PathLike
) —
Can be either:
bert-base-uncased
, or namespaced under a
user or organization name, like dbmdz/bert-base-german-cased
../my_model_directory/
../my_model_directory/vocab.txt
.str
or os.PathLike
, optional) —
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the
standard cache should not be used.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download the vocabulary files and override the cached versions if they
exist.
bool
, optional, defaults to False
) —
Whether or not to delete incompletely received files. Attempt to resume the download if such a file
exists.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, will use the token generated
when running huggingface-cli login
(stored in ~/.huggingface
).
bool
, optional, defaults to False
) —
Whether or not to only rely on local files and not to attempt to download any files.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so revision
can be any
identifier allowed by git.
str
, optional) —
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
facebook/rag-token-base), specify it here.
__init__
method.
__init__
method. Can be used to set special tokens like bos_token
,
eos_token
, unk_token
, sep_token
, pad_token
, cls_token
, mask_token
,
additional_special_tokens
. See parameters in the __init__
for more details.
Instantiate a PreTrainedTokenizerBase (or a derived class) from a predefined tokenizer.
Passing use_auth_token=True
is required when you want to use a private model.
Examples:
# We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer
# Download vocabulary from huggingface.co and cache.
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Download vocabulary from huggingface.co (user-uploaded) and cache.
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
# If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/")
# If the tokenizer uses a single vocabulary file, you can point directly to this file
tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt")
# You can link tokens to special vocabulary when instantiating
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>")
# You should be sure '<unk>' is in the vocabulary when doing that.
# Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
assert tokenizer.unk_token == "<unk>"
( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → A list of integers in the range [0, 1]
Parameters
List[int]
) —
List of ids of the first sequence.
List[int]
, optional) —
List of ids of the second sequence.
bool
, optional, defaults to False
) —
Whether or not the token list is already formatted with special tokens for the model.
Returns
A list of integers in the range [0, 1]
1 for a special token, 0 for a sequence token.
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
or encode_plus
methods.
Returns the vocabulary as a dictionary of token to index.
tokenizer.get_vocab()[token]
is equivalent to tokenizer.convert_tokens_to_ids(token)
when token
is in the
vocab.
( encoded_inputs: typing.Union[transformers.tokenization_utils_base.BatchEncoding, typing.List[transformers.tokenization_utils_base.BatchEncoding], typing.Dict[str, typing.List[int]], typing.Dict[str, typing.List[typing.List[int]]], typing.List[typing.Dict[str, typing.List[int]]]] padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = True max_length: typing.Optional[int] = None pad_to_multiple_of: typing.Optional[int] = None return_attention_mask: typing.Optional[bool] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None verbose: bool = True )
Parameters
Dict[str, List[int]]
, Dict[str, List[List[int]]
or List[Dict[str, List[int]]]
) —
Tokenized inputs. Can represent one input (BatchEncoding or Dict[str, List[int]]
) or a batch of
tokenized inputs (list of BatchEncoding, Dict[str, List[List[int]]] or List[Dict[str,
List[int]]]) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function.
Instead of List[int]
you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
the note above for the return type.
bool
, str
or PaddingStrategy, optional, defaults to True
) —
Select a strategy to pad the returned sequences (according to the model’s padding side and padding
index) among:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).int
, optional) —
Maximum length of the returned list and optionally padding length (see above).
int
, optional) —
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
= 7.5 (Volta).
bool
, optional) —
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs
attribute.
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, optional, defaults to True
) —
Whether or not to print more information and warnings.
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch.
Padding side (left/right) padding token ids are defined at the tokenizer level (with self.padding_side
,
self.pad_token_id
and self.pad_token_type_id
).
Please note that with a fast tokenizer, using the __call__
method is faster than using a method to encode the
text followed by a call to the pad
method to get a padded encoding.
If the encoded_inputs
passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with return_tensors
. In the case of
PyTorch tensors, you will lose the specific device of your tensors however.
( ids: typing.List[int] pair_ids: typing.Optional[typing.List[int]] = None add_special_tokens: bool = True padding: typing.Union[bool, str, transformers.utils.generic.PaddingStrategy] = False truncation: typing.Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy] = None max_length: typing.Optional[int] = None stride: int = 0 pad_to_multiple_of: typing.Optional[int] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None return_token_type_ids: typing.Optional[bool] = None return_attention_mask: typing.Optional[bool] = None return_overflowing_tokens: bool = False return_special_tokens_mask: bool = False return_offsets_mapping: bool = False return_length: bool = False verbose: bool = True prepend_batch_axis: bool = False **kwargs ) → BatchEncoding
Parameters
List[int]
) —
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the tokenize
and
convert_tokens_to_ids
methods.
