id
int64 3
39.4k
| title
stringlengths 1
80
| text
stringlengths 2
313k
| paragraphs
listlengths 1
6.47k
| abstract
stringlengths 1
52k
â | wikitext
stringlengths 10
330k
â | date_created
stringlengths 20
20
â | date_modified
stringlengths 20
20
| templates
listlengths 0
20
| url
stringlengths 32
653
|
---|---|---|---|---|---|---|---|---|---|
24,835 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡15 | ç£æ»äººã®æèŠè¡šæã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.ç£æ»äººã¯,ç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯,åœè©²è²¡å諞衚ã«éèŠãªèåœã®è¡šç€ºãååšããªãæšãèšèŒããªããã°ãªããªãã
ã€.ç£æ»äººã¯,ç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯,éèŠãªèåœè¡šç€ºãªã¹ã¯ãåççã«äœãæ°Žæºã«æããäžã§,èªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªãã
ãŠ.ç£æ»äººã¯,äŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³,財å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ããã,ç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªãã,財å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯,é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªãã
ãš.ç£æ»äººã¯,è€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠ,åã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠã,ãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯,æèŠã衚æã§ããªãããšãããã
6
ã¢.ç£æ»äººã¯,ç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯,åœè©²è²¡å諞衚ã«éèŠãªèåœã®è¡šç€ºãååšããªãæšããã¹ãŠã®éèŠãªç¹ã«ãããŠé©æ£ã«è¡šç€ºããŠãããã©ããã«ã€ããŠã®æèŠãèšèŒããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºäž1,ç£æ»åºæºå§å¡äŒå ±åæž200第10é
(1),ç£æ»åºæºå§å¡äŒå ±åæž700第32é
,ç£æ»åºæºå§å¡äŒå ±åæž800ä»é²æäŸ4
ã€.ç£æ»äººã¯,ç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯,éèŠãªèåœè¡šç€ºãªã¹ã¯ç£æ»ãªã¹ã¯ãåççã«äœãæ°Žæºã«æããäžã§,èªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºäž3
ãŠ.ç£æ»äººã¯,äŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³,財å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ããã,ç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªãã,財å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯,é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå1
ãš.ç£æ»äººã¯,è€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠ,åã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠã,ãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯,æèŠã衚æã§ããªãããšããããç£æ»åºæºç¬¬åå ±ååºæºäº4,ç£æ»åºæºå§å¡äŒå ±åæž705第9é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç£æ»äººã®æèŠè¡šæã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯,åœè©²è²¡å諞衚ã«éèŠãªèåœã®è¡šç€ºãååšããªãæšãèšèŒããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯,éèŠãªèåœè¡šç€ºãªã¹ã¯ãåççã«äœãæ°Žæºã«æããäžã§,èªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,äŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³,財å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ããã,ç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªãã,財å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯,é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,è€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠ,åã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠã,ãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯,æèŠã衚æã§ããªãããšãããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "6",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯,åœè©²è²¡å諞衚ã«éèŠãªèåœã®è¡šç€ºãååšããªãæšããã¹ãŠã®éèŠãªç¹ã«ãããŠé©æ£ã«è¡šç€ºããŠãããã©ããã«ã€ããŠã®æèŠãèšèŒããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºäž1,ç£æ»åºæºå§å¡äŒå ±åæž200第10é
(1),ç£æ»åºæºå§å¡äŒå ±åæž700第32é
,ç£æ»åºæºå§å¡äŒå ±åæž800ä»é²æäŸ4",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯,éèŠãªèåœè¡šç€ºãªã¹ã¯ç£æ»ãªã¹ã¯ãåççã«äœãæ°Žæºã«æããäžã§,èªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºäž3",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,äŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³,財å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ããã,ç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªãã,財å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯,é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå1",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,è€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠ,åã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠã,ãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯,æèŠã衚æã§ããªãããšããããç£æ»åºæºç¬¬åå ±ååºæºäº4,ç£æ»åºæºå§å¡äŒå ±åæž705第9é
",
"title": "解説"
}
]
| null | : [[../åé¡14|âåã®åé¡]]
: [[../åé¡16|次ã®åé¡â]]
== åé¡ ==
ãç£æ»äººã®æèŠè¡šæã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯ïŒåœè©²è²¡å諞衚ã«éèŠãªèåœã®è¡šç€ºãååšããªãæšãèšèŒããªããã°ãªããªãã
ã€ïŒç£æ»äººã¯ïŒç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯ïŒéèŠãªèåœè¡šç€ºãªã¹ã¯ãåççã«äœãæ°Žæºã«æããäžã§ïŒèªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªãã
ãŠïŒç£æ»äººã¯ïŒäŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³ïŒè²¡å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ãããïŒç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªããïŒè²¡å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯ïŒé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªãã
ãšïŒç£æ»äººã¯ïŒè€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠïŒåã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠãïŒãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯ïŒæèŠã衚æã§ããªãããšãããã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
6
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒç¹å¥ã®å©çšç®çã«é©åããäŒèšã®åºæºã«ããäœæããã財å諞衚ã®é©æ£æ§ã«é¢ããæèŠã衚æããå Žåã«ã¯ïŒåœè©²è²¡å諞衚<del>ã«éèŠãªèåœã®è¡šç€ºãååšããªãæš</del><ins>ããã¹ãŠã®éèŠãªç¹ã«ãããŠé©æ£ã«è¡šç€ºããŠãããã©ããã«ã€ããŠã®æèŠ</ins>ãèšèŒããªããã°ãªããªãã<ins>ç£æ»åºæºç¬¬åå ±ååºæºäž1ïŒç£æ»åºæºå§å¡äŒå ±åæž200第10é
(1)ïŒç£æ»åºæºå§å¡äŒå ±åæž700第32é
ïŒç£æ»åºæºå§å¡äŒå ±åæž800ä»é²æäŸ4</ins>
ã€ïŒç£æ»äººã¯ïŒç£æ»æèŠã®è¡šæã«åœãã£ãŠã¯ïŒ<del>éèŠãªèåœè¡šç€ºãªã¹ã¯</del><ins>ç£æ»ãªã¹ã¯</ins>ãåççã«äœãæ°Žæºã«æããäžã§ïŒèªå·±ã®æèŠã圢æããã«è¶³ãåºç€ãåŸãªããã°ãªããªãã<ins>ç£æ»åºæºç¬¬åå ±ååºæºäž3</ins>
ãŠïŒç£æ»äººã¯ïŒäŒèšæ¹éã®éžæåã³ãã®é©ç𿹿³ïŒè²¡å諞衚ã®è¡šç€ºæ¹æ³ã«é¢ããŠäžé©åãªãã®ãããïŒç¡éå®é©æ£æèŠã衚æããããšã¯ã§ããªããïŒè²¡å諞衚å
šäœãšããŠã¯èåœã®è¡šç€ºã§ã¯ãªããšå€æãããšãã«ã¯ïŒé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããªããã°ãªããªãã<ins>ç£æ»åºæºç¬¬åå ±ååºæºå1</ins>
ãšïŒç£æ»äººã¯ïŒè€æ°ã®äžç¢ºå®æ§ã䌎ãç¶æ³ã«ãããŠïŒåã
ã®äžç¢ºå®æ§ã«ã€ããŠååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšããŠãïŒãããã財å諞衚ã«åãŒãå¯èœæ§ã®ãã环ç©ç圱é¿ãè€åçãã€å€å²ã«ãããå Žåã«ã¯ïŒæèŠã衚æã§ããªãããšãããã<ins>ç£æ»åºæºç¬¬åå ±ååºæºäº4ïŒç£æ»åºæºå§å¡äŒå ±åæž705第9é
</ins>
</div>
== åç
§åºæº ==
* [https://www.fsa.go.jp/news/25/sonota/20140225-2/01.pdf#page=13 ç£æ»åºæº]
* [https://jicpa.or.jp/specialized_field/260_2.html ç£åºå ±200 財åè«žè¡šç£æ»ã«ãããç·æ¬çãªç®çïŒç£åºå ±705 ç¬ç«ç£æ»äººã®ç£æ»å ±åæžã«ãããé€å€äºé
仿èŠ]
* [https://jicpa.or.jp/specialized_field/800805800805.html ç£æ»åºæºå§å¡äŒå ±åæž700ã財å諞衚ã«å¯ŸããæèŠã®åœ¢æãšç£æ»å ±åã]
* [https://jicpa.or.jp/specialized_field/800805800805.html ç£æ»åºæºå§å¡äŒå ±åæž800 ç¹å¥ç®çã®è²¡åå ±åã®æ çµã¿ã«æºæ ããŠäœæããã財å諞衚ã«å¯Ÿããç£æ»]
: [[../åé¡14|âåã®åé¡]]
: [[../åé¡16|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-11-29T06:28:34Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C15 |
24,836 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡16 | ç¶ç¶äŒæ¥ã®åæã«ä¿ãç£æ»å ±åã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯,ç¡éå®é©æ£æèŠåã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã
ã€.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯,åœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã,åã¯,çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã
ãŠ.ç£æ»äººã¯,è¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©,ç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯,æèŠã衚æããŠã¯ãªããªãã
ãš.ç£æ»äººã¯,æŽçæç¶éå§æ±ºå®ã®åæ¶ã,æŽçèšç»ã®äžèªå¯ãªã©,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯,ç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã
5
ã¢.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯,ç¡éå®é©æ£æèŠåã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æãããç£æ»åºæºç¬¬åå ±ååºæºå
1,ç£æ»åºæºå§å¡äŒå ±åæž570第18é
ã€.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯,åœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã,åã¯,çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå
2,ç£æ»åºæºå§å¡äŒå ±åæž570第19é
ãŠ.ç£æ»äººã¯,è¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©,ç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯,æèŠã衚æããŠã¯ãªããªããéèŠãªç£æ»æç¶ã宿œã§ããªãã£ãå Žåã«æºããŠæèŠã®è¡šæã®é©åŠã倿ããªããã°ãªããªãã ç£æ»åºæºç¬¬åå ±ååºæºå
3,ç£æ»åºæºå§å¡äŒå ±åæž570A27é
ãš.ç£æ»äººã¯,æŽçæç¶éå§æ±ºå®ã®åæ¶ã,æŽçèšç»ã®äžèªå¯ãªã©,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯,ç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå
4,ç£æ»åºæºå§å¡äŒå ±åæž570第20é
A25é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¶ç¶äŒæ¥ã®åæã«ä¿ãç£æ»å ±åã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯,ç¡éå®é©æ£æèŠåã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯,åœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã,åã¯,çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,è¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©,ç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯,æèŠã衚æããŠã¯ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,æŽçæç¶éå§æ±ºå®ã®åæ¶ã,æŽçèšç»ã®äžèªå¯ãªã©,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯,ç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "5",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯,ç¡éå®é©æ£æèŠåã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æãããç£æ»åºæºç¬¬åå ±ååºæºå
1,ç£æ»åºæºå§å¡äŒå ±åæž570第18é
",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠ,ç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯,åœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã,åã¯,çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå
2,ç£æ»åºæºå§å¡äŒå ±åæž570第19é
",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,è¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©,ç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯,æèŠã衚æããŠã¯ãªããªããéèŠãªç£æ»æç¶ã宿œã§ããªãã£ãå Žåã«æºããŠæèŠã®è¡šæã®é©åŠã倿ããªããã°ãªããªãã ç£æ»åºæºç¬¬åå ±ååºæºå
3,ç£æ»åºæºå§å¡äŒå ±åæž570A27é
",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,æŽçæç¶éå§æ±ºå®ã®åæ¶ã,æŽçèšç»ã®äžèªå¯ãªã©,ç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯,ç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªããç£æ»åºæºç¬¬åå ±ååºæºå
4,ç£æ»åºæºå§å¡äŒå ±åæž570第20é
A25é
",
"title": "解説"
}
]
| null | : [[../åé¡15|âåã®åé¡]]
: [[../åé¡17|次ã®åé¡â]]
== åé¡ ==
ãç¶ç¶äŒæ¥ã®åæã«ä¿ãç£æ»å ±åã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠïŒç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯ïŒç¡éå®é©æ£æèŠåã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æããã
ã€ïŒç£æ»äººã¯ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠïŒç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯ïŒåœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æãããïŒåã¯ïŒçç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã
ãŠïŒç£æ»äººã¯ïŒè¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©ïŒç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯ïŒæèŠã衚æããŠã¯ãªããªãã
ãšïŒç£æ»äººã¯ïŒæŽçæç¶éå§æ±ºå®ã®åæ¶ãïŒæŽçèšç»ã®äžèªå¯ãªã©ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯ïŒç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
5
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠïŒç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠãããšå€æãããšãã«ã¯ïŒç¡éå®é©æ£æèŠ<del>åã¯éèŠãªäžç¢ºå®æ§ãåãŒã圱é¿ã«é¢ããé€å€äºé
ãä»ããéå®ä»é©æ£æèŠ</del>ã衚æããã<ins>ç£æ»åºæºç¬¬åå ±ååºæºå
1ïŒç£æ»åºæºå§å¡äŒå ±åæž570第18é
</ins>
ã€ïŒç£æ»äººã¯ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãã£ãŠãéèŠãªäžç¢ºå®æ§ãèªããããå Žåã«ãããŠïŒç¶ç¶äŒæ¥ã®åæã«é¢ããäºé
ã財å諞衚ã«é©åã«èšèŒãããŠããªããšå€æãããšãã«ã¯ïŒåœè©²èšèŒã«ã€ããŠã®é€å€äºé
ãä»ããéå®ä»é©æ£æèŠã衚æãããïŒåã¯ïŒçç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã<ins>ç£æ»åºæºç¬¬åå ±ååºæºå
2ïŒç£æ»åºæºå§å¡äŒå ±åæž570第19é
</ins>
ãŠïŒç£æ»äººã¯ïŒè¢«ç£æ»äŒæ¥ãåµåè¶
éã«ãããªã©ïŒç¶ç¶äŒæ¥ã®åæã«éèŠãªç矩ãçãããããããªäºè±¡åã¯ç¶æ³ã«é¢ããŠçµå¶è
ãè©äŸ¡åã³å¯Ÿå¿çã瀺ããªããšãã«ã¯ïŒ<del>æèŠã衚æããŠã¯ãªããªãã</del><ins>éèŠãªç£æ»æç¶ã宿œã§ããªãã£ãå Žåã«æºããŠæèŠã®è¡šæã®é©åŠã倿ããªããã°ãªããªãã ç£æ»åºæºç¬¬åå ±ååºæºå
3ïŒç£æ»åºæºå§å¡äŒå ±åæž570A27é
</ins>
ãšïŒç£æ»äººã¯ïŒæŽçæç¶éå§æ±ºå®ã®åæ¶ãïŒæŽçèšç»ã®äžèªå¯ãªã©ïŒç¶ç¶äŒæ¥ãåæãšããŠè²¡å諞衚ãäœæããããšãé©åã§ãªãå Žåã«ã¯ïŒç¶ç¶äŒæ¥ãåæãšãã財å諞衚ã«ã€ããŠã¯çç±ãä»ããŠäžé©æ£æèŠã衚æããªããã°ãªããªãã<ins>ç£æ»åºæºç¬¬åå ±ååºæºå
4ïŒç£æ»åºæºå§å¡äŒå ±åæž570第20é
A25é
</ins>
</div>
== åç
§åºæº ==
* [https://www.fsa.go.jp/news/25/sonota/20140225-2/01.pdf#page=16 ç£æ»åºæº]
* [https://jicpa.or.jp/specialized_field/260_2.html ç£åºå ±570 ç¶ç¶äŒæ¥]
: [[../åé¡15|âåã®åé¡]]
: [[../åé¡17|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-11-29T06:28:37Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C16 |
24,837 | äžçæè²åæã®ç€ŸäŒ | ãã®äžã«ãªã³ã¯ããããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®äžã«ãªã³ã¯ããããŸãã",
"title": "äžçæè²åæã®ç€ŸäŒ"
}
]
| null | == äžçæè²åæã®ç€ŸäŒ ==
ãã®äžã«ãªã³ã¯ããããŸãã
:* [[äžçæè²åæã®ç€ŸäŒ å°ç]] {{鲿|00%|2018-12-08}}
:* [[äžçæè²åæã®ç€ŸäŒ æŽå²]] {{鲿|00%|2018-12-08}}
:* [[äžçæè²åæã®ç€ŸäŒ å
¬æ°]] {{鲿|00%|2018-12-08}}
[[Category:äžåŠæ ¡æè²|*]]
[[Category:æžåº«|ã¡ãããšãããããããã€ããã®ããããã]]
[[Category:äžé«äžè²«æè²|ãããã]] | null | 2019-01-04T10:09:16Z | [
"ãã³ãã¬ãŒã:鲿"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%A4%BE%E4%BC%9A |
24,838 | äžçæè²åæã®çç§ ç¬¬1åé | ç³ãèš³ãããŸãããäœæäžã§ãã
ç³ãèš³ãããŸãããäœæäžã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç³ãèš³ãããŸãããäœæäžã§ãã",
"title": "ååŠåé"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç³ãèš³ãããŸãããäœæäžã§ãã",
"title": "ç©çåé"
}
]
| null | :* [[äžåŠæ ¡çç§]] > [[äžåŠæ ¡çç§ ç¬¬1åé]] > '''äžçæè²åæã®çç§ ç¬¬1åé'''
{{substub}}
== ååŠåé ==
ç³ãèš³ãããŸãããäœæäžã§ãã
== ç©çåé ==
ç³ãèš³ãããŸãããäœæäžã§ãã | 2018-12-26T10:10:02Z | 2023-10-06T05:51:47Z | [
"ãã³ãã¬ãŒã:Substub"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%90%86%E7%A7%91_%E7%AC%AC1%E5%88%86%E9%87%8E |
24,839 | äžçæè²åæã®çç§ ç¬¬2åé | ç³ãèš³ãããŸãããäœæäžã§ãã
ç³ãèš³ãããŸãããäœæäžã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç³ãèš³ãããŸãããäœæäžã§ãã",
"title": "çç©åé"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç³ãèš³ãããŸãããäœæäžã§ãã",
"title": "å°åŠåé"
}
]
| null | :* [[äžåŠæ ¡çç§]] > [[äžåŠæ ¡çç§ ç¬¬2åé]] > '''äžçæè²åæã®çç§ ç¬¬2åé'''
{{substub}}
== çç©åé ==
ç³ãèš³ãããŸãããäœæäžã§ãã
== å°åŠåé ==
ç³ãèš³ãããŸãããäœæäžã§ãã
[[Category:äžåŠæ ¡æè²|*]]
[[Category:æžåº«|ã¡ãããšãããããããã€ããã®ããããã]] | 2018-12-26T10:11:51Z | 2023-10-06T05:50:53Z | [
"ãã³ãã¬ãŒã:Substub"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%90%86%E7%A7%91_%E7%AC%AC2%E5%88%86%E9%87%8E |
24,841 | äžçæè²åæã®ç€ŸäŒ æŽå² | æŽå²ãåŠã¶äžã§ã幎ãšãããã®ã«ã€ããŠã®çè§£ãå¿
èŠã§ããã ããã«ã€ããŠã¯ãæä»£ã»å¹Žä»£ãªã©ã«ã€ããŠãåç
§ã®ããšã äžçŽãåå¹²åäºæ¯ãæ¹äœã«ã€ããŠã®çè§£ãããã°ããã
äžäžä»¥éã¯ãã°ãããåŸ
ã¡ãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æŽå²ãåŠã¶äžã§ã幎ãšãããã®ã«ã€ããŠã®çè§£ãå¿
èŠã§ããã ããã«ã€ããŠã¯ãæä»£ã»å¹Žä»£ãªã©ã«ã€ããŠãåç
§ã®ããšã äžçŽãåå¹²åäºæ¯ãæ¹äœã«ã€ããŠã®çè§£ãããã°ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžäžä»¥éã¯ãã°ãããåŸ
ã¡ãã ããã",
"title": ""
}
]
| null | === ã¯ããã« ===
æŽå²ãåŠã¶äžã§ã幎ãšãããã®ã«ã€ããŠã®çè§£ãå¿
èŠã§ããã
ããã«ã€ããŠã¯ã[[äžçæè²åæã®ç€ŸäŒãæŽå²/æä»£ã»å¹Žä»£ãªã©ã«ã€ããŠã®è£è¬|æä»£ã»å¹Žä»£ãªã©ã«ã€ããŠ]]ãåç
§ã®ããšã
äžçŽãåå¹²åäºæ¯ãæ¹äœã«ã€ããŠã®çè§£ãããã°ããã
=== å€ä»£ ===
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/ããã®åºçŸãšé²å|ããã®åºçŸãšé²å]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/å€ä»£ã®ææ|å€ä»£ã®ææ]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/äžåœææ|äžåœææ]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/ã®ãªã·ã£ã»ããŒãææ|ã®ãªã·ã£ã»ããŒãææ]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/宿ã«ã€ããŠ]]
=== æ¥æ¬ã®å€ä»£ ===
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/æ¥æ¬åå³¶ã®èªç]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/çžææå]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/匥çæå]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/å€§åæ¿æš©]]
=== å€ä»£ã®æ±ã¢ãžã¢ã𿥿¬ ===
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/è埳倪å]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/倧åã®æ¹æ°]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/å¹³å京ãšåŸä»€åœå®¶]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/倩平æå]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/å¹³å®äº¬]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/æ±ã¢ãžã¢ã®å€å]]
* [[äžçæè²åæã®ç€ŸäŒãæŽå²/æé¢æ¿æ²»ãšåœé¢šæå]]
äžäžä»¥éã¯ãã°ãããåŸ
ã¡ãã ããã
{{stub}}
[[Category:äžåŠæ ¡æè²|*]]
[[Category:äžé«äžè²«æè²_瀟äŒ|ããã]]
[[Category:äžé«äžè²«æè²|ããã]] | null | 2019-01-04T10:10:28Z | [
"ãã³ãã¬ãŒã:Stub"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%A4%BE%E4%BC%9A_%E6%AD%B4%E5%8F%B2 |
24,842 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡17 | è¿œèšæ
å ±ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.財å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããš,財å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ããããã,匷調äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ãããã
ã€.ç£æ»äººã¯,ç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå Žå,åœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšã¯éããªãã
ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå Žå,ãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠ,ç£æ»åœ¹çã«å ±åããªããã°ãªããªãã
ãš.äžè¬ã«,ç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒãããã,ç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããš,ãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠãããã,ç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããšã¯æ±ããããŠããããã§ã¯ãªã,ç£æ»äººã®ä»»æã®è¡çºã§ããã
2
ã¢.財å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããš,財å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ããããã,匷調äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ããããç£æ»åºæºå§å¡äŒå ±åæž706第5é
A2é
ã€.ç£æ»äººã¯,ç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå Žå,åœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšã¯éããªããããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±åæž706第5é
ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå Žå,ãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠ,ç£æ»åœ¹çã«å ±åããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±åæž706第8é
ãš.äžè¬ã«,ç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒãããã,ç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããš,ãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠãããã,ç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããšã¯ãå
¬èªäŒèšå£«æ³ã«ãã£ãŠæ±ããããŠããããã§ã¯ãªã,ç£æ»äººã®ä»»æã®è¡çºã§ãããç£æ»åºæºå§å¡äŒå ±åæž706A5é
,å
¬èªäŒèšå£«æ³25æ¡2é
,34æ¡ã®12第3é
,ç£æ»èšŒæåºä»€4æ¡1é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "è¿œèšæ
å ±ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.財å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããš,財å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ããããã,匷調äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ãããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå Žå,åœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšã¯éããªãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå Žå,ãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠ,ç£æ»åœ¹çã«å ±åããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.äžè¬ã«,ç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒãããã,ç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããš,ãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠãããã,ç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããšã¯æ±ããããŠããããã§ã¯ãªã,ç£æ»äººã®ä»»æã®è¡çºã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "2",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.財å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããš,財å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ããããã,匷調äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ããããç£æ»åºæºå§å¡äŒå ±åæž706第5é
A2é
",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå Žå,åœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšã¯éããªããããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±åæž706第5é
",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå Žå,ãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠ,ç£æ»åœ¹çã«å ±åããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±åæž706第8é
",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.äžè¬ã«,ç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒãããã,ç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããš,ãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠãããã,ç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããšã¯ãå
¬èªäŒèšå£«æ³ã«ãã£ãŠæ±ããããŠããããã§ã¯ãªã,ç£æ»äººã®ä»»æã®è¡çºã§ãããç£æ»åºæºå§å¡äŒå ±åæž706A5é
,å
¬èªäŒèšå£«æ³25æ¡2é
,34æ¡ã®12第3é
,ç£æ»èšŒæåºä»€4æ¡1é
",
"title": "解説"
}
]
| null | : [[../åé¡16|âåã®åé¡]]
: [[../åé¡18|次ã®åé¡â]]
== åé¡ ==
ãè¿œèšæ
å ±ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒè²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããšïŒè²¡å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ãããããïŒåŒ·èª¿äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ãããã
ã€ïŒç£æ»äººã¯ïŒç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå ŽåïŒåœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æããŠãããšã¯éããªãã
ãŠïŒç£æ»äººã¯ïŒç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå ŽåïŒãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠïŒç£æ»åœ¹çã«å ±åããªããã°ãªããªãã
ãšïŒäžè¬ã«ïŒç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒããããïŒç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããšïŒãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠããããïŒç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããšã¯æ±ããããŠããããã§ã¯ãªãïŒç£æ»äººã®ä»»æã®è¡çºã§ããã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
2
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒè²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
以å€ã®æ
å ±ã匷調äºé
ã«å«ãããšïŒè²¡å諞衚ã«åœè©²äºé
ãé©åã«è¡šç€ºåã¯é瀺ãããŠããªãããšã瀺ãå¯èœæ§ãããããïŒåŒ·èª¿äºé
åºåã®äœ¿çšã¯è²¡å諞衚ã«è¡šç€ºåã¯é瀺ãããŠããäºé
ã«éå®ãããã<ins>ç£æ»åºæºå§å¡äŒå ±åæž706第5é
A2é
</ins>
ã€ïŒç£æ»äººã¯ïŒç£æ»å ±åæžã«åŒ·èª¿äºé
åºåãèšããå ŽåïŒåœè©²äºé
ã«ã€ããŠè²¡å諞衚ã®éèŠãªèåœè¡šç€ºããªããšããååãã€é©åãªç£æ»èšŒæ ãå
¥æ<del>ããŠãããšã¯éããªãã</del><ins>ããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±åæž706第5é
</ins>
ãŠïŒç£æ»äººã¯ïŒç£æ»å ±åæžã«ãã®ä»ã®äºé
åºåãèšããããšãèŠèŸŒãŸããå ŽåïŒãã®æšãšåœè©²åºåã®æèšã®èæ¡ã«ã€ããŠïŒç£æ»åœ¹çã«å ±åããªããã°ãªããªãã<ins>ç£æ»åºæºå§å¡äŒå ±åæž706第8é
</ins>
ãšïŒäžè¬ã«ïŒç£æ»å ±åæžã«ã¯åºåãèšããŠå©å®³é¢ä¿ã®èšèŒããããïŒ<del>ç£æ»å ±åæžã®è¡šé¡ããç¬ç«ç£æ»äººã®ç£æ»å ±åæžããšãªã£ãŠããããšïŒãŸãç£æ»äººã«è¢«ç£æ»äŒç€Ÿãšã®ç¹å¥ã®é¢ä¿ããªãããšãæ³å®ããŠããããïŒ</del>ç£æ»å ±åæžã«å©å®³é¢ä¿ã«ã€ããŠèšèŒããããš<del>ã¯</del><ins>ãå
¬èªäŒèšå£«æ³ã«ãã£ãŠ</ins>æ±ããããŠãã<del>ããã§ã¯ãªãïŒç£æ»äººã®ä»»æã®è¡çºã§ãã</del>ã<ins>ç£æ»åºæºå§å¡äŒå ±åæž706A5é
ïŒå
¬èªäŒèšå£«æ³25æ¡2é
ïŒ34æ¡ã®12第3é
ïŒç£æ»èšŒæåºä»€4æ¡1é
</ins>
</div>
== åç
§åºæº ==
* [https://jicpa.or.jp/specialized_field/260_2.html ç£åºå ±706 ç¬ç«ç£æ»äººã®ç£æ»å ±åæžã«ããã匷調äºé
åºåãšãã®ä»ã®äºé
åºå]
* [http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=323AC0000000103_20160401_426AC0000000069&openerCode=1 å
¬èªäŒèšå£«æ³]
* [http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=332M50000040012 財å諞衚çã®ç£æ»èšŒæã«é¢ããå
é£åºä»€]
: [[../åé¡16|âåã®åé¡]]
: [[../åé¡18|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-11-29T06:28:40Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C17 |
24,843 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡18 | æ¯èŒæ
å ±ã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠãã,ãã€,ãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠ,åœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšãã¯,ç£æ»äººã¯,å幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªãã
ã€.ç£æ»äººã¯,åä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå Žå,éåžž,é©åãªéå±€ã®çµå¶è
,ç£æ»åœ¹çã«å ±åã,å ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ããã
ãŠ.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšã,ç£æ»äººã¯,ãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªãã,åœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ãã
ãš.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,ç£æ»äººã¯,åœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠãããã
4
ã¢.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠãã,ãã€,ãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠ,åœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšãã¯,ç£æ»äººã¯,å幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªããã,åœå¹ŽåºŠã®æ°å€ãšå¯Ÿå¿æ°å€ã®æ¯èŒå¯èœæ§ã®èгç¹ãã,æªè§£æ¶äºé
ãåãŒã圱é¿åã¯åãŒãå¯èœæ§ã®ãã圱é¿ã«ãã£ãŠ,åœå¹ŽåºŠã®è²¡å諞衚ã«å¯ŸããŠé宿èŠ,æèŠäžè¡šæåã¯åŠå®çæèŠãèŠæ±ãããããšããããç£æ»åºæºå§å¡äŒå ±åæž710第10é
(2),A4é
ã€.ç£æ»äººã¯,åä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå Žå,éåžž,é©åãªéå±€ã®çµå¶è
,ç£æ»åœ¹çã«å ±åã,å ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ãããç£æ»åºæºå§å¡äŒå ±åæž710第17é
A7é
ãŠ.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšã,ç£æ»äººã¯,ãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªãã,åœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ããç£æ»åºæºå§å¡äŒå ±åæž710第13é
,ç£æ»åºæºå§å¡äŒå ±åæž510A6é
ãš.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€æ¯èŒè²¡å諞衚ã«ãã£ãŠè¡šç€ºãããŠããå Žå,ç£æ»äººã¯,åœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠããããç£æ»åºæºå§å¡äŒå ±åæž710A1é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¯èŒæ
å ±ã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠãã,ãã€,ãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠ,åœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšãã¯,ç£æ»äººã¯,å幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,åä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå Žå,éåžž,é©åãªéå±€ã®çµå¶è
,ç£æ»åœ¹çã«å ±åã,å ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšã,ç£æ»äººã¯,ãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªãã,åœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,ç£æ»äººã¯,åœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠãããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "4",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠãã,ãã€,ãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠ,åœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšãã¯,ç£æ»äººã¯,å幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªããã,åœå¹ŽåºŠã®æ°å€ãšå¯Ÿå¿æ°å€ã®æ¯èŒå¯èœæ§ã®èгç¹ãã,æªè§£æ¶äºé
ãåãŒã圱é¿åã¯åãŒãå¯èœæ§ã®ãã圱é¿ã«ãã£ãŠ,åœå¹ŽåºŠã®è²¡å諞衚ã«å¯ŸããŠé宿èŠ,æèŠäžè¡šæåã¯åŠå®çæèŠãèŠæ±ãããããšããããç£æ»åºæºå§å¡äŒå ±åæž710第10é
(2),A4é
",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,åä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå Žå,éåžž,é©åãªéå±€ã®çµå¶è
,ç£æ»åœ¹çã«å ±åã,å ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ãããç£æ»åºæºå§å¡äŒå ±åæž710第17é
A7é
",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå Žå,å幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšã,ç£æ»äººã¯,ãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªãã,åœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ããç£æ»åºæºå§å¡äŒå ±åæž710第13é
,ç£æ»åºæºå§å¡äŒå ±åæž510A6é
",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.æ¯èŒæ
å ±ãå¯Ÿå¿æ°å€æ¯èŒè²¡å諞衚ã«ãã£ãŠè¡šç€ºãããŠããå Žå,ç£æ»äººã¯,åœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠããããç£æ»åºæºå§å¡äŒå ±åæž710A1é
",
"title": "解説"
}
]
| null | : [[../åé¡17|âåã®åé¡]]
: [[../åé¡19|次ã®åé¡â]]
== åé¡ ==
ãæ¯èŒæ
å ±ã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒæ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒå幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠããïŒãã€ïŒãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠïŒåœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšãã¯ïŒç£æ»äººã¯ïŒå幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªãã
ã€ïŒç£æ»äººã¯ïŒåä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå ŽåïŒéåžžïŒé©åãªéå±€ã®çµå¶è
ïŒç£æ»åœ¹çã«å ±åãïŒå ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ããã
ãŠïŒæ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒå幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšãïŒç£æ»äººã¯ïŒãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªããïŒåœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ãã