List[int]
, optional) —
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the tokenize
and convert_tokens_to_ids
methods.
bool
, optional, defaults to True
) —
Whether or not to encode the sequences with the special tokens relative to their model.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).bool
, str
or TruncationStrategy, optional, defaults to False
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).int
, optional) —
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to None
, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional, defaults to 0) —
If set to a number along with max_length
, the overflowing tokens returned when
return_overflowing_tokens=True
will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
bool
, optional, defaults to False
) —
Whether or not the input is already pre-tokenized (e.g., split into words). If set to True
, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
int
, optional) —
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, optional) —
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional) —
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs
attribute.
bool
, optional, defaults to False
) —
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first
or True
, an error is raised instead
of returning overflowing tokens.
bool
, optional, defaults to False
) —
Whether or not to return special tokens mask information.
bool
, optional, defaults to False
) —
Whether or not to return (char_start, char_end)
for each token.
This is only available on fast tokenizers inheriting from PreTrainedTokenizerFast, if using
Python’s tokenizer, this method will raise NotImplementedError
.
bool
, optional, defaults to False
) —
Whether or not to return the lengths of the encoded inputs.
bool
, optional, defaults to True
) —
Whether or not to print more information and warnings.
**kwargs — passed to the self.tokenize()
method
Returns
A BatchEncoding with the following fields:
input_ids — List of token ids to be fed to a model.
token_type_ids — List of token type ids to be fed to a model (when return_token_type_ids=True
or
if “token_type_ids” is in self.model_input_names
).
attention_mask — List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True
or if “attention_mask” is in self.model_input_names
).
overflowing_tokens — List of overflowing tokens sequences (when a max_length
is specified and
return_overflowing_tokens=True
).
num_truncated_tokens — Number of tokens truncated (when a max_length
is specified and
return_overflowing_tokens=True
).
special_tokens_mask — List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True
and return_special_tokens_mask=True
).
length — The length of the inputs (when return_length=True
)
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for pair_ids
different than None
and truncation_strategy = longest_first or True
, it is not possible to return
overflowing tokens. Such a combination of arguments will raise an error.
( src_texts: typing.List[str] tgt_texts: typing.Optional[typing.List[str]] = None max_length: typing.Optional[int] = None max_target_length: typing.Optional[int] = None padding: str = 'longest' return_tensors: str = None truncation: bool = True **kwargs ) → BatchEncoding
Parameters
List[str]
) —
List of documents to summarize or source language texts.
list
, optional) —
List of summaries or target language texts.
int
, optional) —
Controls the maximum length for encoder inputs (documents to summarize or source language texts) If
left unset or set to None
, this will use the predefined model maximum length if a maximum length is
required by one of the truncation/padding parameters. If the model has no specific maximum input length
(like XLNet) truncation/padding to a maximum length will be deactivated.
int
, optional) —
Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set
to None
, this will use the max_length value.
bool
, str
or PaddingStrategy, optional, defaults to False
) —
Activates and controls padding. Accepts the following values:
True
or 'longest'
: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).'max_length'
: Pad to a maximum length specified with the argument max_length
or to the maximum
acceptable input length for the model if that argument is not provided.False
or 'do_not_pad'
(default): No padding (i.e., can output a batch with sequences of different
lengths).str
or TensorType, optional) —
If set, will return tensors instead of list of python integers. Acceptable values are:
'tf'
: Return TensorFlow tf.constant
objects.'pt'
: Return PyTorch torch.Tensor
objects.'np'
: Return Numpy np.ndarray
objects.bool
, str
or TruncationStrategy, optional, defaults to True
) —
Activates and controls truncation. Accepts the following values:
True
or 'longest_first'
: Truncate to a maximum length specified with the argument max_length
or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.False
or 'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
**kwargs —
Additional keyword arguments passed along to self.__call__
.Returns
A BatchEncoding with the following fields:
The full set of keys [input_ids, attention_mask, labels]
, will only be returned if tgt_texts is passed.
Otherwise, input_ids, attention_mask will be the only keys.