ãšïŒæ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒç£æ»äººã¯ïŒåœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠãããã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
4
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒæ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒå幎床ã®ç£æ»å ±åæžã«ãããŠéå®ä»é©æ£æèŠã衚æãããŠããïŒãã€ïŒãã®åå ãšãªã£ãäºé
ãæªè§£æ¶ã§ããç¶æ³ã«ãããŠïŒåœè©²äºé
ãåœå¹ŽåºŠã®æ°å€ã«ã¯é¢é£ããªããšã<del>ã¯ïŒç£æ»äººã¯ïŒå幎床ã®é€å€äºé
ãåœå¹ŽåºŠã®è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžã«ãããŠé€å€äºé
ãšããŠåãæ±ãå¿
èŠã¯ãªãã</del><ins>ãïŒåœå¹ŽåºŠã®æ°å€ãšå¯Ÿå¿æ°å€ã®æ¯èŒå¯èœæ§ã®èгç¹ããïŒæªè§£æ¶äºé
ãåãŒã圱é¿åã¯åãŒãå¯èœæ§ã®ãã圱é¿ã«ãã£ãŠïŒåœå¹ŽåºŠã®è²¡å諞衚ã«å¯ŸããŠé宿èŠïŒæèŠäžè¡šæåã¯åŠå®çæèŠãèŠæ±ãããããšããããç£æ»åºæºå§å¡äŒå ±åæž710第10é
(2)ïŒA4é
</ins>
ã€ïŒç£æ»äººã¯ïŒåä»»ç£æ»äººãç¡éå®é©æ£æèŠã衚æããå幎床ã®è²¡å諞衚ã«éèŠãªèåœè¡šç€ºãååšãããšå€æããå ŽåïŒéåžžïŒé©åãªéå±€ã®çµå¶è
ïŒç£æ»åœ¹çã«å ±åãïŒå ããŠåä»»ç£æ»äººãå«ãäžè
éã§åè°ããããæ±ããã<ins>ç£æ»åºæºå§å¡äŒå ±åæž710第17é
A7é
</ins>
ãŠïŒæ¯èŒæ
å ±ãå¯Ÿå¿æ°å€ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒå幎床ã®è²¡å諞衚ãç£æ»ãããŠããªããšãïŒç£æ»äººã¯ïŒãã®ä»ã®äºé
åºåã«å¯Ÿå¿æ°å€ãç£æ»ãããŠããªãæšãèšèŒããªããã°ãªããªããïŒåœå¹ŽåºŠã®è²¡åè«žè¡šã®æéŠæ®é«ã«é¢ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªããšãã¯ç£æ»ç¯å²ã®å¶çŽãšããŠåãæ±ãã<ins>ç£æ»åºæºå§å¡äŒå ±åæž710第13é
ïŒç£æ»åºæºå§å¡äŒå ±åæž510A6é
</ins>
ãšïŒæ¯èŒæ
å ±ã<del>å¯Ÿå¿æ°å€</del><ins>æ¯èŒè²¡å諞衚</ins>ã«ãã£ãŠè¡šç€ºãããŠããå ŽåïŒç£æ»äººã¯ïŒåœå¹ŽåºŠã ãã§ãªãæ¯èŒæ
å ±ã®å¯Ÿè±¡ã§ããå幎床ã®è²¡å諞衚ã«ã€ããŠãçµå¶è
ç¢ºèªæžã«èšèŒããããçµå¶è
ã«èŠè«ããå¿
èŠãããã<ins>ç£æ»åºæºå§å¡äŒå ±åæž710A1é
</ins>
</div>
== åç
§åºæº ==
* [https://jicpa.or.jp/specialized_field/260_2.html ç£åºå ±510 åå¹ŽåºŠç£æ»ã®æéŠæ®é«ïŒç£åºå ±710 éå¹ŽåºŠã®æ¯èŒæ
å ±ïŒå¯Ÿå¿æ°å€ãšæ¯èŒè²¡å諞衚]
: [[../åé¡17|âåã®åé¡]]
: [[../åé¡19|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-11-29T06:28:44Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C18 |
24,844 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡19 | åŸçºäºè±¡çã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«,åœè©²æéã«è¡ãããç£æ»æç¶ã«å«ããªããã°ãªããªããã®ãšããŠ,ææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèªããªããã°ãªããªãã
ã€.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠ,ååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªãã,ææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠ,åŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåãããã
ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,ç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠ,ãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠããã,ãã€,çµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå Žå,é€å€äºé
仿èŠã衚æããããšãããã
ãš.ç£æ»äººã¯,財å諞衚ãçºè¡ãããåŸã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,çµå¶è
ã財å諞衚ãèšæ£ããå Žå,åœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºããã,ç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒããå¿
èŠã¯ãªãã
4
ã¢.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«,åœè©²æéã«è¡ãããç£æ»æç¶ã«å«ããªããã°ãªããªãå«ãããã®ãšããŠ,ææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèªããªããã°ãªããªããããããšãå¿
èŠãã€é©åã§ãããšèããããšããããç£æ»åºæºå§å¡äŒå ±å560第6é
A7é
ã€.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠ,ååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªãã,ææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠ,åŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåããããç£æ»åºæºå§å¡äŒå ±å560第5é
A5é
ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,ç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠ,ãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠããã,ãã€,çµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå Žå,é€å€äºé
仿èŠã衚æããããšããããç£æ»åºæºå§å¡äŒå ±å560第12é
(1)
ãš.ç£æ»äººã¯,財å諞衚ãçºè¡ãããåŸã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,çµå¶è
ã財å諞衚ãèšæ£ããå Žå,åœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºããã,ç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒããå¿
èŠã¯ãªããããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±å560第15é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "åŸçºäºè±¡çã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«,åœè©²æéã«è¡ãããç£æ»æç¶ã«å«ããªããã°ãªããªããã®ãšããŠ,ææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèªããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠ,ååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªãã,ææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠ,åŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåãããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,ç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠ,ãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠããã,ãã€,çµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå Žå,é€å€äºé
仿èŠã衚æããããšãããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,財å諞衚ãçºè¡ãããåŸã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,çµå¶è
ã財å諞衚ãèšæ£ããå Žå,åœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºããã,ç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒããå¿
èŠã¯ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "4",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«,åœè©²æéã«è¡ãããç£æ»æç¶ã«å«ããªããã°ãªããªãå«ãããã®ãšããŠ,ææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèªããªããã°ãªããªããããããšãå¿
èŠãã€é©åã§ãããšèããããšããããç£æ»åºæºå§å¡äŒå ±å560第6é
A7é
",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,ææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçã,財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠ,ååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªãã,ææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠ,åŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåããããç£æ»åºæºå§å¡äŒå ±å560第5é
A5é
",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,ç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,ç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠ,ãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠããã,ãã€,çµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå Žå,é€å€äºé
仿èŠã衚æããããšããããç£æ»åºæºå§å¡äŒå ±å560第12é
(1)",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,財å諞衚ãçºè¡ãããåŸã«,äºåŸå€æäºå®ãç¥ããšãããšãªã,çµå¶è
ã財å諞衚ãèšæ£ããå Žå,åœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºããã,ç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒããå¿
èŠã¯ãªããããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±å560第15é
",
"title": "解説"
}
]
| null | : [[../åé¡18|âåã®åé¡]]
: [[../åé¡20|次ã®åé¡â]]
== åé¡ ==
ãåŸçºäºè±¡çã®ç£æ»ã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçãïŒè²¡å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«ïŒåœè©²æéã«è¡ãããç£æ»æç¶ã«å«ããªããã°ãªããªããã®ãšããŠïŒææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèªããªããã°ãªããªãã
ã€ïŒç£æ»äººã¯ïŒææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçãïŒè²¡å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠïŒååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªããïŒææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠïŒåŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåãããã
ãŠïŒç£æ»äººã¯ïŒç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«ïŒäºåŸå€æäºå®ãç¥ããšãããšãªãïŒç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠïŒãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠãããïŒãã€ïŒçµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå ŽåïŒé€å€äºé
仿èŠã衚æããããšãããã
ãšïŒç£æ»äººã¯ïŒè²¡å諞衚ãçºè¡ãããåŸã«ïŒäºåŸå€æäºå®ãç¥ããšãããšãªãïŒçµå¶è
ã財å諞衚ãèšæ£ããå ŽåïŒåœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºãããïŒç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒããå¿
èŠã¯ãªãã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
4
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçãïŒè²¡å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããã«ïŒåœè©²æéã«è¡ãããç£æ»æç¶ã«<del>å«ããªããã°ãªããªã</del><ins>å«ãã</ins>ãã®ãšããŠïŒææ«æ¥åŸã®æéã«å¯Ÿããäºç®ãè³éèšç»ã®ãããªææ°ã®å©çšå¯èœãªçµå¶ç®¡çè³æãéèª<del>ããªããã°ãªããªãã</del><ins>ããããšãå¿
èŠãã€é©åã§ãããšèããããšããããç£æ»åºæºå§å¡äŒå ±å560第6é
A7é
</ins>
ã€ïŒç£æ»äººã¯ïŒææ«æ¥ã®ç¿æ¥ããç£æ»å ±åæžæ¥ãŸã§ã®éã«çºçãïŒè²¡å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãèŠæ±ãããå
šãŠã®äºè±¡ãèå¥ããããšã«ã€ããŠïŒååãã€é©åãªç£æ»èšŒæ ãå
¥æããããã«ç«æ¡ããç£æ»æç¶ã宿œããªããã°ãªããªããïŒææ«æ¥çŸåšã®æ®é«ã«ã€ããŠã®ç£æ»èšŒæ ã®å
¥æãç®çãšããæç¶ã«ãã£ãŠïŒåŸçºäºè±¡ã«é¢ãã蚌æ ãå
¥æããå Žåãããã<ins>ç£æ»åºæºå§å¡äŒå ±å560第5é
A5é
</ins>
ãŠïŒç£æ»äººã¯ïŒç£æ»å ±åæžæ¥ã®ç¿æ¥ãã財å諞衚ã®çºè¡æ¥ãŸã§ã®éã«ïŒäºåŸå€æäºå®ãç¥ããšãããšãªãïŒç£æ»äººã財å諞衚ã®ä¿®æ£åã¯è²¡å諞衚ã«ãããé瀺ãå¿
èŠã§ãããšå€æããç¶æ³ã«ãããŠïŒãŸã ç£æ»å ±åæžãäŒæ¥ã«æåºããŠãããïŒãã€ïŒçµå¶è
ã財å諞衚ã®ä¿®æ£åã¯é瀺ãè¡ããªãå ŽåïŒé€å€äºé
仿èŠã衚æããããšãããã<ins>ç£æ»åºæºå§å¡äŒå ±å560第12é
(1)</ins>
ãšïŒç£æ»äººã¯ïŒè²¡å諞衚ãçºè¡ãããåŸã«ïŒäºåŸå€æäºå®ãç¥ããšãããšãªãïŒçµå¶è
ã財å諞衚ãèšæ£ããå ŽåïŒåœè©²è²¡å諞衚ã«å¯Ÿããç£æ»å ±åæžãæåºãããïŒç£æ»äººã以åã«æåºããç£æ»å ±åæžã«ã€ããŠèšèŒ<del>ããå¿
èŠã¯ãªãã</del><ins>ããªããã°ãªããªããç£æ»åºæºå§å¡äŒå ±å560第15é
</ins>
</div>
== åç
§åºæº ==
* [https://jicpa.or.jp/specialized_field/260_2.html ç£åºå ±560 åŸçºäºè±¡]
: [[../åé¡18|âåã®åé¡]]
: [[../åé¡20|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-12-02T14:09:48Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C19 |
24,845 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30幎第IIåççåŒ/ç£æ»è«/åé¡20 | ãç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºãã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)
ã¢.ç£æ»äººã¯,èå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œã,ããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œããã,äžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠãããšèªããŠã¯ãªããªãã
ã€.ç£æ»äººã¯,äŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ãããã,çµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«,远å çãªç£æ»æç¶ã宿œããªããã°ãªããªãã
ãŠ.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯,ç£æ»ã®æçµã®æ®µéã«ãããŠç£æ»åœ¹çã«å ±åãããšãšãã«,ç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡,ææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªãã
ãš.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ããã,é¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠ,åœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå Žå,ãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªãã
5
ã¢.ç£æ»äººã¯,èå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œã,ããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œããã,äžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠãããšèªããŠã¯ãªããªãããããšããŠæ±ããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11,ç£æ»åºæºå§å¡äŒå ±åæž240F35-3é
(2)
ã€.ç£æ»äººã¯,äŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ãããã,çµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«,远å çãªç£æ»æç¶ã宿œããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº10,ä»é²2 5
ãŠ.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯,ç£æ»ã®æçµã®æ®µéã«ãããŠãã¿ããã«ç£æ»åœ¹çã«å ±åãããšãšãã«,ç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡,ææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº17,ç£æ»åºæºå§å¡äŒå ±åæž240第40é
ãš.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ããã,é¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠ,åœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå Žå,ãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11,ç£æ»åºæºå§å¡äŒå ±åæž240F44-2é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºãã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡,æ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªããã(5ç¹)",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,èå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œã,ããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œããã,äžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠãããšèªããŠã¯ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,äŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ãããã,çµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«,远å çãªç£æ»æç¶ã宿œããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯,ç£æ»ã®æçµã®æ®µéã«ãããŠç£æ»åœ¹çã«å ±åãããšãšãã«,ç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡,ææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ããã,é¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠ,åœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå Žå,ãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªãã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "5",
"title": "æ£è§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢.ç£æ»äººã¯,èå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œã,ããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œããã,äžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠãããšèªããŠã¯ãªããªãããããšããŠæ±ããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11,ç£æ»åºæºå§å¡äŒå ±åæž240F35-3é
(2)",
"title": "解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€.ç£æ»äººã¯,äŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ãããã,çµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«,远å çãªç£æ»æç¶ã宿œããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº10,ä»é²2 5",
"title": "解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠ.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯,ç£æ»ã®æçµã®æ®µéã«ãããŠãã¿ããã«ç£æ»åœ¹çã«å ±åãããšãšãã«,ç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡,ææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº17,ç£æ»åºæºå§å¡äŒå ±åæž240第40é
",
"title": "解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãš.ç£æ»äººã¯,äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ããã,é¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠ,åœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå Žå,ãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11,ç£æ»åºæºå§å¡äŒå ±åæž240F44-2é
",
"title": "解説"
}
]
| null | : [[../åé¡19|âåã®åé¡]]
: [[../åé¡20|次ã®åé¡â]]
== åé¡ ==
ããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºãã«é¢ããæ¬¡ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã®çµåããšããŠæãé©åãªçªå·ãäžã€éžã³ãªãããïŒ5ç¹ïŒ
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒèå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œãïŒããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œãããïŒäžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠãããšèªããŠã¯ãªããªãã
ã€ïŒç£æ»äººã¯ïŒäŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ããããïŒçµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«ïŒè¿œå çãªç£æ»æç¶ã宿œããªããã°ãªããªãã
ãŠïŒç£æ»äººã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯ïŒç£æ»ã®æçµã®æ®µéã«ãããŠç£æ»åœ¹çã«å ±åãããšãšãã«ïŒç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡ïŒææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªãã
ãšïŒç£æ»äººã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ãããïŒé¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠïŒåœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå ŽåïŒãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªãã
</div>
<div style="column-count:6;">
# ã¢ã€
# ã¢ãŠ
# ã¢ãš
# ã€ãŠ
# ã€ãš
# ãŠãš
</div>
== æ£è§£ ==
5
== 解説 ==
<div style="text-indent:-1em;margin-left:1em;">
ã¢ïŒç£æ»äººã¯ïŒèå¥ããäžæ£ãªã¹ã¯ã«å¯Ÿå¿ããŠåœåèšç»ããç£æ»æç¶ã宿œãïŒããã«å¿
èŠãšå€æãã远å çãªç£æ»æç¶ã宿œãããïŒäžæ£ãªã¹ã¯ã«é¢é£ããååãã€é©åãªç£æ»èšŒæ ãå
¥æã§ããªãå Žåã«ã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ã<del>ååšããŠãããšèªããŠã¯ãªããªãã</del><ins>ãããšããŠæ±ããªããã°ãªããªããç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11ïŒç£æ»åºæºå§å¡äŒå ±åæž240F35-3é
(2)</ins>
ã€ïŒç£æ»äººã¯ïŒäŒæ¥ã®èšé²ãšç¢ºèªç¶ã®åçã«èª¬æã®ã€ããªãéèŠãªå·®ç°ãããç¶æ³ãç£æ»å®æœã®éçšã«ãããŠèå¥ããå Žåã«ã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ãååšããŠããªããã©ããã倿ããããïŒçµå¶è
ã«è³ªåã説æãæ±ãããšãšãã«ïŒè¿œå çãªç£æ»æç¶ã宿œããªããã°ãªããªãã<ins>ç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº10ïŒä»é²2 5</ins>
ãŠïŒç£æ»äººã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããããšå€æããå Žåã«ã¯ïŒ<del>ç£æ»ã®æçµã®æ®µéã«ãããŠ</del><ins>ãã¿ããã«</ins>ç£æ»åœ¹çã«å ±åãããšãšãã«ïŒç£æ»ãå®äºããããã«å¿
èŠãšãªãç£æ»æç¶ã®çš®é¡ïŒææåã³ç¯å²ã«ã€ããŠåè°ããªããã°ãªããªãã<ins>ç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº17ïŒç£æ»åºæºå§å¡äŒå ±åæž240第40é
</ins>
ãšïŒç£æ»äººã¯ïŒäžæ£ã«ããéèŠãªèåœã®è¡šç€ºã瀺åããç¶æ³ãèå¥ãããïŒé¢é£ããŠå
¥æããç£æ»èšŒæ ã«åºã¥ãçµå¶è
ã®èª¬æã«åçæ§ããããšããŠïŒåœè©²ç¶æ³ã«äžæ£ã«ããéèŠãªèåœã®è¡šç€ºã®ç矩ããªããšå€æããå ŽåïŒãã®æšãšçç±ãç£æ»èª¿æžã«èšèŒããªããã°ãªããªãã<ins>ç£æ»ã«ãããäžæ£ãªã¹ã¯å¯Ÿå¿åºæºç¬¬äº11ïŒç£æ»åºæºå§å¡äŒå ±åæž240F44-2é
</ins>
</div>
== åç
§åºæº ==
* [https://www.fsa.go.jp/singi/singi_kigyou/tosin/20130314/01.pdf äžæ£ãªã¹ã¯å¯Ÿå¿åºæº]
* [https://jicpa.or.jp/specialized_field/250_1.html ç£æ»åºæºå§å¡äŒå ±åæž240ã財åè«žè¡šç£æ»ã«ãããäžæ£ã]
: [[../åé¡19|âåã®åé¡]]
: [[../åé¡20|次ã®åé¡â]]
[[ã«ããŽãª:äŒèšç£æ»]] | null | 2022-11-29T06:29:34Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E7%AC%ACII%E5%9B%9E%E7%9F%AD%E7%AD%94%E5%BC%8F/%E7%9B%A3%E6%9F%BB%E8%AB%96/%E5%95%8F%E9%A1%8C20 |
24,848 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第1ååé¡1 | æ¬¡ã®æç« ãèªãã§,äžèšã®å1~å5ã«çããªããã
çµç¹å€é©ã®å¿
èŠæ§ãå§äŒãããŠãããããšãã°,çµç¹ããã©ããåããã°,éå±€æ°ãæžã,äžéšãžã®æ
å ±äŒéãè¿
éã«è¡ãããããã«ãªããããããªãã,(ã¢)ã¹ãã³ã»ãªãã»ã³ã³ãããŒã«ãå¢ããããšã«ãªã,管çè
ã®é©åãªå€æãææ®ãã§ããªããªãå±éºæ§ã倧ãããªããçµç¹ãç·šæããéã«ç®æãããã®ã¯,å°éåã®ã¡ãªãããããããããã®åæ¥ãšãããã®éšåçãªææãåãããŠçµç¹å
šäœã®ææã«ã€ãªããããã®èª¿æŽã®ãã¿ãŒã³ãäœãåºãããšã§ããã
å€§èŠæš¡çµç¹ã®ç·šæã®åºåºãæ¯ãã代衚çãªåçã,çµç¹ç®æšã®åççãªè¿œæ±ã«ãšã£ãŠæåã®ç®¡ç圢æ
ã§ãããšã㊠M.ãŠã§ãŒããŒã 19 äžçŽã«æã¡åºãã( A )çµç¹ã§ããã
ããã,çµç¹ã®ç·šæãå€é©ãèãããšãã«,å€ãã®äººãæ¯æããŠããçè«ã¯,æãŸããçµç¹ãšã¯çµç¹ãããããŠããç¶æ³ã«å¿ããŠç°ãªããšããããšã§ãããããªãã¡,çµç¹ç·šæã«å¯äžçµ¶å¯Ÿã®è§£ã¯ãªããšããããšã§ãããã§ã¯ã©ããã£ãç¶æ³ã®å Žåã¯ã©ããã£ãçµç¹ãé©ããŠããã®ãããŸã,ããã¯ãªããªã®ãããããã£ãèŠç¹ããçµç¹ã«é¢ããçè«ãæ§ç¯ããããšããäžé£ã®ç ç©¶ãçµç¹ã®( B )ãšåŒã¶ã
æ§ã
ãªç°å¢èŠå ãšçµç¹æ§é ãšã®é¢ä¿ã調æ»ãããã,P.ããŒã¬ã³ã¹ãš J.ããŒã·ã¥ã¯,å€éšç°å¢ãšçµç¹ã®é¢ä¿ãæ¢ç©¶ããäžã§,ããããåé¡ã«äžã€ã®è§£ããããããã圌ãã®çè«ã¯,(ã€)äžç¢ºå®æ§ã®é«ãç¶æ³äžã§æå¹æ§ã®é«ãçµç¹ã¯ãååãšçµ±åã®åææ¥µå€§åããå®çŸããŠãããšããããšã§ãã£ãã
ããã,ç°å¢ã«é©åããçµç¹ãçæ³ãšãã( B )ã®æ ¹å¹¹ã«å¯ŸããŠ,ããã€ãã®åè«ãæåºãããããã®ä»£è¡šæ Œã®äžã€ã,ç¬¬äºæ¬¡äžç倧æŠã«ãããæ¥æ¬è»ã察象ã«ç ç©¶ããæžéšã»ã(1984)ã倱æã®æ¬è³ªãã§ããã(ãŠ)ããç°å¢ã«é©åããããšã¯,ãã®åŸã®ç°å¢å€åã«é©åã§ããªãçµç¹ãäœãããšã«ãªããšã®ææããªãã,ãé©å¿ã¯é©å¿åãç· ãåºãããšããåœé¡ãæèµ·ãããããããã£ãŠ,äŒæ¥ã¯ç°å¢ããã®å€åã«ãã 远åŸããã®ã§ã¯ãªã,æŠç¥çã«çµç¹ãå€é©ã§ããèœå,ããªãã¡çµç¹ã®èªå·±å€é©åã®éèŠæ§ãèªèãããããã«ãªã£ãã
çµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ããŠã¯,æ¢ã«çµå¶å²ç ç©¶å®¶ã® A.D.ãã£ã³ãã©ãŒã«ãã£ãŠ( C )ãšããåœé¡ãæç€ºãããŠããã,ã倱æã®æ¬è³ªãã¯çµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ã㊠A.D.ãã£ã³ãã©ãŒãšã¯ç°ãªã£ãé¢ä¿æ§ã瀺ããç ç©¶ãšãèšãããã
å1 äžç·éš(ã¢)ã«é¢é£ã,çµå¶è
äžäººã管çè
ãå«ããçµç¹æ§æå¡ã 85 人ã®çµç¹ã§,ã¹ãã³ã»ãªãã»ã³ã³ãããŒã«ã 4 ãšããŠéå±€ççµç¹ãèšèšããå Žå,ãã®çµç¹ã®æå°ã®éå±€æ°ã¯ããã€ã«ãªããçããªããã
å2( A ),( B )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
å3 äžç·éšã€ã«é¢é£ã,ååãšã¯ã©ããã£ãããšã瀺ãã®ã説æããªããã
å4 äžç·éšãŠã«é¢é£ã,ãªããé©å¿ã¯é©å¿åãç· ãåºããã®ã説æããªããã
å5( C )ã«åœãŠã¯ãŸãæãé©åãªæãçããªããã
4(äžã®ããã«å°éã«å³ãæãã°æ£è§£ã§ãã)
çµç¹ã¯æŠç¥ã«åŸãâ»ã¢ã³ãŸãã®åœé¡ã¯ãæŠç¥ã¯çµç¹ã«åŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬¡ã®æç« ãèªãã§,äžèšã®å1~å5ã«çããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çµç¹å€é©ã®å¿
èŠæ§ãå§äŒãããŠãããããšãã°,çµç¹ããã©ããåããã°,éå±€æ°ãæžã,äžéšãžã®æ
å ±äŒéãè¿
éã«è¡ãããããã«ãªããããããªãã,(ã¢)ã¹ãã³ã»ãªãã»ã³ã³ãããŒã«ãå¢ããããšã«ãªã,管çè
ã®é©åãªå€æãææ®ãã§ããªããªãå±éºæ§ã倧ãããªããçµç¹ãç·šæããéã«ç®æãããã®ã¯,å°éåã®ã¡ãªãããããããããã®åæ¥ãšãããã®éšåçãªææãåãããŠçµç¹å
šäœã®ææã«ã€ãªããããã®èª¿æŽã®ãã¿ãŒã³ãäœãåºãããšã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å€§èŠæš¡çµç¹ã®ç·šæã®åºåºãæ¯ãã代衚çãªåçã,çµç¹ç®æšã®åççãªè¿œæ±ã«ãšã£ãŠæåã®ç®¡ç圢æ
ã§ãããšã㊠M.ãŠã§ãŒããŒã 19 äžçŽã«æã¡åºãã( A )çµç¹ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã,çµç¹ã®ç·šæãå€é©ãèãããšãã«,å€ãã®äººãæ¯æããŠããçè«ã¯,æãŸããçµç¹ãšã¯çµç¹ãããããŠããç¶æ³ã«å¿ããŠç°ãªããšããããšã§ãããããªãã¡,çµç¹ç·šæã«å¯äžçµ¶å¯Ÿã®è§£ã¯ãªããšããããšã§ãããã§ã¯ã©ããã£ãç¶æ³ã®å Žåã¯ã©ããã£ãçµç¹ãé©ããŠããã®ãããŸã,ããã¯ãªããªã®ãããããã£ãèŠç¹ããçµç¹ã«é¢ããçè«ãæ§ç¯ããããšããäžé£ã®ç ç©¶ãçµç¹ã®( B )ãšåŒã¶ã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ§ã
ãªç°å¢èŠå ãšçµç¹æ§é ãšã®é¢ä¿ã調æ»ãããã,P.ããŒã¬ã³ã¹ãš J.ããŒã·ã¥ã¯,å€éšç°å¢ãšçµç¹ã®é¢ä¿ãæ¢ç©¶ããäžã§,ããããåé¡ã«äžã€ã®è§£ããããããã圌ãã®çè«ã¯,(ã€)äžç¢ºå®æ§ã®é«ãç¶æ³äžã§æå¹æ§ã®é«ãçµç¹ã¯ãååãšçµ±åã®åææ¥µå€§åããå®çŸããŠãããšããããšã§ãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããã,ç°å¢ã«é©åããçµç¹ãçæ³ãšãã( B )ã®æ ¹å¹¹ã«å¯ŸããŠ,ããã€ãã®åè«ãæåºãããããã®ä»£è¡šæ Œã®äžã€ã,ç¬¬äºæ¬¡äžç倧æŠã«ãããæ¥æ¬è»ã察象ã«ç ç©¶ããæžéšã»ã(1984)ã倱æã®æ¬è³ªãã§ããã(ãŠ)ããç°å¢ã«é©åããããšã¯,ãã®åŸã®ç°å¢å€åã«é©åã§ããªãçµç¹ãäœãããšã«ãªããšã®ææããªãã,ãé©å¿ã¯é©å¿åãç· ãåºãããšããåœé¡ãæèµ·ãããããããã£ãŠ,äŒæ¥ã¯ç°å¢ããã®å€åã«ãã 远åŸããã®ã§ã¯ãªã,æŠç¥çã«çµç¹ãå€é©ã§ããèœå,ããªãã¡çµç¹ã®èªå·±å€é©åã®éèŠæ§ãèªèãããããã«ãªã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "çµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ããŠã¯,æ¢ã«çµå¶å²ç ç©¶å®¶ã® A.D.ãã£ã³ãã©ãŒã«ãã£ãŠ( C )ãšããåœé¡ãæç€ºãããŠããã,ã倱æã®æ¬è³ªãã¯çµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ã㊠A.D.ãã£ã³ãã©ãŒãšã¯ç°ãªã£ãé¢ä¿æ§ã瀺ããç ç©¶ãšãèšãããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å1 äžç·éš(ã¢)ã«é¢é£ã,çµå¶è
äžäººã管çè
ãå«ããçµç¹æ§æå¡ã 85 人ã®çµç¹ã§,ã¹ãã³ã»ãªãã»ã³ã³ãããŒã«ã 4 ãšããŠéå±€ççµç¹ãèšèšããå Žå,ãã®çµç¹ã®æå°ã®éå±€æ°ã¯ããã€ã«ãªããçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å2( A ),( B )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å3 äžç·éšã€ã«é¢é£ã,ååãšã¯ã©ããã£ãããšã瀺ãã®ã説æããªããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å4 äžç·éšãŠã«é¢é£ã,ãªããé©å¿ã¯é©å¿åãç· ãåºããã®ã説æããªããã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å5( C )ã«åœãŠã¯ãŸãæãé©åãªæãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "4(äžã®ããã«å°éã«å³ãæãã°æ£è§£ã§ãã)",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "çµç¹ã¯æŠç¥ã«åŸãâ»ã¢ã³ãŸãã®åœé¡ã¯ãæŠç¥ã¯çµç¹ã«åŸãã",
"title": "æ£è§£ãšè§£èª¬"
}
]
| null | : âåã®åé¡
: [[../第1ååé¡2|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®æç« ãèªãã§ïŒäžèšã®<span style="border:1px solid #000">å1</span>ïœ<span style="border:1px solid #000">å5</span>ã«çããªããã
ãçµç¹å€é©ã®å¿
èŠæ§ãå§äŒãããŠãããããšãã°ïŒçµç¹ããã©ããåããã°ïŒéå±€æ°ãæžãïŒäžéšãžã®æ
å ±äŒéãè¿
éã«è¡ãããããã«ãªããããããªããïŒ<sub>(ã¢)</sub><u>ã¹ãã³ã»ãªãã»ã³ã³ãããŒã«</u>ãå¢ããããšã«ãªãïŒç®¡çè
ã®é©åãªå€æãææ®ãã§ããªããªãå±éºæ§ã倧ãããªããçµç¹ãç·šæããéã«ç®æãããã®ã¯ïŒå°éåã®ã¡ãªãããããããããã®åæ¥ãšãããã®éšåçãªææãåãããŠçµç¹å
šäœã®ææã«ã€ãªããããã®èª¿æŽã®ãã¿ãŒã³ãäœãåºãããšã§ããã
ãå€§èŠæš¡çµç¹ã®ç·šæã®åºåºãæ¯ãã代衚çãªåçãïŒçµç¹ç®æšã®åççãªè¿œæ±ã«ãšã£ãŠæåã®ç®¡ç圢æ
ã§ãããšã㊠MïŒãŠã§ãŒããŒã 19 äžçŽã«æã¡åºããïŒ A ïŒçµç¹ã§ããã
ããããïŒçµç¹ã®ç·šæãå€é©ãèãããšãã«ïŒå€ãã®äººãæ¯æããŠããçè«ã¯ïŒæãŸããçµç¹ãšã¯çµç¹ãããããŠããç¶æ³ã«å¿ããŠç°ãªããšããããšã§ãããããªãã¡ïŒçµç¹ç·šæã«å¯äžçµ¶å¯Ÿã®è§£ã¯ãªããšããããšã§ãããã§ã¯ã©ããã£ãç¶æ³ã®å Žåã¯ã©ããã£ãçµç¹ãé©ããŠããã®ãããŸãïŒããã¯ãªããªã®ãããããã£ãèŠç¹ããçµç¹ã«é¢ããçè«ãæ§ç¯ããããšããäžé£ã®ç ç©¶ãçµç¹ã®ïŒ B ïŒãšåŒã¶ã
ãæ§ã
ãªç°å¢èŠå ãšçµç¹æ§é ãšã®é¢ä¿ã調æ»ããããïŒPïŒããŒã¬ã³ã¹ãš JïŒããŒã·ã¥ã¯ïŒå€éšç°å¢ãšçµç¹ã®é¢ä¿ãæ¢ç©¶ããäžã§ïŒããããåé¡ã«äžã€ã®è§£ããããããã圌ãã®çè«ã¯ïŒ<sub>(ã€)</sub><u>äžç¢ºå®æ§ã®é«ãç¶æ³äžã§æå¹æ§ã®é«ãçµç¹ã¯ãååãšçµ±åã®åææ¥µå€§åããå®çŸããŠãã</u>ãšããããšã§ãã£ãã
ããããïŒç°å¢ã«é©åããçµç¹ãçæ³ãšããïŒ B ïŒã®æ ¹å¹¹ã«å¯ŸããŠïŒããã€ãã®åè«ãæåºãããããã®ä»£è¡šæ Œã®äžã€ãïŒç¬¬äºæ¬¡äžç倧æŠã«ãããæ¥æ¬è»ã察象ã«ç ç©¶ããæžéšã»ãïŒ1984ïŒã倱æã®æ¬è³ªãã§ããã<sub>(ãŠ)</sub><u>ããç°å¢ã«é©åããããšã¯ïŒãã®åŸã®ç°å¢å€åã«é©åã§ããªãçµç¹ãäœãããšã«ãªããšã®ææããªããïŒãé©å¿ã¯é©å¿åãç· ãåºãããšããåœé¡ãæèµ·ãããã</u>ãããã£ãŠïŒäŒæ¥ã¯ç°å¢ããã®å€åã«ãã 远åŸããã®ã§ã¯ãªãïŒæŠç¥çã«çµç¹ãå€é©ã§ããèœåïŒããªãã¡çµç¹ã®èªå·±å€é©åã®éèŠæ§ãèªèãããããã«ãªã£ãã
ãçµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ããŠã¯ïŒæ¢ã«çµå¶å²ç ç©¶å®¶ã® AïŒDïŒãã£ã³ãã©ãŒã«ãã£ãŠïŒ C ïŒãšããåœé¡ãæç€ºãããŠãããïŒã倱æã®æ¬è³ªãã¯çµç¹ãšæŠç¥ã®é¢ä¿ã«ã€ã㊠AïŒDïŒãã£ã³ãã©ãŒãšã¯ç°ãªã£ãé¢ä¿æ§ã瀺ããç ç©¶ãšãèšãããã
<span style="border:1px solid #000">å1</span>ãäžç·éš(ã¢)ã«é¢é£ãïŒçµå¶è
äžäººã管çè
ãå«ããçµç¹æ§æå¡ã 85 人ã®çµç¹ã§ïŒã¹ãã³ã»ãªãã»ã³ã³ãããŒã«ã 4 ãšããŠéå±€ççµç¹ãèšèšããå ŽåïŒãã®çµç¹ã®æå°ã®éå±€æ°ã¯ããã€ã«ãªããçããªããã
<span style="border:1px solid #000">å2</span>ïŒ A ïŒïŒïŒ B ïŒã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
<span style="border:1px solid #000">å3</span> äžç·éšã€ã«é¢é£ãïŒååãšã¯ã©ããã£ãããšã瀺ãã®ã説æããªããã
<span style="border:1px solid #000">å4</span> äžç·éšãŠã«é¢é£ãïŒãªããé©å¿ã¯é©å¿åãç· ãåºããã®ã説æããªããã
<span style="border:1px solid #000">å5</span>ïŒ C ïŒã«åœãŠã¯ãŸãæãé©åãªæãçããªããã
== æ£è§£ãšè§£èª¬ ==
=== å1 ===
4ïŒäžã®ããã«å°éã«å³ãæãã°æ£è§£ã§ããïŒ
=== å2 ===
*AïŒå®åå¶
*BïŒæ¡ä»¶é©åçè«ïŒç¶æ³é©åçè«ã»ã³ã³ãã£ã³ãžã§ã³ã·ãŒçè«ïŒ
=== å3 ===
=== å4 ===
=== å5 ===
çµç¹ã¯æŠç¥ã«åŸãâ»ã¢ã³ãŸãã®åœé¡ã¯ãæŠç¥ã¯çµç¹ã«åŸãã
{| class="wikitable" style="font-family: monospace;"
|+å1çµç¹å³
! colspan="2" |éå±€1
! colspan="2" |éå±€2
! colspan="2" |éå±€3
!éå±€4
|-
| colspan="2" |â»1人é
眮
| colspan="2" |â»4人é
眮
| colspan="2" |â»16人é
眮
|â»64人é
眮
|-
|
|
|
|
|
|â
|22
|-
|
|
|
|
|
|â
|23
|-
|
|
|
|â
|06
|â€
|
|-
|
|
|
|â
|
|â
|24
|-
|
|
|
|â
|
|â
|25
|-
|
|
|
|â
|
|â
|26
|-
|
|
|
|â
|
|â
|27
|-
|
|
|
|â
|07
|â€
|
|-
|
|â
|02
|â€
|
|â
|28
|-
|
|â
|
|â
|
|â
|29
|-
|
|â
|
|â
|
|â
|30
|-
|
|â
|
|â
|
|â
|31
|-
|
|â
|
|â
|08
|â€
|
|-
|
|â
|
|â
|
|â
|32
|-
|
|â
|
|â
|
|â
|33
|-
|
|â
|
|â
|
|â
|34
|-
|
|â
|
|â
|
|â
|35
|-
|
|â
|
|â
|09
|â€
|
|-
|
|â
|
|
|
|â
|36
|-
|
|â
|
|
|
|â
|37
|-
|
|â
|
|
|
|â
|38
|-
|
|â
|
|
|
|â
|39
|-
|
|â
|
|â
|10
|â€
|
|-
|
|â
|
|â
|
|â
|40
|-
|
|â
|
|â
|
|â
|41
|-
|
|â
|
|â
|
|â
|42
|-
|
|â
|
|â
|
|â
|43
|-
|
|â
|
|â
|11
|â€
|
|-
|
|â
|03
|â€
|
|â
|44
|-
|
|â
|
|â
|
|â
|45
|-
|
|â
|
|â
|
|â
|46
|-
|
|â
|
|â
|
|â
|47
|-
|
|â
|
|â
|12
|â€
|
|-
|
|â
|
|â
|
|â
|48
|-
|
|â
|
|â
|
|â
|49
|-
|
|â
|
|â
|
|â
|50
|-
|
|â
|
|â
|
|â
|51
|-
|
|â
|
|â
|13
|â€
|
|-
|
|â
|
|
|
|â
|52
|-
|
|â
|
|
|
|â
|53
|-
| 01 ||â€
|
|
|
|
|
|-
|
|â
|
|
|
|â
|54
|-
|
|â
|
|
|
|â
|55
|-
|
|â
|
|â
|14
|â€
|
|-
|
|â
|
|â
|
|â
|56
|-
|
|â
|
|â
|
|â
|57
|-
|
|â
|
|â
|
|â
|58
|-
|
|â
|
|â
|
|â
|59
|-
|
|â
|
|â
|15
|
|
|-
|
|â
|
|â
|
|â
|60
|-
|
|â
|
|â
|
|â
|61
|-
|
|â
|
|â
|
|â
|62
|-
|
|â
|04
|â€
|
|â
|63
|-
|
|â
|
|â
|16
|â€
|
|-
|
|â
|
|â
|
|â
|64
|-
|
|â
|
|â
|
|â
|65
|-
|
|â
|
|â
|
|â
|66
|-
|
|â
|
|â
|
|â
|67
|-
|
|â
|
|â
|17
|â€
|
|-
|
|â
|
|
|
|â
|68
|-
|
|â
|
|
|
|â
|69
|-
|
|â
|
|
|
|â
|70
|-
|
|â
|
|
|
|â
|71
|-
|
|â
|
|â
|18
|â€
|
|-
|
|â
|
|â
|
|â
|72
|-
|
|â
|
|â
|
|â
|73
|-
|
|â
|
|â
|
|â
|74
|-
|
|â
|
|â
|
|â
|75
|-
|
|â
|
|â
|19
|â€
|
|-
|
|â
|
|â
|
|â
|76
|-
|
|â
|
|â
|
|â
|77
|-
| || â
|05
|â€
|
|
|
|-
|
|
|
|â
|
|â
|78
|-
|
|
|
|â
|
|â
|79
|-
|
|
|
|â
|20
|â€
|
|-
|
|
|
|â
|
|â
|80
|-
|
|
|
|â
|
|â
|81
|-
|
|
|
|â
|
|â
|82
|-
|
|
|
|â
|
|â
|83
|-
|
|
|
|â
|21
|â€
|
|-
|
|
|
|
|
|â
|84
|-
|
|
|
|
|
|â
|85
|}
: âåã®åé¡
: [[../第1ååé¡2|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:10:38Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC1%E5%95%8F%E5%95%8F%E9%A1%8C1 |
24,849 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第1ååé¡2 | æ¬¡ã®æç« ãèªãã§,äžèšã®å1~å6ã«çããªããã
åãå Žæãæé垯ã«çžãããªããããã¯ãŒã«ãŒãåšå®
å€åãªã©,ãåãæ¹ããè¿å¹Žãã¥ãŒã¹ã§ãåãäžããããŠããããããŠããã¯åã«å¶åºŠãšããŠã®ãããžã¡ã³ãã®åé¡ã ãã§ã¯ãªã,è·å ŽãçŸå Žã®ãããžã£ãŒã®ãªãŒããŒã·ããããããžã¡ã³ãã®åé¡ãšããŠã泚ç®ãéãŸã£ãŠããã
ãã®ãããªåãæ¹ã®åé¡ã¯æ±ºããŠè¿å¹Žã ãã®åé¡ã§ã¯ãªã,çµå¶åŠã®è嵿ããã®åé¡ã§ããã£ãããã®ãã¡äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®åé¡ã«åãçµãã 代衚çãªç ç©¶ã®äžã€ã,1924 幎ããè¡ãããããŒãœã³å·¥å Žå®éšãšåŒã°ããäžé£ã®å®éšã§ããã1900 幎代åé ,ç±³åœã«ãããŠæ¯é
çãªç®¡çæ³ã¯,課æ¥ç®¡çãšäœæ¥ã®æšæºåã«åºã¥ã( A )ã§ãã£ãã,ããŒããŒã倧åŠã®ç ç©¶è
ãã¯,ççåŠã®ç¥èŠãåºã«,äŒæ©æéãè³é,äœæ¥æ¡ä»¶ãæ§ã
ã«èšå®ããªããçç£æ§ãšã®é¢ä¿ã調ã¹ããããã,æç¢ºã«ç€ºãããã®ã¯ãããã®äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®éã«ã¯é¢ä¿ãèŠãããªããšããçµæã§ãã£ãã圌ãã¯ãããã,( B )çååšãšããŠã®äººéã«çç®ã,ã®ã¡ã«äººéé¢ä¿è«ãšåŒã°ããäžé£ã®ç ç©¶ãžãšå±éããŠããããšã«ãªãã
ããŒãœã³å·¥å Žå®éšã«ãããç ç©¶ã«ä»£è¡šããã人éé¢ä¿è«ä»¥é,ãªãŒããŒã·ãããã¢ãããŒã·ã§ã³ãªã©äººéæ§ã«çç®ããå®èšŒçç ç©¶ãçŸããããã«ãªã£ãããã®äžã§ãªãŒããŒã·ããè«ã§ã¯,ãªãŒããŒã·ããã®è¡åã«ç ç©¶ã®æ³šç®ãéãŸãããšã«ãªã£ãããã®ä»£è¡šçãªãã·ã¬ã³å€§åŠã®ç ç©¶ããŒã ã¯,ãªãŒããŒè¡åã®åæãéããŠ,ãããžã£ãŒã®äºã€ã®ãªãŒããŒã·ããè¡åãšããŠ( C )å¿åãšçç£å¿åã瀺ããããã®äžã§,髿¥çžŸããã,è·åæºè¶³ã®åäžãšé¢è·çã®äœäžããããããªãŒããŒã¯( C )å¿åã®è¡åããšããªãŒããŒã§ããããšãå®èšŒçã«æããã«ããã
ãã·ã¬ã³å€§åŠç ç©¶ã°ã«ãŒããçããR.ãªãã«ãŒãã¯,ãã®åŸ,æ°ãããããžã¡ã³ããšããŠ(ã¢)ã·ã¹ãã 4ãšåŒã°ãããããžã¡ã³ãã®æçšæ§ãæå±ãããR.ãªãã«ãŒãã¯ãããžã¡ã³ããç¬åçå°å¶åãªã©åã€ã®ã¿ã€ãã«ãã,ããããã·ã¹ãã 1 ãã4 ãšã,ã·ã¹ãã 4 ãæãæ¥çžŸãé«ããªãããšã瀺ããã
ãã®äžæ¹,ã¢ãããŒã·ã§ã³ã®çè«ã§ã¯,åæ©ã¥ããããå ±é
¬ã®å
容ã ãã§ã¯ãªã,åæ©ã¥ãã®ããã»ã¹ã«çç®ããå
çºçåæ©ã¥ãçè«ãæåŸ