Prepare model inputs for translation. For best performance, translate one sentence at a time.
( repo_id: str use_temp_dir: typing.Optional[bool] = None commit_message: typing.Optional[str] = None private: typing.Optional[bool] = None use_auth_token: typing.Union[bool, str, NoneType] = None max_shard_size: typing.Union[int, str, NoneType] = '10GB' create_pr: bool = False **deprecated_kwargs )
Parameters
str
) —
The name of the repository you want to push your tokenizer to. It should contain your organization name
when pushing to a given organization.
bool
, optional) —
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
Will default to True
if there is no directory named like repo_id
, False
otherwise.
str
, optional) —
Message to commit while pushing. Will default to "Upload tokenizer"
.
bool
, optional) —
Whether or not the repository created should be private (requires a paying subscription).
bool
or str
, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, will use the token generated
when running huggingface-cli login
(stored in ~/.huggingface
). Will default to True
if repo_url
is not specified.
int
or str
, optional, defaults to "10GB"
) —
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
will then be each of size lower than this size. If expressed as a string, needs to be digits followed
by a unit (like "5MB"
).
bool
, optional, defaults to False
) —
Whether or not to create a PR with the uploaded files or directly commit.
Upload the tokenizer files to the 🤗 Model Hub while synchronizing a local clone of the repo in
repo_path_or_name
.
Examples:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
# Push the tokenizer to your namespace with the name "my-finetuned-bert".
tokenizer.push_to_hub("my-finetuned-bert")
# Push the tokenizer to an organization with the name "my-finetuned-bert".
tokenizer.push_to_hub("huggingface/my-finetuned-bert")
( auto_class = 'AutoTokenizer' )
Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the
library are already mapped with AutoTokenizer
.
This API is experimental and may have some slight breaking changes in the next releases.
(
save_directory: typing.Union[str, os.PathLike]
legacy_format: typing.Optional[bool] = None
filename_prefix: typing.Optional[str] = None
push_to_hub: bool = False
**kwargs
)
→
A tuple of str
Parameters
str
or os.PathLike
) — The path to a directory where the tokenizer will be saved.
bool
, optional) —
Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
added_tokens files.
If False
, will only save the tokenizer in the unified JSON format. This format is incompatible with
“slow” tokenizers (not powered by the tokenizers library), so the tokenizer will not be able to be
loaded in the corresponding “slow” tokenizer.
If True
, will save the tokenizer in legacy format. If the “slow” tokenizer doesn’t exits, a value
error is raised.
filename_prefix — (str
, optional):
A prefix to add to the names of the files saved by the tokenizer.
bool
, optional, defaults to False
) —
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with repo_id
(will default to the name of save_directory
in your
namespace).
kwargs —
Additional key word arguments passed along to the push_to_hub() method.
Returns
A tuple of str
The files saved.
Save the full tokenizer state.
This method make sure the full tokenizer can then be re-loaded using the
~tokenization_utils_base.PreTrainedTokenizer.from_pretrained
class method..
Warning,None This won’t save modifications you may have applied to the tokenizer after the instantiation (for
instance, modifying tokenizer.do_lower_case
after creation).
(
save_directory: str
filename_prefix: typing.Optional[str] = None
)
→
Tuple(str)
Save only the vocabulary of the tokenizer (vocabulary + added tokens).
This method won’t save the configuration and special token mappings of the tokenizer. Use
_save_pretrained()
to save the whole state of the tokenizer.
(
text: str
pair: typing.Optional[str] = None
add_special_tokens: bool = False
**kwargs
)
→
List[str]
Parameters
str
) —
The sequence to be encoded.
str
, optional) —
A second sequence to be encoded with the first.
bool
, optional, defaults to False
) —
Whether or not to add the special tokens associated with the corresponding model.
Returns
List[str]
The list of tokens.
Converts a string in a sequence of tokens, replacing unknown tokens with the unk_token
.
(
ids: typing.List[int]
pair_ids: typing.Optional[typing.List[int]] = None
num_tokens_to_remove: int = 0
truncation_strategy: typing.Union[str, transformers.tokenization_utils_base.TruncationStrategy] = 'longest_first'
stride: int = 0
)
→
Tuple[List[int], List[int], List[int]]
Parameters
List[int]
) —
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the tokenize
and
convert_tokens_to_ids
methods.