çè«ãªã©ãæå±ããããå
çºçåæ©ã¥ãçè«ã§ã¯,äººãæ¬æ¥å ±é
¬ãåŸãããã®æŽ»åãã®ãã®ã«åæ©ã¥ããããããšãããããšã瀺ã,å
çºçã«åæ©ã¥ããããå人ã¯,å ±é
¬ããªããšããã®æŽ»åã«ãã£ãŠ,èªå·±ã( D )ã§èªå·±æ±ºå®çã ãšæããããã«,ç©æ¥µçã«ãã®æŽ»åã«åŸäºããããšã瀺ããããŸã,(ã€)æåŸ
çè«ã«ãããŠã,人ã¯å ±é
¬ãããã°å¿
ãæŽ»åãèµ·ããã¢ãããŒã·ã§ã³ãé«ãŸãããã§ã¯ãªãããšã瀺ããã
å1 空æ¬( A )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
å2 空æ¬( B )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
å3 空æ¬( C )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
å4 äžç·éšã¢ã«é¢é£ããŠ,ã·ã¹ãã 4 ã®ãããžã¡ã³ãã®ç¹åŸŽã説æããªããã
å5 空æ¬( D )ã«åœãŠã¯ãŸãé©åãªèªãçããªããã
å6 äžç·éšã€ã«é¢é£ããŠ,æåŸ
çè«ã§ã¯ã¢ãããŒã·ã§ã³ã®åŒ·ãã¯ã©ã®ããã«è¡šããããšèããŠããã説æããªããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬¡ã®æç« ãèªãã§,äžèšã®å1~å6ã«çããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åãå Žæãæé垯ã«çžãããªããããã¯ãŒã«ãŒãåšå®
å€åãªã©,ãåãæ¹ããè¿å¹Žãã¥ãŒã¹ã§ãåãäžããããŠããããããŠããã¯åã«å¶åºŠãšããŠã®ãããžã¡ã³ãã®åé¡ã ãã§ã¯ãªã,è·å ŽãçŸå Žã®ãããžã£ãŒã®ãªãŒããŒã·ããããããžã¡ã³ãã®åé¡ãšããŠã泚ç®ãéãŸã£ãŠããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ãããªåãæ¹ã®åé¡ã¯æ±ºããŠè¿å¹Žã ãã®åé¡ã§ã¯ãªã,çµå¶åŠã®è嵿ããã®åé¡ã§ããã£ãããã®ãã¡äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®åé¡ã«åãçµãã 代衚çãªç ç©¶ã®äžã€ã,1924 幎ããè¡ãããããŒãœã³å·¥å Žå®éšãšåŒã°ããäžé£ã®å®éšã§ããã1900 幎代åé ,ç±³åœã«ãããŠæ¯é
çãªç®¡çæ³ã¯,課æ¥ç®¡çãšäœæ¥ã®æšæºåã«åºã¥ã( A )ã§ãã£ãã,ããŒããŒã倧åŠã®ç ç©¶è
ãã¯,ççåŠã®ç¥èŠãåºã«,äŒæ©æéãè³é,äœæ¥æ¡ä»¶ãæ§ã
ã«èšå®ããªããçç£æ§ãšã®é¢ä¿ã調ã¹ããããã,æç¢ºã«ç€ºãããã®ã¯ãããã®äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®éã«ã¯é¢ä¿ãèŠãããªããšããçµæã§ãã£ãã圌ãã¯ãããã,( B )çååšãšããŠã®äººéã«çç®ã,ã®ã¡ã«äººéé¢ä¿è«ãšåŒã°ããäžé£ã®ç ç©¶ãžãšå±éããŠããããšã«ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããŒãœã³å·¥å Žå®éšã«ãããç ç©¶ã«ä»£è¡šããã人éé¢ä¿è«ä»¥é,ãªãŒããŒã·ãããã¢ãããŒã·ã§ã³ãªã©äººéæ§ã«çç®ããå®èšŒçç ç©¶ãçŸããããã«ãªã£ãããã®äžã§ãªãŒããŒã·ããè«ã§ã¯,ãªãŒããŒã·ããã®è¡åã«ç ç©¶ã®æ³šç®ãéãŸãããšã«ãªã£ãããã®ä»£è¡šçãªãã·ã¬ã³å€§åŠã®ç ç©¶ããŒã ã¯,ãªãŒããŒè¡åã®åæãéããŠ,ãããžã£ãŒã®äºã€ã®ãªãŒããŒã·ããè¡åãšããŠ( C )å¿åãšçç£å¿åã瀺ããããã®äžã§,髿¥çžŸããã,è·åæºè¶³ã®åäžãšé¢è·çã®äœäžããããããªãŒããŒã¯( C )å¿åã®è¡åããšããªãŒããŒã§ããããšãå®èšŒçã«æããã«ããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã·ã¬ã³å€§åŠç ç©¶ã°ã«ãŒããçããR.ãªãã«ãŒãã¯,ãã®åŸ,æ°ãããããžã¡ã³ããšããŠ(ã¢)ã·ã¹ãã 4ãšåŒã°ãããããžã¡ã³ãã®æçšæ§ãæå±ãããR.ãªãã«ãŒãã¯ãããžã¡ã³ããç¬åçå°å¶åãªã©åã€ã®ã¿ã€ãã«ãã,ããããã·ã¹ãã 1 ãã4 ãšã,ã·ã¹ãã 4 ãæãæ¥çžŸãé«ããªãããšã瀺ããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®äžæ¹,ã¢ãããŒã·ã§ã³ã®çè«ã§ã¯,åæ©ã¥ããããå ±é
¬ã®å
容ã ãã§ã¯ãªã,åæ©ã¥ãã®ããã»ã¹ã«çç®ããå
çºçåæ©ã¥ãçè«ãæåŸ
çè«ãªã©ãæå±ããããå
çºçåæ©ã¥ãçè«ã§ã¯,äººãæ¬æ¥å ±é
¬ãåŸãããã®æŽ»åãã®ãã®ã«åæ©ã¥ããããããšãããããšã瀺ã,å
çºçã«åæ©ã¥ããããå人ã¯,å ±é
¬ããªããšããã®æŽ»åã«ãã£ãŠ,èªå·±ã( D )ã§èªå·±æ±ºå®çã ãšæããããã«,ç©æ¥µçã«ãã®æŽ»åã«åŸäºããããšã瀺ããããŸã,(ã€)æåŸ
çè«ã«ãããŠã,人ã¯å ±é
¬ãããã°å¿
ãæŽ»åãèµ·ããã¢ãããŒã·ã§ã³ãé«ãŸãããã§ã¯ãªãããšã瀺ããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å1 空æ¬( A )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å2 空æ¬( B )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å3 空æ¬( C )ã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å4 äžç·éšã¢ã«é¢é£ããŠ,ã·ã¹ãã 4 ã®ãããžã¡ã³ãã®ç¹åŸŽã説æããªããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å5 空æ¬( D )ã«åœãŠã¯ãŸãé©åãªèªãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å6 äžç·éšã€ã«é¢é£ããŠ,æåŸ
çè«ã§ã¯ã¢ãããŒã·ã§ã³ã®åŒ·ãã¯ã©ã®ããã«è¡šããããšèããŠããã説æããªããã",
"title": "åé¡"
}
]
| null | : [[../第1ååé¡1|âåã®åé¡]]
: [[../第2ååé¡1|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®æç« ãèªãã§ïŒäžèšã®<span style="border:1px solid #000">å1</span>ïœ<span style="border:1px solid #000">å6</span>ã«çããªããã
ãåãå Žæãæé垯ã«çžãããªããããã¯ãŒã«ãŒãåšå®
å€åãªã©ïŒãåãæ¹ããè¿å¹Žãã¥ãŒã¹ã§ãåãäžããããŠããããããŠããã¯åã«å¶åºŠãšããŠã®ãããžã¡ã³ãã®åé¡ã ãã§ã¯ãªãïŒè·å ŽãçŸå Žã®ãããžã£ãŒã®ãªãŒããŒã·ããããããžã¡ã³ãã®åé¡ãšããŠã泚ç®ãéãŸã£ãŠããã
ããã®ãããªåãæ¹ã®åé¡ã¯æ±ºããŠè¿å¹Žã ãã®åé¡ã§ã¯ãªãïŒçµå¶åŠã®è嵿ããã®åé¡ã§ããã£ãããã®ãã¡äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®åé¡ã«åãçµãã 代衚çãªç ç©¶ã®äžã€ãïŒ1924 幎ããè¡ãããããŒãœã³å·¥å Žå®éšãšåŒã°ããäžé£ã®å®éšã§ããã1900 幎代åé ïŒç±³åœã«ãããŠæ¯é
çãªç®¡çæ³ã¯ïŒèª²æ¥ç®¡çãšäœæ¥ã®æšæºåã«åºã¥ãïŒãAãïŒã§ãã£ããïŒããŒããŒã倧åŠã®ç ç©¶è
ãã¯ïŒççåŠã®ç¥èŠãåºã«ïŒäŒæ©æéãè³éïŒäœæ¥æ¡ä»¶ãæ§ã
ã«èšå®ããªããçç£æ§ãšã®é¢ä¿ã調ã¹ãããããïŒæç¢ºã«ç€ºãããã®ã¯ãããã®äœæ¥ç°å¢ãäœæ¥æ¡ä»¶ãšçç£æ§ã®éã«ã¯é¢ä¿ãèŠãããªããšããçµæã§ãã£ãã圌ãã¯ããããïŒïŒãBãïŒçååšãšããŠã®äººéã«çç®ãïŒã®ã¡ã«äººéé¢ä¿è«ãšåŒã°ããäžé£ã®ç ç©¶ãžãšå±éããŠããããšã«ãªãã
ãããŒãœã³å·¥å Žå®éšã«ãããç ç©¶ã«ä»£è¡šããã人éé¢ä¿è«ä»¥éïŒãªãŒããŒã·ãããã¢ãããŒã·ã§ã³ãªã©äººéæ§ã«çç®ããå®èšŒçç ç©¶ãçŸããããã«ãªã£ãããã®äžã§ãªãŒããŒã·ããè«ã§ã¯ïŒãªãŒããŒã·ããã®è¡åã«ç ç©¶ã®æ³šç®ãéãŸãããšã«ãªã£ãããã®ä»£è¡šçãªãã·ã¬ã³å€§åŠã®ç ç©¶ããŒã ã¯ïŒãªãŒããŒè¡åã®åæãéããŠïŒãããžã£ãŒã®äºã€ã®ãªãŒããŒã·ããè¡åãšããŠïŒãCãïŒå¿åãšçç£å¿åã瀺ããããã®äžã§ïŒé«æ¥çžŸãããïŒè·åæºè¶³ã®åäžãšé¢è·çã®äœäžããããããªãŒããŒã¯ïŒãCãïŒå¿åã®è¡åããšããªãŒããŒã§ããããšãå®èšŒçã«æããã«ããã
ããã·ã¬ã³å€§åŠç ç©¶ã°ã«ãŒããçããRïŒãªãã«ãŒãã¯ïŒãã®åŸïŒæ°ãããããžã¡ã³ããšããŠ<sub>(ã¢)</sub><u>ã·ã¹ãã 4</u>ãšåŒã°ãããããžã¡ã³ãã®æçšæ§ãæå±ãããRïŒãªãã«ãŒãã¯ãããžã¡ã³ããç¬åçå°å¶åãªã©åã€ã®ã¿ã€ãã«ããïŒããããã·ã¹ãã 1 ãã4 ãšãïŒã·ã¹ãã 4 ãæãæ¥çžŸãé«ããªãããšã瀺ããã
ããã®äžæ¹ïŒã¢ãããŒã·ã§ã³ã®çè«ã§ã¯ïŒåæ©ã¥ããããå ±é
¬ã®å
容ã ãã§ã¯ãªãïŒåæ©ã¥ãã®ããã»ã¹ã«çç®ããå
çºçåæ©ã¥ãçè«ãæåŸ
çè«ãªã©ãæå±ããããå
çºçåæ©ã¥ãçè«ã§ã¯ïŒäººãæ¬æ¥å ±é
¬ãåŸãããã®æŽ»åãã®ãã®ã«åæ©ã¥ããããããšãããããšã瀺ãïŒå
çºçã«åæ©ã¥ããããå人ã¯ïŒå ±é
¬ããªããšããã®æŽ»åã«ãã£ãŠïŒèªå·±ãïŒãDãïŒã§èªå·±æ±ºå®çã ãšæããããã«ïŒç©æ¥µçã«ãã®æŽ»åã«åŸäºããããšã瀺ããããŸãïŒ<sub>(ã€)</sub><u>æåŸ
çè«</u>ã«ãããŠãïŒäººã¯å ±é
¬ãããã°å¿
ãæŽ»åãèµ·ããã¢ãããŒã·ã§ã³ãé«ãŸãããã§ã¯ãªãããšã瀺ããã
<span style="border:1px solid #000">å1</span> 空æ¬ïŒãAãïŒã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
<span style="border:1px solid #000">å2</span> 空æ¬ïŒãBãïŒã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
<span style="border:1px solid #000">å3</span> 空æ¬ïŒãCãïŒã«åœãŠã¯ãŸãæãé©åãªèªå¥ãçããªããã
<span style="border:1px solid #000">å4</span> äžç·éšã¢ã«é¢é£ããŠïŒã·ã¹ãã 4 ã®ãããžã¡ã³ãã®ç¹åŸŽã説æããªããã
<span style="border:1px solid #000">å5</span> 空æ¬ïŒãDãïŒã«åœãŠã¯ãŸãé©åãªèªãçããªããã
<span style="border:1px solid #000">å6</span> äžç·éšã€ã«é¢é£ããŠïŒæåŸ
çè«ã§ã¯ã¢ãããŒã·ã§ã³ã®åŒ·ãã¯ã©ã®ããã«è¡šããããšèããŠããã説æããªããã
== æ£è§£ãšè§£èª¬ ==
; å1
: ç§åŠçç®¡çæ³
; å2
: 瀟äŒ
; å3
: åŸæ¥å¡ïŒäººéé¢ä¿ïŒ
; å4
:
; å5
: æèœ
; å6
:
: [[../第1ååé¡1|âåã®åé¡]]
: [[../第2ååé¡1|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:10:43Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC1%E5%95%8F%E5%95%8F%E9%A1%8C2 |
24,850 | äžçæè²åæã®æ°åŠ/幟äœç·š/äžå·» | äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»å¹Ÿäœç·š(äž)
äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
â»ãã®å
容ã¯çŸåšã¯é«æ ¡å
容ã®ãããäžè¬ã®å
¬ç«äžåŠæ ¡ã§ã¯ç¿ããŸãããäžé«äžè²«æ ¡ã§ã®ã¿æ±ãããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»å¹Ÿäœç·š(äž)",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "â»ãã®å
容ã¯çŸåšã¯é«æ ¡å
容ã®ãããäžè¬ã®å
¬ç«äžåŠæ ¡ã§ã¯ç¿ããŸãããäžé«äžè²«æ ¡ã§ã®ã¿æ±ãããŠããŸãã",
"title": "äžåŠ2幎ççžåœ"
}
]
| äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»å¹Ÿäœç·š(äž) äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã | <small>[[äžé«äžè²«æ ¡ã®åŠç¿]] >äžçæè²åæã®æ°åŠã»å¹Ÿäœç·š(äž) </small>
----
äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
==äžåŠ1幎ççžåœ==
*[[äžåŠæ ¡æ°åŠ/1幎ç/å³åœ¢/å¹³é¢å³åœ¢]]
*[[äžåŠæ ¡æ°åŠ/1幎ç/å³åœ¢/空éå³åœ¢]]
== äžåŠ2幎ççžåœ ==
*[[äžåŠæ ¡æ°åŠ/2幎ç/å³åœ¢/å³åœ¢ã®èª¿ã¹æ¹]]
*[[äžåŠæ ¡æ°åŠ/2幎ç/å³åœ¢/äžè§åœ¢ãšåè§åœ¢]]
*[[/äžè§åœ¢ã®èŸºãšè§|äžè§åœ¢ã®èŸºãšè§]]
â»ãã®å
容ã¯çŸåšã¯é«æ ¡å
容ã®ãããäžè¬ã®å
¬ç«äžåŠæ ¡ã§ã¯ç¿ããŸãããäžé«äžè²«æ ¡ã§ã®ã¿æ±ãããŠããŸãã
[[Category:äžåŠæ ¡æ°åŠ|ã¡ãããšããããã®ãã1]]
[[Category:äžé«äžè²«æè² æ°åŠ|*]]
[[Category:äžé«äžè²«æè²|ãã1]] | null | 2020-05-01T04:30:47Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E5%B9%BE%E4%BD%95%E7%B7%A8/%E4%B8%8A%E5%B7%BB |
24,851 | äžçæè²åæã®æ°åŠ/幟äœç·š/äžå·» | äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
幟äœç·šã®äžå·»ã¯äžè¬ã®äžåŠæ ¡ã§ã¯äžåŠ3幎çã®å³åœ¢åéã®å
容ãã¹ãŠãšäžéšã®é«æ ¡å
容ãå«ã¿ãŸãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "幟äœç·šã®äžå·»ã¯äžè¬ã®äžåŠæ ¡ã§ã¯äžåŠ3幎çã®å³åœ¢åéã®å
容ãã¹ãŠãšäžéšã®é«æ ¡å
容ãå«ã¿ãŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
}
]
| äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã 幟äœç·šã®äžå·»ã¯äžè¬ã®äžåŠæ ¡ã§ã¯äžåŠ3幎çã®å³åœ¢åéã®å
容ãã¹ãŠãšäžéšã®é«æ ¡å
容ãå«ã¿ãŸãã äžåŠæ ¡æ°åŠ/3幎ç/å³åœ¢/çžäŒŒãªå³åœ¢
ç·åã®æ¯ãšèšé
åã
äžåŠæ ¡æ°åŠ/3幎ç/å³åœ¢/äžå¹³æ¹ã®å®ç | {{Pathnav|ã¡ã€ã³ããŒãž|å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿|äžé«äžè²«æ ¡ã®åŠç¿|äžçæè²åæã®æ°åŠ|äžçæè²åæã®æ°åŠ/幟äœç·š/äžå·»|frame=1}}
----
äžçæè²åæ(äžåŠæ ¡)ã«ããã幟äœ(å³åœ¢)ã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
幟äœç·šã®äžå·»ã¯äžè¬ã®äžåŠæ ¡ã§ã¯äžåŠ3幎çã®å³åœ¢åéã®å
容ãã¹ãŠãšäžéšã®é«æ ¡å
容ãå«ã¿ãŸãã
* [[äžåŠæ ¡æ°åŠ/3幎ç/å³åœ¢/çžäŒŒãªå³åœ¢]]
* [[/ç·åã®æ¯ãšèšé|ç·åã®æ¯ãšèšé]]
* [[/å|å]]ã
* [[äžåŠæ ¡æ°åŠ/3幎ç/å³åœ¢/äžå¹³æ¹ã®å®ç]]
[[Category:äžåŠæ ¡æ°åŠ|ã¡ãããšããããã®ãã2]]
[[Category:äžé«äžè²«æè² æ°åŠ|*]]
[[Category:äžé«äžè²«æè²|ãã2]] | null | 2020-06-23T13:26:16Z | [
"ãã³ãã¬ãŒã:Pathnav"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E5%B9%BE%E4%BD%95%E7%B7%A8/%E4%B8%8B%E5%B7%BB |
24,852 | ã¢ãããºèª | èªåŠ > ã¢ãããºèª
ã¢ãããºèªã¯ãã·ã¢ã®åããžã§ãŒãžã¢ã®å西éšã®ã¢ãããžã¢ãšããå°åã«äœãã¢ãããºäººã«ãã£ãŠè©±ãããŠããèšèªã§ãã ãã®èšèªã®æå€§ã®ç¹åŸŽã¯é³ã§ãæ¯é³ã®åºå¥ã¯2çš®é¡ã ãã«å¯ŸããŠåé³ã¯14åã®æ¥æ¬èªãšæ¯ã¹ãŠçŽ4åã®58ååºå¥ããŸãããã®ããããªãã¹ãå
¥éè
åãã®å
容ã«ãªã£ãŠã¯ããŸããã«ã¿ã«ãã§ã®è»¢åã¯è¡ã£ãŠããŸããã ãŸããææ³é¢ã§ã¯è çèªã»èœæ Œèšèªã§ãããšããç¹åŸŽããããããããããªãèšèã§ãŠãããšãã«å
ã®åœ¢ãæšæž¬ã§ããªããšèŸæžãã²ããªããšããé£ããããããŸãã æ¥æ¬èªãšé¡äŒŒç¹ãå°ãªãããææ³ã®é£æåºŠã¯é«ãäžã«åé³ã®æ°ãå€ããããã¢ãªã³ã°ã®é£æåºŠãé«ãèšèªã§ãããç¿åŸææ¬²ãç¶æããäºã倧äºã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "èªåŠ > ã¢ãããºèª",
"title": "ã¢ãããºèª â ÐÒ§ÑÑа бÑзÑÓа"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢ãããºèªã¯ãã·ã¢ã®åããžã§ãŒãžã¢ã®å西éšã®ã¢ãããžã¢ãšããå°åã«äœãã¢ãããºäººã«ãã£ãŠè©±ãããŠããèšèªã§ãã ãã®èšèªã®æå€§ã®ç¹åŸŽã¯é³ã§ãæ¯é³ã®åºå¥ã¯2çš®é¡ã ãã«å¯ŸããŠåé³ã¯14åã®æ¥æ¬èªãšæ¯ã¹ãŠçŽ4åã®58ååºå¥ããŸãããã®ããããªãã¹ãå
¥éè
åãã®å
容ã«ãªã£ãŠã¯ããŸããã«ã¿ã«ãã§ã®è»¢åã¯è¡ã£ãŠããŸããã ãŸããææ³é¢ã§ã¯è çèªã»èœæ Œèšèªã§ãããšããç¹åŸŽããããããããããªãèšèã§ãŠãããšãã«å
ã®åœ¢ãæšæž¬ã§ããªããšèŸæžãã²ããªããšããé£ããããããŸãã æ¥æ¬èªãšé¡äŒŒç¹ãå°ãªãããææ³ã®é£æåºŠã¯é«ãäžã«åé³ã®æ°ãå€ããããã¢ãªã³ã°ã®é£æåºŠãé«ãèšèªã§ãããç¿åŸææ¬²ãç¶æããäºã倧äºã§ãã",
"title": "ã¢ãããºèª â ÐÒ§ÑÑа бÑзÑÓа"
}
]
| èªåŠ > ã¢ãããºèª ã¢ãããºèªã¯ãã·ã¢ã®åããžã§ãŒãžã¢ã®å西éšã®ã¢ãããžã¢ãšããå°åã«äœãã¢ãããºäººã«ãã£ãŠè©±ãããŠããèšèªã§ãã
ãã®èšèªã®æå€§ã®ç¹åŸŽã¯é³ã§ãæ¯é³ã®åºå¥ã¯2çš®é¡ã ãã«å¯ŸããŠåé³ã¯14åã®æ¥æ¬èªãšæ¯ã¹ãŠçŽ4åã®58ååºå¥ããŸãããã®ããããªãã¹ãå
¥éè
åãã®å
容ã«ãªã£ãŠã¯ããŸããã«ã¿ã«ãã§ã®è»¢åã¯è¡ã£ãŠããŸããã
ãŸããææ³é¢ã§ã¯è çèªã»èœæ Œèšèªã§ãããšããç¹åŸŽããããããããããªãèšèã§ãŠãããšãã«å
ã®åœ¢ãæšæž¬ã§ããªããšèŸæžãã²ããªããšããé£ããããããŸãã
æ¥æ¬èªãšé¡äŒŒç¹ãå°ãªãããææ³ã®é£æåºŠã¯é«ãäžã«åé³ã®æ°ãå€ããããã¢ãªã³ã°ã®é£æåºŠãé«ãèšèªã§ãããç¿åŸææ¬²ãç¶æããäºã倧äºã§ãã | __NOTOC__
<small>[[èªåŠ]] > ã¢ãããºèª</small>
[[Image:Flag_of_the_Republic_of_Abkhazia.svg|400px|center|ã¢ãããžã¢æ]]
<h2 style="text-align:center; margin-bottom: 1em; font-weight: bold;">ã¢ãããºèª â {{lang|ab|ÐÒ§ÑÑа бÑзÑÓа}}</h2>
ã¢ãããºèªã¯ãã·ã¢ã®åããžã§ãŒãžã¢ã®å西éšã®[[w:ã¢ãããžã¢|ã¢ãããžã¢]]ãšããå°åã«äœãã¢ãããºäººã«ãã£ãŠè©±ãããŠããèšèªã§ãã<br>
ãã®èšèªã®æå€§ã®ç¹åŸŽã¯é³ã§ãæ¯é³ã®åºå¥ã¯2çš®é¡ã ãã«å¯ŸããŠåé³ã¯14åã®æ¥æ¬èªãšæ¯ã¹ãŠçŽ4åã®58ååºå¥ããŸãããã®ããããªãã¹ãå
¥éè
åãã®å
容ã«ãªã£ãŠã¯ããŸããã«ã¿ã«ãã§ã®è»¢åã¯è¡ã£ãŠããŸããã<br>
ãŸããææ³é¢ã§ã¯[[w:è çèª|è çèª]]ã»[[w:èœæ Œèšèª|èœæ Œèšèª]]ã§ãããšããç¹åŸŽããããããããããªãèšèã§ãŠãããšãã«å
ã®åœ¢ãæšæž¬ã§ããªããšèŸæžãã²ããªããšããé£ããããããŸãã<br>
æ¥æ¬èªãšé¡äŒŒç¹ãå°ãªãããææ³ã®é£æåºŠã¯é«ãäžã«åé³ã®æ°ãå€ããããã¢ãªã³ã°ã®é£æåºŠãé«ãèšèªã§ãããç¿åŸææ¬²ãç¶æããäºã倧äºã§ãã
==ç®æ¬¡==
{{Wikipedia|ã¢ãããºèª|ã¢ãããºèª}}
{{é²æç¶æ³}}
*[[/é³é»|æåãšé³]]{{é²æç°¡æ|100%|2018-12-28}}
**[[/é³é»/ç°é³å|ç°é³å]]{{é²æç°¡æ|100%|2018-12-28}}
*[[/æšæ¶|æšæ¶]]{{é²æç°¡æ|100%|2018-12-28}}
*[[/æ°|æ°]]{{é²æç°¡æ|100%|2018-12-30}}
*[[/åè©|åè©]]{{é²æç°¡æ|100%|2019-01-05}}
*[[/圢容è©|圢容è©(ç¶æ
åè©)]]{{é²æç°¡æ|100%|2019-05-18}}
*[[/åè©|åè©(åäœåè©)]]{{é²æç°¡æ|100%|2019-05-18}}
*èªåœïŒå€åçãªåèªã®ã¿ãåãæ±ã)
**[[/èªåœ/æ|æ]]{{é²æç°¡æ|100%|2018-12-28}}
{{stub}}
[[ã«ããŽãª:èªåŠ]]
[[ã«ããŽãª:ã¢ãããºèª|*]] | null | 2022-11-22T16:53:04Z | [
"ãã³ãã¬ãŒã:Lang",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æç°¡æ",
"ãã³ãã¬ãŒã:Stub"
]
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E |
24,853 | ã¢ãããºèª/èªåœ/æ | 1993幎9æ30æ¥ã«ã¢ãããžã¢å
±ååœãšããŠã¢ãããžã¢å°åãç¬ç«ããéãããšããšäœ¿ãããŠãã倿¥èªç±æ¥ã®æã®ååã倿¥(?)ã®èšãæ¹ã«å€ãããŸããã(æ¥æ¬ã§èšãæã®çŠæã»åŠæã»åŒ¥ç...ã«çžåœããŸã) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "1993幎9æ30æ¥ã«ã¢ãããžã¢å
±ååœãšããŠã¢ãããžã¢å°åãç¬ç«ããéãããšããšäœ¿ãããŠãã倿¥èªç±æ¥ã®æã®ååã倿¥(?)ã®èšãæ¹ã«å€ãããŸããã(æ¥æ¬ã§èšãæã®çŠæã»åŠæã»åŒ¥ç...ã«çžåœããŸã)",
"title": ""
}
]
| 1993幎9æ30æ¥ã«ã¢ãããžã¢å
±ååœãšããŠã¢ãããžã¢å°åãç¬ç«ããéãããšããšäœ¿ãããŠãã倿¥èªç±æ¥ã®æã®ååã倿¥(?)ã®èšãæ¹ã«å€ãããŸãããïŒæ¥æ¬ã§èšãæã®çŠæã»åŠæã»åŒ¥çâŠã«çžåœããŸã) | 1993幎9æ30æ¥ã«ã¢ãããžã¢å
±ååœãšããŠã¢ãããžã¢å°åãç¬ç«ããéãããšããšäœ¿ãããŠãã倿¥èªç±æ¥ã®æã®ååã倿¥(?)ã®èšãæ¹ã«å€ãããŸãããïŒæ¥æ¬ã§èšãæã®çŠæã»åŠæã»åŒ¥çâŠã«çžåœããŸã)
==çŸè¡ã®èšãæ¹==
*ÐжÑÑÑМ'''Ñ'''Ò³Óа â çŠæ,1æ
**éå¶å Žã®ç¥ã
***ажÑÑÑа(éå¶å Ž)+а-МÑÒ³Óа(ç¥ã)
*ÐÓабÑ'''а'''М â åŠæ,2æ
**çã®å
ç¥ãå®è·ç¥
*Ð¥ÓажÓк'''Ñ'''Ñа â 匥ç,3æ
**ã±ãŒããæã€ (è±äœã®ç¥ã)
***аÑ
ÓажÓа(ã±ãŒã,ååŒã®äŸç©)+а-кÑа(æã€;to hold)
*ÐÑаҧ'''Ñ''' â 坿,4æ
**ã€ãŒã¹ã¿ãŒ(аЌÑаҧ)
*ÐаҵаÑ'''а'''â çæ,5æ
**çš®ãŸã(алаҵаÑа)
*РаÑÓаÑ'''а''' â æ°Žç¡æ,6æ
**éèåã(аÑаÑÓаÑа)
*ÒŠÑ
ÑМгÓ'''Ñ''' â ææ,7æ
**çå€
***а-Ò§Ñ
ÑМ(å€) + а-гÓÑïŒäžå¿ïŒ
*Ð'''а'''МҳÓа â èæ,8æ
**[[w:çç¥å¥³å°±å¯ç¥|çç¥å¥³å°±å¯ç¥]]
***а-МаМ(çç¥å¥³)+Ò³Óа(èšã)
*ЊÓÑббÑ'''а''' â é·æ,9æ
**éçãé鹿ã®åå®
*ÐÑÒааÑ'''а''' â ç¥ç¡æ,10æ
**ãããŠã®åç©«
***а-жÑ(ãããŠ)+а-ÒааÑа(åç©«ãã)
*ÐбҵаÑ'''а''' â éæ,11æ
**(ç©ç©ã)åãåã
*ÒŠÑ
ÑМҷкÓ'''Ñ'''М â 垫走,12æ
**å°æ¥æ¥å
***а-Ò§Ñ
ÑМ(å€) + а-ҷкÓÑМ(åäŸ)
==倿¥èªç±æ¥ã®èšãæ¹==
*ÐаМв'''а'''Ñ - 1æ,January
*ҊеÑв'''а'''М - 2æ,Febrary
*ÐаÑÑ - 3æ, March
*ÐпÑ'''е'''л - 4æ, April
*ÐÐµÑ - 5æ, May
*ÐÑМ - 6æ, June
*ÐÑл - 7æ, July
*ÐвгÑÑÑ - 8æ,August
*СеМÑО'''а'''Ð±Ñ - 9æ, September
*ÐкÑО'''а'''Ð±Ñ - 10æ, October
*ÐПО'''а'''Ð±Ñ - 11æ, November
*Ðек'''а'''Ð±Ñ - 12æ, December
==åèæç®==
Ð. Ð. ÐОгÑаа. 2018. "РОÑÑалÑМÑй ÐŒÐžÑ ÑÑаЎОÑОПММПй ÑелОгОО абÑ
азПв."
Ð. Ð. ÐÓаÑҷОа. 2019. "ÐÑÑÑÐŒÒаÒÓа ÑеОзга. акÑÓО аÑПЌ: ÐлекÑОкПлПгОа."
[https://sputnik-abkhazia.info/signs/20181231/1026168877/apsua-mzar-amzakua-ryhyz-ashakugylasha-iazku-zguatarakuak.html ÐÔ¥ÑÑа ЌзаÑ: аЌзаÒÓа ÑÑÑ
ÑÓ¡ аÑÑаÒÓгÑлаÑÑа ÐžÐ°Ð·ÐºÑ Ð·Ð³ÓаÒаÑаÒÓак]
[[ã«ããŽãª:ã¢ãããºèª]] | null | 2022-11-22T16:53:27Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E/%E8%AA%9E%E5%BD%99/%E6%9C%88 |
24,854 | ã¢ãããºèª/é³é» | éåžžåé³ã¯58åãšèšãããŠããŸããæ¯é³ã¯2çš®é¡ã®åºå¥ã§ããç°é³åã«ãã£ãŠ5åååšããŸãã
åºæ¯é³Ðãšçæ¯é³Ð«ã®2çš®é¡ã§ãããç°é³åã«ããæ¯é³ãååšããŸãã
æ¥æ¬èªã§ã¯wã衚ãæåãã¯ãããªãããååã«ã衚èšã¯åé³+а
ãã°ãã°Bzypæ¹èšã«ã€ããŠèšããææžå
ã§ã¯æ°ãã«åºå¥ãããã¹ãé³ãšããŠå¥ã®æåã§è¡šèšãããã
ãŸãæšæºã¢ãããºèªãšç°ãªãç°é³åãããããã以äžã®æåãå°å
¥ãããããšããããŸãã
æšæºã¢ãããºèª ÐҵаÑаã¯åé³ã»åã¢ã¯ã»ã³ãã§ ÐҵаÑа /аtsâаrа/
ãšããæå³ãããããBzypæ¹èšã§ã¯ ÐҵаÑа /аtsâаrа/
ÐÒµâаÑа /аtÉâаrа/
ãšããŠãå¥ã®é³çŽ ã®åèªãšããŠåºå¥ãããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "éåžžåé³ã¯58åãšèšãããŠããŸããæ¯é³ã¯2çš®é¡ã®åºå¥ã§ããç°é³åã«ãã£ãŠ5åååšããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åºæ¯é³Ðãšçæ¯é³Ð«ã®2çš®é¡ã§ãããç°é³åã«ããæ¯é³ãååšããŸãã",
"title": "æ¯é³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ¥æ¬èªã§ã¯wã衚ãæåãã¯ãããªãããååã«ã衚èšã¯åé³+а",
"title": "åé³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã°ãã°Bzypæ¹èšã«ã€ããŠèšããææžå
ã§ã¯æ°ãã«åºå¥ãããã¹ãé³ãšããŠå¥ã®æåã§è¡šèšãããã",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãŸãæšæºã¢ãããºèªãšç°ãªãç°é³åãããããã以äžã®æåãå°å
¥ãããããšããããŸãã",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æšæºã¢ãããºèª ÐҵаÑаã¯åé³ã»åã¢ã¯ã»ã³ãã§ ÐҵаÑа /аtsâаrа/",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšããæå³ãããããBzypæ¹èšã§ã¯ ÐҵаÑа /аtsâаrа/",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ÐÒµâаÑа /аtÉâаrа/",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšããŠãå¥ã®é³çŽ ã®åèªãšããŠåºå¥ãããŠããã",
"title": "Bzypæ¹èšç¬ç¹ã®é³"
}
]
| éåžžåé³ã¯58åãšèšãããŠããŸããæ¯é³ã¯2çš®é¡ã®åºå¥ã§ããç°é³åã«ãã£ãŠ5åååšããŸãã | éåžžåé³ã¯58åãšèšãããŠããŸããæ¯é³ã¯2çš®é¡ã®åºå¥ã§ãã[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]ã«ãã£ãŠ5åååšããŸãã
==æ¯é³==
åºæ¯é³Ðãšçæ¯é³Ð«ã®2çš®é¡ã§ãããç°é³åã«ããæ¯é³ãååšããŸãã
*Ð [a] ã¢ãŒ
*Ð [É] ãšãŒ(æ¥æ¬èªããè¥å¹²åºãã»ã¢ãã)
**Ðã®ç°é³ãâ[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]
*Ы [Éš] â[[w:éååäžèçæ¯é³]]
*Ð [o] ãªãŒ(åãäžžããããªãŒ)
**åºæ¯é³ãšçæ¯é³ã飿¥ããæã®ç°é³ãâ[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]
*Ð [i] ã€ãŒ
**éåžžãåé³ãšããŠçšãããããããŸãã«æ¯é³ãšããŠçŸããã
*У [u] ãŠãŒ
**éåžžãåé³ãšããŠçšãããããããŸãã«æ¯é³ãšããŠçŸããã
==åé³==
æ¥æ¬èªã§ã¯wã衚ãæåãã¯ãããªãããååã«ã衚èšã¯åé³+а
*Ð [b] ã
*Ð [v] ãŽã¡
*Ð [g] ã¬
*ÐÑ [gʲ] ã®ã£
*ÐÓ [gÊ·] ã°ã®
*Ò [É£] ''ã¬'' (Ðã¯èãšå£èãã€ããããÒã¯çãããã€ããªããæ¯é³ã®åŸã®ã¬è¡)
*ÒÑ[ɣʲ] ''ã®ã£''
*ÒÓ [ɣʷ]ã''ã°ã®''
*Ð [d] ã
*ÐÓ [dÊ·] ãã¥ã®, [db] (ãã¥ãšãã®åæçºé³) <ref name="yanagisawa2010">ããã¥ãŒãšã¯ã¹ãã¬ã¹ã»ã¹ãã·ã£ã« ãšãŒãããã®ããããèšèªãæ³æ²¢æ°éä»ç·šãçœæ°Žç€Ÿã2010幎ã11ïœ12é </ref>
*Ð [Ê] â[[w:æå£°ããèæ©æŠé³]]
*ÐÑ [Ê] ''ãžã£'' (èå
ãæ¯èåŸéšã«ã€ãããžã£ããæ¯é³ã®åŸã®ãžã£è¡)
*ÐÓ [ÊÊ·] ''ãžã¥ã®'' (ÐÑ+Ó)
*Ð [z] ''ã¶'' (è±èªã®zãèãšå£èãã€ããªã)
*Ó [Ê£] ã¶ (æ¥æ¬èªã®ã¶ãèãšå£èãã€ãã)
*Ó Ó [ʥʷ] ãžã¥ã® (æ¥æ¬èªã®ãžã¥ã«ã®)
*Ð [j] 〠(æ¯é³ã€ãšããŠçŸããäºããã)
*Ð [kâ]ã«' (æŸåºé³ã®ã«)
*ÐÑ[kʲâ] ã'ã£
*ÐÓ [kâÊ·] ã¯'ã®
*Ò [kʰ] ã« (ææ°é³ãæ¥æ¬èªã®ã«ã¯ãã¡ãã«è¿ã)
*ÒÑ [kʲʰ] ãã£
*ÒÓ [kʰʷ] ãã£
*Ò [qâ] â[[w:ç¡å£°å£èåç Žè£é³]]
*ÒÑ [qʲâ]
*ÒÓ [qÊ·â]
*Ð [l] ã© (è±èªã®L)
*Ð [m] ã
*Ð [n] ã
*Ð [pâ]ãã' (æŸåºé³)
*ÒŠ [pʰ] ã (ææ°é³)
*Ð [r] â[[w:æ¯èãµããé³]]
*С [s] ãµ
*Т [tâ] ã¿' (æŸåºé³)
*Ð¢Ó [tÊ·â] ã'ã¥ã®, [tâpâ] (ТãšÐã®åæçºé³) <ref name="yanagisawa2010" />
*Ò¬ [tʰ] ã¿ (ææ°é³)
*Ò¬Ó [tÊ·] ãã¥ã®, [tp] (ã¿ãšãã®åæçºé³) <ref name="yanagisawa2010" />
*У [w] 㯠(æ¯é³ãŠãšããŠçŸããäºããã)
*Ѐ [f] ãã¡
*Ð¥ [x] ''ã'' (â[[w:ç¡å£°è»å£èæ©æŠé³]])
*Ð¥Ñ[xʲ] ''ãã£''
*Ð¥Ó [xÊ·] ''ãã®''
*Ò² [ħ] ã (æ¥æ¬èªã®ããšå³å¯ã«ã¯ç°ãªããããã§ãå¯)
*Ò²Ó [ħʷ] ãã® (ãã¡(f)ã§ã¯ãªã)
*Њ [ʊʰ] ãã¡ (ææ°é³)
*ЊÓ[ʚʷʰ]ããã¥ã®
*ÒŽ [tsâ] ã'ã¡ (æŸåºé³)
*ÒŽÓ [ʚʷâ]ããã¥ã®'
*Ч [ʧʰ] (ææ°é³ãæ¥æ¬èªã®ãã£ã§ã¯ÒŒãšæ··å â[[w:ç¡å£°åŸéšæ¯èç ŽæŠé³]])
*Ò¶ [ʧâ] (æŸåºé³)
*ÒŒ [ÊÊ] (ææ°é³ãæ¥æ¬èªã®ãã£ã§ã¯Ð§ãšæ··å â[[w:ç¡å£°ããèç ŽæŠé³]]ïŒ
*ÒŸ [ÊÊâ] (æŸåºé³)
*К [Ê] â[[w:ç¡å£°ããèæ©æŠé³]]
*ÐšÑ [Ê] ã·ã£ (å³å¯ã«ã¯ç°ãªã â[[w:ç¡å£°åŸéšæ¯èæ©æŠé³]])
*ÐšÓ [ÊÊ·] (КÑ+Ó)
*Òš [É¥] ãŸãã¯ã€ãšã¯ãåæèª¿é³ â[[w:æå£°äž¡å硬å£èæ¥è¿é³]]
*Ð [ÉÊ] â [[w:æå£°ããèç ŽæŠé³]]
*ÐÑ [Ê€] â[[w:æå£°åŸéšæ¯èç ŽæŠé³]]
==Bzypæ¹èšç¬ç¹ã®é³==
ãã°ãã°Bzypæ¹èšã«ã€ããŠèšããææžå
ã§ã¯æ°ãã«åºå¥ãããã¹ãé³ãšããŠå¥ã®æåã§è¡šèšãããã
*Њâ [tÍ¡É] (æ¥æ¬èªã®ãã£ãšåã)
*ÒŽâ [tÍ¡ÉÊŒ] (Њâã®æŸåºé³)
*Ó â [dÊ] ãžã£ (æ¥æ¬èªã®ãžã£)
*Ò [Ê] ãžã£ (æ¥æ¬èªã®ãžã£ãšäŒŒãŠããããèãšå£èãã€ããªãã)
*ÒÓ,Ð'Ó [ÊÊ·] (Òãåé³åãããé³)
*Òª [É] (æ¥æ¬èªã®ã·ã®é³ãšåããâ[[w:ç¡å£°æ¯è硬å£èæ©æŠé³]])
*ÒªÓ,К'Ó [ÉÊ·] (Òªãåé³åãããé³)
*Ð¥â [ÏË€] âãåœé åå£èåé³
*Ð¥âÓ [Ïˀʷ] (Ð¥âãæŽã«åé³åããé³)
*Ъ [Ê] âã[[w:声éç Žè£é³]]ã(-аÑ- /aÊ/ ïŒæ¿å
¥èŸ"where")ã«çŸãã) <ref>æ³æ²¢æ°é "A grammar of Abkhaz" ã²ã€ãæžæ¿ã2013幎ã403é </ref>
ãŸãæšæºã¢ãããºèªãšç°ãªãç°é³åãããããã以äžã®æåãå°å
¥ãããããšããããŸãã
*Ð [j]ãâÐ
*Ð [w]ãâУ
===æ¹èšãšæšæºèªã®éãã®äŸ===
æšæºã¢ãããºèª ÐҵаÑ'''а'''ã¯åé³ã»åã¢ã¯ã»ã³ãã§<br>
ÐҵаÑ'''а''' /аtsâаr'''а'''/
*1.ç£åµãã
*2.ã¹ãã«ãä¿®åŸãããåŠã¶
ãšããæå³ãããããBzypæ¹èšã§ã¯<br>
ÐҵаÑ'''а''' /аtsâаr'''а'''/
*1.ã¹ãã«ãä¿®åŸãããåŠã¶
ÐÒµâаÑ'''а''' /аtÉâаr'''а'''/
*1.ç£åµãã
ãšããŠãå¥ã®é³çŽ ã®åèªãšããŠåºå¥ãããŠããã<ref>Ð. Ð¥. СаЌаМба "ÐПпÑПÑÑ Ð°Ð±Ñ
азÑкПгП О ПбÑегП ÑзÑкПзМаМОÑ" ã¢ãããžã¢ç§åŠã¢ã«ãããŒã2015幎ã90é 34.-35.</ref>
=åèæç®=
<references />
[[ã«ããŽãª:ã¢ãããºèª]] | null | 2022-11-22T16:53:31Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E/%E9%9F%B3%E9%9F%BB |
24,860 | äžåŠæ ¡ç€ŸäŒ å
¬æ°/å°æ¹ã®äœæ°éå | å°åã«ãã£ãŠã¯ãäœæ°ãæ
å ±å
¬éå¶åºŠãªã©ã掻çšããŠãè¡æ¿ã驿£ã«æŽ»åããŠããç£èŠããå¶åºŠãéåãããããã®ãããªå¶åºŠã«ããªã³ããºå¶åºŠããªã©ãšèšããŸããã¹ãŠã§ãŒãã³ã§19äžçŽããå§ããããå¶åºŠãããšã«ãªã£ãŠããŸãã
ããªã³ããºãã³ãå¶åºŠãšãããªã³ããºããŒãœã³ãå¶åºŠãšããåã«ããªã³ããºãã³ããããªã³ããºããŒãœã³ããªã©ãšãèšãããŸãã
wikibooksãäžåŠæ ¡ç€ŸäŒ_å
¬æ°/å°æ¹èªæ²»#çŽæ¥è«æ±æš©ãã§èª¬æãã¿ãåç
§ããã
å°åã®ãã©ã³ãã£ã¢éå(ããšãã°é«éœ¢è
çŠç¥ãªã©)ãèªç¶ä¿è·éåãªã©ã®å£äœãã€ããããã«çšå¶ãªã©ã§åªéãåãããããããéå¶å©çµç¹ã(NPO)ãšããå¶åºŠããããŸããããšãããŒãªãŒããšèªã¿ãŸãã
èªç¶ä¿è·éåããã©ã³ãã£ã¢éåãªã©ã§ãNPOãçµæãããããããšããããŸãã
éœéåºçãåžçºæãšãã£ãèªæ²»äœ(ãã¡ãã)ããå°åã®é«éœ¢è
ä¿è·ãªã©çŠç¥è¡æ¿ã®ä»äºã®äžéšãããã®å°åã®ãã©ã³ãã£ã¢ç³»ã®NPOã«å§èšããŠããå ŽåããããŸã(â» ãããã®æ±äº¬æžç±ã®æç§æžã«ã€ããŠã®åçã§èŠã)ã
NPOã¯ããã®æŽ»åãåœéçãã©ããã¯é¢ä¿ãããŸããã(ååã®äŒŒãŠããNGOã¯åœéçã) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å°åã«ãã£ãŠã¯ãäœæ°ãæ
å ±å
¬éå¶åºŠãªã©ã掻çšããŠãè¡æ¿ã驿£ã«æŽ»åããŠããç£èŠããå¶åºŠãéåãããããã®ãããªå¶åºŠã«ããªã³ããºå¶åºŠããªã©ãšèšããŸããã¹ãŠã§ãŒãã³ã§19äžçŽããå§ããããå¶åºŠãããšã«ãªã£ãŠããŸãã",
"title": "ãªã³ããºå¶åºŠ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããªã³ããºãã³ãå¶åºŠãšãããªã³ããºããŒãœã³ãå¶åºŠãšããåã«ããªã³ããºãã³ããããªã³ããºããŒãœã³ããªã©ãšãèšãããŸãã",
"title": "ãªã³ããºå¶åºŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "wikibooksãäžåŠæ ¡ç€ŸäŒ_å
¬æ°/å°æ¹èªæ²»#çŽæ¥è«æ±æš©ãã§èª¬æãã¿ãåç
§ããã",
"title": "çŽæ¥è«æ±æš©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å°åã®ãã©ã³ãã£ã¢éå(ããšãã°é«éœ¢è
çŠç¥ãªã©)ãèªç¶ä¿è·éåãªã©ã®å£äœãã€ããããã«çšå¶ãªã©ã§åªéãåãããããããéå¶å©çµç¹ã(NPO)ãšããå¶åºŠããããŸããããšãããŒãªãŒããšèªã¿ãŸãã",
"title": "NPO"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "èªç¶ä¿è·éåããã©ã³ãã£ã¢éåãªã©ã§ãNPOãçµæãããããããšããããŸãã",
"title": "NPO"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "éœéåºçãåžçºæãšãã£ãèªæ²»äœ(ãã¡ãã)ããå°åã®é«éœ¢è
ä¿è·ãªã©çŠç¥è¡æ¿ã®ä»äºã®äžéšãããã®å°åã®ãã©ã³ãã£ã¢ç³»ã®NPOã«å§èšããŠããå ŽåããããŸã(â» ãããã®æ±äº¬æžç±ã®æç§æžã«ã€ããŠã®åçã§èŠã)ã",
"title": "NPO"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "NPOã¯ããã®æŽ»åãåœéçãã©ããã¯é¢ä¿ãããŸããã(ååã®äŒŒãŠããNGOã¯åœéçã)",
"title": "NPO"
}
]
| null | == ãªã³ããºå¶åºŠ ==
å°åã«ãã£ãŠã¯ãäœæ°ãæ
å ±å