List[int]
, optional) —
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the tokenize
and convert_tokens_to_ids
methods.
int
, optional, defaults to 0) —
Number of tokens to remove using the truncation strategy.
str
or TruncationStrategy, optional, defaults to False
) —
The strategy to follow for truncation. Can be:
'longest_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.'only_first'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second'
: Truncate to a maximum length specified with the argument max_length
or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'do_not_truncate'
(default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).int
, optional, defaults to 0) —
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns
Tuple[List[int], List[int], List[int]]
The truncated ids
, the truncated pair_ids
and the list of
overflowing tokens. Note: The longest_first strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.
Truncates a sequence pair in-place following the strategy.
( verbose = True **kwargs )
Parameters
str
or tokenizers.AddedToken
, optional) —
A special token representing the beginning of a sentence.
str
or tokenizers.AddedToken
, optional) —
A special token representing the end of a sentence.
str
or tokenizers.AddedToken
, optional) —
A special token representing an out-of-vocabulary token.
str
or tokenizers.AddedToken
, optional) —
A special token separating two different sentences in the same input (used by BERT for instance).
str
or tokenizers.AddedToken
, optional) —
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
str
or tokenizers.AddedToken
, optional) —
A special token representing the class of the input (used by BERT for instance).
str
or tokenizers.AddedToken
, optional) —
A special token representing a masked token (used by masked-language modeling pretraining objectives, like
BERT).
str
or tokenizers.AddedToken
, optional) —
A tuple or a list of additional special tokens.
A mixin derived by PreTrainedTokenizer and PreTrainedTokenizerFast to handle specific behaviors related to special tokens. In particular, this class hold the attributes which can be used to directly access these special tokens in a model-independent manner and allow to set and update the special tokens.
(
special_tokens_dict: typing.Dict[str, typing.Union[str, tokenizers.AddedToken]]
)
→
int
Parameters
tokenizers.AddedToken
) —
Keys should be in the list of predefined special attributes: [bos_token
, eos_token
, unk_token
,
sep_token
, pad_token
, cls_token
, mask_token
, additional_special_tokens
].
Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer
assign the index of the unk_token
to them).
Returns
int
Number of tokens added to the vocabulary.
Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary).
Note,None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.
In order to do that, please use the resize_token_embeddings() method.
Using add_special_tokens
will ensure your special tokens can be used in several ways:
tokenizer.cls_token
. This
makes it easy to develop model-agnostic training and fine-tuning scripts.When possible, special tokens are already registered for provided pretrained models (for instance
BertTokenizer cls_token
is already registered to be :obj’[CLS]’ and XLM’s one is also registered to be
'</s>'
).
Examples:
# Let's see how to add a new classification token to GPT-2
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2Model.from_pretrained("gpt2")
special_tokens_dict = {"cls_token": "<CLS>"}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
assert tokenizer.cls_token == "<CLS>"
(
new_tokens: typing.Union[str, tokenizers.AddedToken, typing.List[typing.Union[str, tokenizers.AddedToken]]]
special_tokens: bool = False
)
→
int
Parameters
str
, tokenizers.AddedToken
or a list of str or tokenizers.AddedToken
) —
Tokens are only added if they are not already in the vocabulary. tokenizers.AddedToken
wraps a string
token to let you personalize its behavior: whether this token should only match against a single word,
whether this token should strip all potential whitespaces on the left side, whether this token should
strip all potential whitespaces on the right side, etc.
bool
, optional, defaults to False
) —
Can be used to specify if the token is a special token. This mostly change the normalization behavior
(special tokens like CLS or [MASK] are usually not lower-cased for instance).
See details for tokenizers.AddedToken
in HuggingFace tokenizers library.
Returns
int
Number of tokens added to the vocabulary.
Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary and and will be isolated before the tokenization algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore not treated in the same way.
Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.
In order to do that, please use the resize_token_embeddings() method.
Examples:
# Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
(
)
→
int
Returns
int
The number of tokens added in the vocabulary during the operation.
Make sure that all the special tokens attributes of the tokenizer (tokenizer.mask_token
,
tokenizer.cls_token
, etc.) are in the vocabulary.
Add the missing ones to the vocabulary if needed.
( value names = None module = None qualname = None type = None start = 1 )
Possible values for the truncation
argument in PreTrainedTokenizerBase.call(). Useful for tab-completion in
an IDE.
( start: int end: int )
Character span in the original string.
( start: int end: int )
Token span in an encoded string (list of tokens).