¬éå¶åºŠãªã©ã掻çšããŠãè¡æ¿ã驿£ã«æŽ»åããŠããç£èŠããå¶åºŠãéåãããããã®ãããªå¶åºŠã«ããªã³ããºå¶åºŠããªã©ãšèšããŸããã¹ãŠã§ãŒãã³ã§19äžçŽããå§ããããå¶åºŠãããšã«ãªã£ãŠããŸãã
ããªã³ããºãã³ãå¶åºŠãšãããªã³ããºããŒãœã³ãå¶åºŠãšããåã«ããªã³ããºãã³ããããªã³ããºããŒãœã³ããªã©ãšãèšãããŸãã
:ïŒâ» ç¯å²å€: ïŒãªããªã³ããºãã³ãšã¯ãã¹ãŠã§ãŒãã³èªã§ä»£è¡šè
ãªã©ã®æå³ã§ããïŒãã¡ãããè²éµ¬ç€Ÿãªã©ã®æç§æžã«æžããŠãããïŒ
:ïŒâ» æèšããªããŠããïŒæ¥æ¬ã§ã¯1990幎ã«ç¥å¥å·çå·åŽåžãå§ããŠãªã³ããºå¶åºŠãå°å
¥ããŸãããïŒâ» æç§æžã§ã¯ãç« æ«ã³ã©ã ãå·»æ«çšèªéã«æžãããŠãããïŒ
== çŽæ¥è«æ±æš© ==
wikibooksã[[äžåŠæ ¡ç€ŸäŒ_å
¬æ°/å°æ¹èªæ²»#çŽæ¥è«æ±æš©]]ãã§èª¬æãã¿ãåç
§ããã
== NPO ==
å°åã®ãã©ã³ãã£ã¢éåïŒããšãã°é«éœ¢è
çŠç¥ãªã©ïŒãèªç¶ä¿è·éåãªã©ã®å£äœãã€ããããã«çšå¶ãªã©ã§åªéãåãããããããéå¶å©çµç¹ãïŒNPOïŒãšããå¶åºŠããããŸããããšãããŒãªãŒããšèªã¿ãŸãã
:ïŒâ»ãç¯å²å€ïŒ non-profit organization ãã³ã»ãã€ããã£ããã»ãªãŒã¬ããŒãŒã·ã§ã³ã®ç¥ã§ããprofit ãããã£ãããšã¯è±èªã§ãå©çããšããæå³ã§ãã
:ïŒâ»ãç¯å²å€ïŒ NPOã¯ãæ ªåŒäŒç€Ÿãšã¯éã£ãŠãé
åœãäžããããšãã§ããŸãããããããçšéãªã©ãå°ãªãã£ããå
é€ãããããããªã©ãå©ç¹ããããŸãããªããæ ªåŒäŒç€Ÿã¯ãå¶å©çµç¹ãã®äžçš®ã§ãã
èªç¶ä¿è·éåããã©ã³ãã£ã¢éåãªã©ã§ãNPOãçµæãããããããšããããŸãã
:ïŒâ» ç·šéè
泚ã»â»ç¯å²å€ïŒ ãªããNPOã®æ¿æ²»éåïŒéžææŽ»å<ref>[https://www.saitamaken-npo.net/html/senkyokatsudokinsi.pdf "senkyokatsudokinsi.pdf" åŒççNPOæ
å ±ã¹ããŒã·ã§ã³ NPOã³ããã³ã³ããæ³äººã¯éžææŽ»åãçŠããããŠããŸããã ]</ref>ãªã©ïŒã¯ãã³ããèŠå¶ãããŠãã<ref>[https://www.city.tochigi.lg.jp/site/shiminkatsudou/14445.html æ æšåžãç¹å®éå¶å©æŽ»åæ³äººã®æ¿æ²»æŽ»åãç®çãšããæŽ»åã¯çŠæ¢ãããŠããŸããæŽæ°æ¥ïŒ2019幎2æ27æ¥æŽæ°]</ref>ã
éœéåºçãåžçºæãšãã£ãèªæ²»äœïŒãã¡ããïŒããå°åã®é«éœ¢è
ä¿è·ãªã©çŠç¥è¡æ¿ã®ä»äºã®äžéšãããã®å°åã®ãã©ã³ãã£ã¢ç³»ã®NPOã«å§èšããŠããå ŽåããããŸãïŒâ»ããããã®æ±äº¬æžç±ã®æç§æžã«ã€ããŠã®åçã§èŠãïŒã
NPOã¯ããã®æŽ»åãåœéçãã©ããã¯é¢ä¿ãããŸãããïŒååã®äŒŒãŠããNGOã¯åœéçãïŒ
:ïŒâ» ç¯å²å€ïŒçºå
äŒãªã©ãNPOãšããŠçµç¹ãããŠããåžçºæããããŸããïŒçºå
äŒãåœéçãªãããªãïŒããšã¯ãããåœéçãªæŽ»åãããŠããå£äœãNPOãšããŠç»é²ãããŠããå ŽåããããŸã<ref>[https://note.com/acky0710/n/nb9670f5107e6 ããªããšïŒãã¡ã®NPOãäžåŠå
¬æ°ã®æç§æžã«èŒã£ããïŒããNPOæ³äººé 磚ãŠãããŒãµã«ããŒããããžã§ã¯ãã ã]ãæè²åºçã®äžåŠå
¬æ°ã«æ²èŒãããNPOãã¢ããªã«ã®ç°æ€ãã®æŽ»åãããŠããã</ref>ã
== èæ³š ==
[[ã«ããŽãª:äžåŠæ ¡å
¬æ°|ã¡ã»ãã®ãããã¿ããããšã]] | 2018-12-28T05:37:35Z | 2023-08-20T08:40:32Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E5%AD%A6%E6%A0%A1%E7%A4%BE%E4%BC%9A_%E5%85%AC%E6%B0%91/%E5%9C%B0%E6%96%B9%E3%81%AE%E4%BD%8F%E6%B0%91%E9%81%8B%E5%8B%95 |
24,861 | ã¢ãããºèª/é³é»/ç°é³å | ã¢ãããºèªã¯éæ¯é³ãšéæ¯é³ã®2çš®é¡ãããããŸããããæ¯é³ã®çµã¿åããã«ãã£ãŠç°é³å(Allophone)ãèµ·ãããããæ°ãä»ããå¿
èŠããããŸãã
æ¥æ¬èªã§èšããšããã®æ¿é³ãšæž
é³ãåããŸããã¢ãããºèªã§ã¯å¯Ÿå¿ããåé³ã»ãããååšããŠããŸãã
æå£°é³âç¡å£°é³
æå£°é³âç¡å£°é³ã»ææ°é³âç¡å£°é³ã»æŸåºé³
äž»ã«åè©ã®æŽ»çšã®æã«ç°é³åãèµ·ãããŸãã éåžžãªãã°ãåè©ã«å¯ŸããŠåäœäž»æ¥é èŸã¯ãã®ããã«äžäººç§°åæ°ã¯Ñ-ãäºäººç§°è€æ°ãªãÑÓ-ããšããŸãã
ãããããã®åäœäž»æ¥é èŸã®åŸã«æå£°é³ã飿¥ããå Žåãé³ãз-, жÓ-,ã«å€åããŸãã
ã¡ãªã¿ã«å¯Ÿå¿ããåé³ããªãÒ²ã®é³çŽ ãããäžäººç§°è€æ°Ò³Ð°-ã¯Ð°Ð°-ã«å€åããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¢ãããºèªã¯éæ¯é³ãšéæ¯é³ã®2çš®é¡ãããããŸããããæ¯é³ã®çµã¿åããã«ãã£ãŠç°é³å(Allophone)ãèµ·ãããããæ°ãä»ããå¿
èŠããããŸãã",
"title": "æ¯é³ã®ç°é³å"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¥æ¬èªã§èšããšããã®æ¿é³ãšæž
é³ãåããŸããã¢ãããºèªã§ã¯å¯Ÿå¿ããåé³ã»ãããååšããŠããŸãã",
"title": "åé³ã®ç°é³å"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æå£°é³âç¡å£°é³",
"title": "åé³ã®ç°é³å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æå£°é³âç¡å£°é³ã»ææ°é³âç¡å£°é³ã»æŸåºé³",
"title": "åé³ã®ç°é³å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "äž»ã«åè©ã®æŽ»çšã®æã«ç°é³åãèµ·ãããŸãã éåžžãªãã°ãåè©ã«å¯ŸããŠåäœäž»æ¥é èŸã¯ãã®ããã«äžäººç§°åæ°ã¯Ñ-ãäºäººç§°è€æ°ãªãÑÓ-ããšããŸãã",
"title": "åé³ã®ç°é³å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãããããã®åäœäž»æ¥é èŸã®åŸã«æå£°é³ã飿¥ããå Žåãé³ãз-, жÓ-,ã«å€åããŸãã",
"title": "åé³ã®ç°é³å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¡ãªã¿ã«å¯Ÿå¿ããåé³ããªãÒ²ã®é³çŽ ãããäžäººç§°è€æ°Ò³Ð°-ã¯Ð°Ð°-ã«å€åããŸãã",
"title": "åé³ã®ç°é³å"
}
]
| null | ==æ¯é³ã®ç°é³å==
ã¢ãããºèªã¯éæ¯é³ãšéæ¯é³ã®2çš®é¡ãããããŸããããæ¯é³ã®çµã¿åããã«ãã£ãŠç°é³å(Allophone)ãèµ·ãããããæ°ãä»ããå¿
èŠããããŸãã
=== æšæºã¢ãããºèªã®ç°é³å ===
*Ð+Ð â ÐÐ
**ãäŸãÐ-ба-ÐžÑ ; ÐбеОÑ
*Ð+У â ÐУ
**ãäŸãÐзОаÑа ÑбааОÑ; ããžã¢ãŒãããŠããŒã€ã
*Ð+УРâ Ð
**ãäŸãÐ-ба-Ñа-ÐžÑ ; ÐбПОÑ.
*Ðã®ååŸãè»é³ååé³ (Ñãå«ãé³é»ãšÒš) â Ð
**ãäŸãÐÒ©Ð°Ð¶Ñ â ÐҩежÑ
*ÐãУã®ååŸã«Ð«ãã€ããŠããæ â Ð«ãæ¶ã
**ãäŸãÐÑÑÑ â ÐÑÑ
*Ðã®ååŸãåé³ååé³ â Ð
**ãäŸãÐÓаÑ
Ó â ÐÓПÑ
Ó
*æ«å°ŸÐ«ã§çµããåèª+æ¥å°ŸèŸâÐ«ãæ¶ã
**ãäŸãÐÓ¡Ñ-ÒÓа â ÐÓ¡ÒÓа
==åé³ã®ç°é³å==
æ¥æ¬èªã§èšããšããã®æ¿é³ãšæž
é³ãåããŸããã¢ãããºèªã§ã¯å¯Ÿå¿ããåé³ã»ãããååšããŠããŸãã
===ãã®ä»ã®åé³===
*Ð,Ð,Ð â ç°é³åãèµ·ãããªã
===åé¡â
===
æå£°é³âç¡å£°é³
*ÐâЀ
*ÐâС
*ÐâК
*ÐÑâКÑ
*ÐÓâКÓ
*ÒâÐ¥
*ÒÑâÐ¥Ñ
*ÒÓâÐ¥Ó
*ã âÒ²ãïŒå¯Ÿå¿ããæå£°é³ããªãïŒ
*ÒšâÒ²Ó
===åé¡â
¡===
æå£°é³âç¡å£°é³ã»ææ°é³âç¡å£°é³ã»æŸåºé³
*ÐâÒŠâÐ
*ÐâÒ¬âТ
*ÐÓâÒ¬ÓâТÓ
*Ó âЊâÒŽ
*Ó ÓâЊÓâÒŽÓ
*ÐâÒŒâÒŸ
*ÐÑâЧâÒ¶
*ÐâÒâÐ
*ÐÑâÒÑâÐÑ
*ÐÓâÒÓâÐÓ
*ãâãâÒ
*ãâãâÒÑ
*ãâãâÒÓ
**ãããïŒã€ã¯å¯Ÿå¿ããç¡å£°é³ãšææ°é³ããªã
===äŸ===
äž»ã«åè©ã®æŽ»çšã®æã«ç°é³åãèµ·ãããŸãã
éåžžãªãã°ãåè©ã«å¯ŸããŠåäœäž»æ¥é èŸã¯ãã®ããã«äžäººç§°åæ°ã¯Ñ-ãäºäººç§°è€æ°ãªãÑÓ-ããšããŸãã
*ãäŸæãããªãã¯ã©ãã«äœãã§ããŸãã? â ç§ã¯ã¹ããã«äœãã§ããŸãã
**КÓаÑа '''ÑÓ'''абаМÑ
П?ãâ СаÑа ÐÒÓа '''ÑÑ'''МÑ
ПОÑ.
ãããããã®åäœäž»æ¥é èŸã®åŸã«æå£°é³ã飿¥ããå Žåãé³ãз-, жÓ-,ã«å€åããŸãã
*ãäŸã ÐзОаÑа '''жÓ'''бааОÑ. ããã«ã¡ã¯
*ãäŸã СаÑа алаÑаÑа '''з'''бПОÑ. ç§ã¯å
ãèŠã; I see the light
ã¡ãªã¿ã«å¯Ÿå¿ããåé³ããªãÒ²ã®é³çŽ ãããäžäººç§°è€æ°Ò³Ð°-ã¯Ð°Ð°-ã«å€åããŸãã
*ãäŸã ÐзОала ÑÓ'''аа'''Ð±ÐµÐžÑ ãããã
==åèæç®==
*Ð.КÑ.КÑÑМÒÓÐ±Ð°ä» "ÐÒ§ÑÑа бÑзÑÓа" ã¢ãããžã¢å€§åŠ, 2008, p23-27
[[ã«ããŽãª:ã¢ãããºèª]] | null | 2022-11-22T16:53:35Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E/%E9%9F%B3%E9%9F%BB/%E7%95%B0%E9%9F%B3%E5%8C%96 |
24,862 | ã¢ãããºèª/æšæ¶ | â»ã«ã¿ã«ã転åã¯åèçšåºŠã«ããŠãããŠãã ãããå®éã®é³ãšã¯ç°ãªããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "â»ã«ã¿ã«ã転åã¯åèçšåºŠã«ããŠãããŠãã ãããå®éã®é³ãšã¯ç°ãªããŸãã",
"title": ""
}
]
| â»ã«ã¿ã«ã転åã¯åèçšåºŠã«ããŠãããŠãã ãããå®éã®é³ãšã¯ç°ãªããŸãã | â»ã«ã¿ã«ã転åã¯åèçšåºŠã«ããŠãããŠãã ãããå®éã®é³ãšã¯ç°ãªããŸãã
; ããã«ã¡ã¯ã : ÐзОа збаÑа. (ããºã£ã¢ãºããŒã·ã£)
; ããã«ã¡ã¯ã(2人以äžã®å Žåã¯ÒÓаãä»ãã) : ÐÑÑбзОа(ÒÓа). (ã ã·ã¥ããºã£ã¢(ã¯ã®))
; ãå
æ°ã§ãã?ïŒçžæãç·æ§ã®æïŒ : УÑÑÒÓа ÑҧаÒПÑ? (ãŠã¹ã¯ã® ã·ã¥ããŒã³ããŠ?)
; ãå
æ°ã§ãã?ïŒçžæã女æ§ã®æïŒ : ÐÑÑÒÓа ÑҧаÒПÑ? (ãã¹ã¯ã® ã·ã¥ããŒã³ããŠ?)
; å
æ°ã§ãã : Ð¥Ð°Ñ ÑÑЌаЌ. (ãã«ãã¹ãã )
; ããªãã®ååã¯äœã§ããïŒïŒçžæãç·æ§ã®æïŒ : ÐÑÑ
ÑÓ¡ÑО?(ã€ãŠãã
�)
; ããªãã®ååã¯äœã§ããïŒïŒçžæã女æ§ã®æïŒ : ÐбÑÑ
ÑÓ¡ÑО?(ã€ããã
�)
; ç§ã®ååã¯ããã§ãã : СаÑа ãã ÑÑÑ
ÑÓ¡Ñп.(ãµã©ãŒããããã¹ãã
ã)
; ãããããé¡ãããŸãã : СгÓÑ ÐžÐ°Ð°Ñ
ÓеОÑ. (ã¹ã°ã¥ãã€ãã®ã€ã)
; ãã¡ããããããããé¡ãããŸãã : СаÑгÑÑ ÑгÓÑ ÐžÐ°Ð°Ñ
ÓеОÑ. (ãµã«ã®ã¥ã¥ãã¹ã°ã¥ãã€ãã®ã€ã)
; ããããšãã : ÐÒабÑп. (ã€ã¿ããã)
; ã©ãããããŸããŠã : ÐзÑ
аÒабÑзеО. (ã€ãºãã¿ããŒã€)
; ã¯ã : ÐОеО, ÐеО, ÐаО (ã¢ã€ã§ã€, ã¢ãšã€, ã¢ã¢ã€)
; ããã : ÐПÑЌа, ÐПЌа, ÐПп, Ðап (ã¢ãŠã, ã¢ã, ã¢ãã, ããã)
; (éãå°ããæãªã©)ãã¿ãŸããã : СаÒаЌзааОÑ. (ãµã¿ã ã¶ãŒã€ã)
; (ç·æ§ã«å¯ŸããŠ)ããããªããã : СаÒаÑЌҵаМ. (ãµã¿ãŠã ãã¡ã³)
; (女æ§ã«å¯ŸããŠ)ããããªããã : СаÒабÑЌҵаМ. (ãµã¿ãã ãã¡ã³)
; (è¬çœªã«å¯ŸããŠ)åé¡ãããŸããã : ÐгÑаÑÑÑÐŒ. (ã€ã§ã®ã£ãŠã«ã )
; ããããªãã : ÐбзОаÑаз. (ã¢ããºã£ã¢ã©ãº)
; ç§ã¯ã¢ãããºèªãç¥ããŸããã : СаÑа аҧÑÑа бÑзÑÓа ÑÑзЎÑÑӡПЌ. (ãµã©ãŒãã¢ãã¹ã¯ãããºã·ã¥ã¯ãã¹ãºãã¥ã«ãŸã )
; ããã¯äœã§ããïŒ : ÐÑО закÓО?ã(ã¢ãªãŒ ã¶ã¯ã¥ã£?)
; ããã¯ã¢ãããºèªã§ã©ãèšããŸããïŒ : ÐÑО аҧÑÑа бÑзÑÓала ОаÑ
ÑÓ¡ÑзеО? (ã¢ãªãŒãã¢ãã¹ã¯ãããºã·ã¥ã¯ã© ã€ã€ããºãŒã€?)
; å©ã㊠: (ç·æ§ã«å¯ŸããŠ)УÑÑÑÑ
Ñаа. (ãŠã¹ããã©ãŒ) / (女æ§ã«å¯ŸããŠ)ÐÑÑÑÑ
Ñаа.(ãã¹ããã©ãŒ) / (2人以äžã«å¯ŸããŠ)КÓÑÑÑÑ
Ñаа.(ã·ã¥ã¹ããã©ãŒ)
; ãã¯ããããããŸãã(2人以äžã®å Žåã¯ÒÓаãä»ãã) :КÑÑжÑбзОа(ÒÓа). (ã·ã¥ãžã¥ããºã£ã¢(ã¯ã®))
; ããã°ãã¯ã(2人以äžã®å Žåã¯ÒÓаãä»ãã) : Ð¥ÓлÑбзОа(ÒÓа). (ãã¥ã«ããºã£ã¢(ã¯ã®))
; ãããã¿ãªããã : ÐÒµÑ
алҧÑ
а ÑÓПÑааОÑ. (ã¢ããã¢ã«ããã·ã¥ãªã¯ãŒã€ã)
; ããããŸããã : ÐÑзеОлкааÑаЌ. (ã€ã¹ãŒã€ã«ã«ãŒã¯ã )
; ãã€ã¬ã¯ã©ãã§ããïŒ : ÐÑÑаÑÑЌа абаÒПÑ? (ã¢ã·ã£ã·ã ããŒã³ããŠ?)
[[ã«ããŽãª:ã¢ãããºèª]] | null | 2022-11-22T16:53:21Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E/%E6%8C%A8%E6%8B%B6 |
24,863 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第2ååé¡2 | æ¬¡ã®æç« ãèªã¿,以äžã®å1~å5ã«çããªããããªã,èšç®åé¡ã®æ°å€ã¯å
šãŠå²ãåããããåæšäºå
¥ããã«çããããšã
äŒæ¥Aã¯,äœå°çŸé60 åå,äºæ¥è³ç£40 ååãæããŠãããæ ªåŒäŸ¡å€ã¯100 ååã§ãã,è² åµã¯æããŠããªãããªã,äœå°çŸé,äºæ¥è³ç£,æ ªåŒäŸ¡å€ã¯å
šãŠæäŸ¡è©äŸ¡ãããŠãããã®ãšãããä»,CAPM ã®äž,ç¡ãªã¹ã¯å©åçã¯1 %,æ ªåŒåžå Žã®æåŸ
ãªã¹ã¯ãã¬ãã¢ã ã¯6 %,äŒæ¥Aã®æ ªåŒã®ããŒã¿ã¯1.5,çšéã¯ååšããªããã®ãšããã
å1 äŒæ¥Aã®å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã
å2 äŒæ¥Aã®äºæ¥è³ç£ã«å¯ŸããæåŸ
åççãçããªããã
å3 äŒæ¥Aã®äºæ¥è³ç£ã®ããŒã¿ãçããªããã
å4 äŒæ¥Aã¯,äœå°çŸé60 ååã®ãã¡20 ååãçŸéé
åœããããã®æ,1äŒæ¥Aã®æ ªåŒã®ããŒã¿,2å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã
å5 ããã«,äŒæ¥Aã¯,æ®ãã®äœå°çŸé40 ååå
šé¡ãè³ééçšãç®çãšããŠ,åžå ŽããŒããã©ãªãªã«æè³ããããã®æ,äŒæ¥Aã®å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã
äŒæ¥Aã¯è² åµããŒãã ãã,å éå¹³åè³æ¬ã³ã¹ã=æ ªäž»è³æ¬ã³ã¹ã=æ ªäž»ã®æåŸ
åçç
CAPMãã,
⎠X=23.5%
å3ãã,
âŽÎ²=3.75
CAPMãã,
å2ãã, | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬¡ã®æç« ãèªã¿,以äžã®å1~å5ã«çããªããããªã,èšç®åé¡ã®æ°å€ã¯å
šãŠå²ãåããããåæšäºå
¥ããã«çããããšã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äŒæ¥Aã¯,äœå°çŸé60 åå,äºæ¥è³ç£40 ååãæããŠãããæ ªåŒäŸ¡å€ã¯100 ååã§ãã,è² åµã¯æããŠããªãããªã,äœå°çŸé,äºæ¥è³ç£,æ ªåŒäŸ¡å€ã¯å
šãŠæäŸ¡è©äŸ¡ãããŠãããã®ãšãããä»,CAPM ã®äž,ç¡ãªã¹ã¯å©åçã¯1 %,æ ªåŒåžå Žã®æåŸ
ãªã¹ã¯ãã¬ãã¢ã ã¯6 %,äŒæ¥Aã®æ ªåŒã®ããŒã¿ã¯1.5,çšéã¯ååšããªããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å1 äŒæ¥Aã®å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å2 äŒæ¥Aã®äºæ¥è³ç£ã«å¯ŸããæåŸ
åççãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å3 äŒæ¥Aã®äºæ¥è³ç£ã®ããŒã¿ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å4 äŒæ¥Aã¯,äœå°çŸé60 ååã®ãã¡20 ååãçŸéé
åœããããã®æ,1äŒæ¥Aã®æ ªåŒã®ããŒã¿,2å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å5 ããã«,äŒæ¥Aã¯,æ®ãã®äœå°çŸé40 ååå
šé¡ãè³ééçšãç®çãšããŠ,åžå ŽããŒããã©ãªãªã«æè³ããããã®æ,äŒæ¥Aã®å éå¹³åè³æ¬ã³ã¹ã(WACC)ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äŒæ¥Aã¯è² åµããŒãã ãã,å éå¹³åè³æ¬ã³ã¹ã=æ ªäž»è³æ¬ã³ã¹ã=æ ªäž»ã®æåŸ
åçç",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "CAPMãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "⎠X=23.5%",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å3ãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "âŽÎ²=3.75",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "CAPMãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "å2ãã,",
"title": "æ£è§£ãšè§£èª¬"
}
]
| null | : [[../第2ååé¡1|âåã®åé¡]]
: [[../第2ååé¡3|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®æç« ãèªã¿ïŒä»¥äžã®<span style="border:1px solid #000">å1</span>ïœ<span style="border:1px solid #000">å5</span>ã«çããªããããªãïŒèšç®åé¡ã®æ°å€ã¯å
šãŠå²ãåããããåæšäºå
¥ããã«çããããšã
ãäŒæ¥ïŒ¡ã¯ïŒäœå°çŸé60 ååïŒäºæ¥è³ç£40 ååãæããŠãããæ ªåŒäŸ¡å€ã¯100 ååã§ããïŒè² åµã¯æããŠããªãããªãïŒäœå°çŸéïŒäºæ¥è³ç£ïŒæ ªåŒäŸ¡å€ã¯å
šãŠæäŸ¡è©äŸ¡ãããŠãããã®ãšãããä»ïŒCAPM ã®äžïŒç¡ãªã¹ã¯å©åçã¯1 ïŒ
ïŒæ ªåŒåžå Žã®æåŸ
ãªã¹ã¯ãã¬ãã¢ã ã¯6 ïŒ
ïŒäŒæ¥ïŒ¡ã®æ ªåŒã®ããŒã¿ã¯1.5ïŒçšéã¯ååšããªããã®ãšããã
{| class="wikitable"
|+å³ãæäŸ¡è©äŸ¡ããã貞å察ç
§è¡š
|äœå°çŸéã60åå
| rowspan="2" |æ ªåŒäŸ¡å€ã100åå
|-
|äºæ¥è³ç£ã40åå
|}
<span style="border:1px solid #000">å1</span> äŒæ¥ïŒ¡ã®å éå¹³åè³æ¬ã³ã¹ãïŒWACCïŒãçããªããã
<span style="border:1px solid #000">å2</span> äŒæ¥ïŒ¡ã®äºæ¥è³ç£ã«å¯ŸããæåŸ
åççãçããªããã
<span style="border:1px solid #000">å3</span> äŒæ¥ïŒ¡ã®äºæ¥è³ç£ã®ããŒã¿ãçããªããã
<span style="border:1px solid #000">å4</span> äŒæ¥ïŒ¡ã¯ïŒäœå°çŸé60 ååã®ãã¡20 ååãçŸéé
åœããããã®æïŒâ äŒæ¥ïŒ¡ã®æ ªåŒã®ããŒã¿ïŒâ¡å éå¹³åè³æ¬ã³ã¹ãïŒWACCïŒãçããªããã
<span style="border:1px solid #000">å5</span> ããã«ïŒäŒæ¥ïŒ¡ã¯ïŒæ®ãã®äœå°çŸé40 ååå
šé¡ãè³ééçšãç®çãšããŠïŒåžå ŽããŒããã©ãªãªã«æè³ããããã®æïŒäŒæ¥ïŒ¡ã®å éå¹³åè³æ¬ã³ã¹ãïŒWACCïŒãçããªããã
== æ£è§£ãšè§£èª¬ ==
=== å1 ===
äŒæ¥Aã¯è² åµããŒãã ããïŒå éå¹³åè³æ¬ã³ã¹ãïŒæ ªäž»è³æ¬ã³ã¹ãïŒæ ªäž»ã®æåŸ
åçç
CAPMããïŒ
:æ ªäž»ã®æåŸ
åçç
:ïŒç¡ãªã¹ã¯å©åçïŒäŒæ¥Aã®ããŒã¿å€ÃæåŸ
ãªã¹ã¯ãã¬ãã¢ã
: = 1% + 1.5Ã6% = 10%
=== å2 ===
{| class="wikitable"
|+ å éå¹³åããæåŸ
åçç
|-
! è³ç£ !! æåŸ
åçç !! è³ç£ã®æ§æå²å
|-
| äœå°çŸé || 1%ïŒç¡ãªã¹ã¯å©åçïŒ|| 0.6ïŒ60ååïŒ
|-
| äºæ¥è³ç£ || X || 0.4ïŒ40ååïŒ
|-
| èš || 1%Ã0.6ïŒXÃ0.4ïŒ10%ïŒå1ããïŒ|| 1ïŒ60åå+40ååïŒ
|}
⎠XïŒ23.5%
==== å¥è§£ ====
å3ããïŒ
:äºæ¥è³ç£ã®æåŸ
åçç
: ïŒç¡ãªã¹ã¯å©åçïŒäºæ¥è³ç£ã®ããŒã¿å€ÃæåŸ
ãªã¹ã¯ãã¬ãã¢ã
: = 1% + 6Ã3.75 = 23.5%
=== å3 ===
{| class="wikitable"
|+ å éå¹³åããããŒã¿
|-
! è³ç£ !! ããŒã¿ !! è³ç£ã®æ§æå²å
|-
| äœå°çŸé || 0ïŒç¡ãªã¹ã¯ïŒ|| 0.6ïŒ60ååïŒ
|-
| äºæ¥è³ç£ || β || 0.4ïŒ40ååïŒ
|-
| èš || âŽ0Ã0.6ïŒÎ²Ã0.4ïŒ1.5|| 1ïŒ60åå+40ååïŒ
|}
âŽÎ²ïŒ3.75
==== å¥è§£ ====
CAPMããïŒ
:äºæ¥è³ç£ã®æåŸ
åççïŒç¡ãªã¹ã¯å©åçïŒäºæ¥è³ç£ã®ããŒã¿å€ÃæåŸ
ãªã¹ã¯ãã¬ãã¢ã
å2ããïŒ
:23.5% = 1% + βÃ6%
: âŽÎ²ïŒ3.75
=== å4â â¡ ===
{| class="wikitable"
|+ å éå¹³åããæåŸ
åççïŒå éå¹³åè³æ¬ã³ã¹ã
|-
! è³ç£ !! æåŸ
åçç !! è³ç£ã®æ§æå²å
|-
| äœå°çŸé || 1%ïŒç¡ãªã¹ã¯å©åçïŒ|| 0.5ïŒ40ååïŒ
|-
| äºæ¥è³ç£ || 23.5% || 0.5ïŒ40ååïŒ
|-
| èš || âŽ1%Ã0.5ïŒ23.5%Ã0.5ïŒ12.25%|| 1ïŒ40åå+40ååïŒ
|}
{| class="wikitable"
|+ å éå¹³åããããŒã¿
|-
! è³ç£ !! ããŒã¿ !! è³ç£ã®æ§æå²å
|-
| äœå°çŸé || 0ïŒç¡ãªã¹ã¯ïŒ|| 0.5ïŒ40ååïŒ
|-
| äºæ¥è³ç£ || 3.75 || 0.5ïŒ40ååïŒ
|-
| èš || âŽ0Ã0.5ïŒ3.75Ã0.5ïŒ1.875|| 1ïŒ40åå+40ååïŒ
|}
==== å¥è§£ ====
: æ ªåŒã®æåŸ
åççïŒç¡ãªã¹ã¯å©åçïŒæ ªåŒã®ããŒã¿å€ÃæåŸ
ãªã¹ã¯ãã¬ãã¢ã
: 12.25% = 1% + βÃ6%
: âŽÎ²ïŒ1.875
=== å5 ===
{| class="wikitable"
|+ å éå¹³åããæåŸ
åççïŒå éå¹³åè³æ¬ã³ã¹ã
|-
! è³ç£ !! æåŸ
åçç !! è³ç£ã®æ§æå²å
|-
| åžå ŽããŒããã©ãªãª || 7%|| 0.5ïŒ40ååïŒ
|-
| äºæ¥è³ç£ || 23.5% || 0.5ïŒ40ååïŒ
|-
| èš || âŽ7%Ã0.5ïŒ23.5%Ã0.5ïŒ15.25%|| 1ïŒ40åå+40ååïŒ
|}
: [[../第2ååé¡1|âåã®åé¡]]
: [[../第2ååé¡3|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:10:58Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C2 |
24,866 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第2ååé¡3 | 次ã®å1~å3ã«çããªããããªã,æ¬åã«ãããåµåžã¯å
šãŠç¡ãªã¹ã¯ã§é¡é¢ã100 å,å©åããšã¯è€å©æçµå©åããæå³ããŠãã,å©ä»åµã®å©æãã¯å¹Ž1 åã§çŸåšå©æããè¡ãããçŽåŸã§ãããšãããèšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯,èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3 äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2äœãŸã§çããããšã
å1 æ¬¡ã®æç« ã®1ã3ã«åœãŠã¯ãŸãæ°å€ãçããªããã
çŸåšã®1 幎ç©,2 幎ç©,3 幎ç©ã®å²åŒåµã®å©åã(ã¹ãããã»ã¬ãŒã)ã¯,ãããã,2 %,3 %,4 %ã§ãããšããããã®ãšã,æè³å®¶ã¯,1 幎åŸãã2 幎åŸãŸã§ã®1 幎éã®å©åã㯠1 %,2 幎åŸãã3 幎åŸãŸã§ã®1 幎éã®å©åã㯠2 %ãš,å°æ¥éå©ãäžæãããšèããŠããã
ãŸã,ã¹ãããã»ã¬ãŒããäžèšã§ãããšã,ã¯ãŒãã³ã»ã¬ãŒã3 %,æ®åæé3 幎ã®å©ä» åµã®çŸåšã®åµåžäŸ¡æ Œã¯ 3 åã§ããã
å2 æ¬¡ã®æç« ã®4ã6ã«åœãŠã¯ãŸãæ°å€ãçããªããã
åµåžäŸ¡æ Œã¯,åžå Žéå©ã®å€åã«ããå©åãã®å€åã«ãã£ãŠäŸ¡æ Œãå€åãããããã§,å©åãã®å€åã«ããåµåžäŸ¡æ Œã®å€åãªã¹ã¯ãèšãææšãšããŠçšããããã®ã,åçš®ã®ãã¥ã¬ãŒã·ã§ã³ã§ããã
ãã®äžã§ã,ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯,åµåžæè³ã®å¹³åååæéã衚ããŠãããããšãã°,ã¯ãŒãã³ã»ã¬ãŒã4 %,æ®åæé2 幎ã®å©ä»åµã®çŸåšã®å©åãã3 %ã§ãããšã,ãã®åµåžäŸ¡æ Œã¯101.91 åã§ãã,ãã®ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯ 4 ã§ããã
äžæ¹,å©åãã®å€åã«å¯ŸããåµåžäŸ¡æ Œã®å€åçãè¡šãææšã,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã§ãããããšãã°,å©åãã4 %ã§ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã2.86 ã§ããåµåžã®ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã¯ 5 ã§ããããããã£ãŠ,ãã®åµåžã®å©åãã4 %ãã4.2 %ãžç¬æã«äžæãããšãããš,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããŠåµåžäŸ¡æ Œã®å€åãè¿äŒŒèšç®ããã°,åµåžäŸ¡æ Œã¯çŸåšã®äŸ¡æ Œãã 6 %äžèœããããšã«ãªãã
ãã ã,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããåµåžäŸ¡æ Œã®å€åã®è¿äŒŒèšç®ã¯,å©åãã倧ããå€åããå Žå,å®éã®åµåžäŸ¡æ Œã®å€åãšã®éã®èª€å·®ã倧ãããªããšããåé¡ããããããã§,ãã®è£æ£ãšããŠçšããããã®ã, 7 ãšåŒã°ããææšã§ããã
å3 å2ã®æç« ã®7ã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã
ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒãã,
ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒãã,
3÷(1+0.02) + 3÷(1+0.03) + 103÷(1+0.04) â 97.34å
4å÷(1+0.03)÷101.91åÃ1幎 + 104å÷(1+0.03)÷101.91åÃ2幎 = 1.96幎
ãš | [
{
"paragraph_id": 0,
"tag": "p",
"text": "次ã®å1~å3ã«çããªããããªã,æ¬åã«ãããåµåžã¯å
šãŠç¡ãªã¹ã¯ã§é¡é¢ã100 å,å©åããšã¯è€å©æçµå©åããæå³ããŠãã,å©ä»åµã®å©æãã¯å¹Ž1 åã§çŸåšå©æããè¡ãããçŽåŸã§ãããšãããèšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯,èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3 äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2äœãŸã§çããããšã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å1 æ¬¡ã®æç« ã®1ã3ã«åœãŠã¯ãŸãæ°å€ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çŸåšã®1 幎ç©,2 幎ç©,3 幎ç©ã®å²åŒåµã®å©åã(ã¹ãããã»ã¬ãŒã)ã¯,ãããã,2 %,3 %,4 %ã§ãããšããããã®ãšã,æè³å®¶ã¯,1 幎åŸãã2 幎åŸãŸã§ã®1 幎éã®å©åã㯠1 %,2 幎åŸãã3 幎åŸãŸã§ã®1 幎éã®å©åã㯠2 %ãš,å°æ¥éå©ãäžæãããšèããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸã,ã¹ãããã»ã¬ãŒããäžèšã§ãããšã,ã¯ãŒãã³ã»ã¬ãŒã3 %,æ®åæé3 幎ã®å©ä» åµã®çŸåšã®åµåžäŸ¡æ Œã¯ 3 åã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å2 æ¬¡ã®æç« ã®4ã6ã«åœãŠã¯ãŸãæ°å€ãçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åµåžäŸ¡æ Œã¯,åžå Žéå©ã®å€åã«ããå©åãã®å€åã«ãã£ãŠäŸ¡æ Œãå€åãããããã§,å©åãã®å€åã«ããåµåžäŸ¡æ Œã®å€åãªã¹ã¯ãèšãææšãšããŠçšããããã®ã,åçš®ã®ãã¥ã¬ãŒã·ã§ã³ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®äžã§ã,ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯,åµåžæè³ã®å¹³åååæéã衚ããŠãããããšãã°,ã¯ãŒãã³ã»ã¬ãŒã4 %,æ®åæé2 幎ã®å©ä»åµã®çŸåšã®å©åãã3 %ã§ãããšã,ãã®åµåžäŸ¡æ Œã¯101.91 åã§ãã,ãã®ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯ 4 ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžæ¹,å©åãã®å€åã«å¯ŸããåµåžäŸ¡æ Œã®å€åçãè¡šãææšã,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã§ãããããšãã°,å©åãã4 %ã§ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã2.86 ã§ããåµåžã®ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã¯ 5 ã§ããããããã£ãŠ,ãã®åµåžã®å©åãã4 %ãã4.2 %ãžç¬æã«äžæãããšãããš,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããŠåµåžäŸ¡æ Œã®å€åãè¿äŒŒèšç®ããã°,åµåžäŸ¡æ Œã¯çŸåšã®äŸ¡æ Œãã 6 %äžèœããããšã«ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã ã,ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããåµåžäŸ¡æ Œã®å€åã®è¿äŒŒèšç®ã¯,å©åãã倧ããå€åããå Žå,å®éã®åµåžäŸ¡æ Œã®å€åãšã®éã®èª€å·®ã倧ãããªããšããåé¡ããããããã§,ãã®è£æ£ãšããŠçšããããã®ã, 7 ãšåŒã°ããææšã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å3 å2ã®æç« ã®7ã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "3÷(1+0.02) + 3÷(1+0.03) + 103÷(1+0.04) â 97.34å",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "4å÷(1+0.03)÷101.91åÃ1幎 + 104å÷(1+0.03)÷101.91åÃ2幎 = 1.96幎",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãš",
"title": "æ£è§£ãšè§£èª¬"
}
]
| null | : [[../第2ååé¡2|âåã®åé¡]]
: [[../第2ååé¡4|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®<span style="border:1px solid #000">å1</span>ïœ<span style="border:1px solid #000">å3</span>ã«çããªããããªãïŒæ¬åã«ãããåµåžã¯å
šãŠç¡ãªã¹ã¯ã§é¡é¢ã100 åïŒå©åããšã¯è€å©æçµå©åããæå³ããŠããïŒå©ä»åµã®å©æãã¯å¹Ž1 åã§çŸåšå©æããè¡ãããçŽåŸã§ãããšãããèšç®åé¡ã«ã€ããŠã¯ïŒæ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯ïŒèšç®éäžã§ã®åæšäºå
¥ã¯ããïŒæçµæ°å€ã®å°æ°ç¹ç¬¬3 äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2äœãŸã§çããããšã
<span style="border:1px solid #000">å1</span> æ¬¡ã®æç« ã®â ãâ¢ã«åœãŠã¯ãŸãæ°å€ãçããªããã
ãçŸåšã®1 幎ç©ïŒ2 幎ç©ïŒ3 幎ç©ã®å²åŒåµã®å©åãïŒã¹ãããã»ã¬ãŒãïŒã¯ïŒããããïŒ2 ïŒ
ïŒ3 ïŒ
ïŒ4 ïŒ
ã§ãããšããããã®ãšãïŒæè³å®¶ã¯ïŒ1 幎åŸãã2 幎åŸãŸã§ã®1 幎éã®å©åãã¯<span style="border:1px solid #000">ãâ ã</span>ïŒ
ïŒ2 幎åŸãã3 幎åŸãŸã§ã®1 幎éã®å©åãã¯<span style="border:1px solid #000">ãâ¡ã</span>ïŒ
ãšïŒå°æ¥éå©ãäžæãããšèããŠããã
ããŸãïŒã¹ãããã»ã¬ãŒããäžèšã§ãããšãïŒã¯ãŒãã³ã»ã¬ãŒã3 ïŒ
ïŒæ®åæé3 幎ã®å©ä»
åµã®çŸåšã®åµåžäŸ¡æ Œã¯<span style="border:1px solid #000">ãâ¢ã</span>åã§ããã
<span style="border:1px solid #000">å2</span> æ¬¡ã®æç« ã®â£ãâ¥ã«åœãŠã¯ãŸãæ°å€ãçããªããã
ãåµåžäŸ¡æ Œã¯ïŒåžå Žéå©ã®å€åã«ããå©åãã®å€åã«ãã£ãŠäŸ¡æ Œãå€åãããããã§ïŒå©åãã®å€åã«ããåµåžäŸ¡æ Œã®å€åãªã¹ã¯ãèšãææšãšããŠçšããããã®ãïŒåçš®ã®ãã¥ã¬ãŒã·ã§ã³ã§ããã
ããã®äžã§ãïŒãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯ïŒåµåžæè³ã®å¹³åååæéã衚ããŠãããããšãã°ïŒã¯ãŒãã³ã»ã¬ãŒã4 ïŒ
ïŒæ®åæé2 幎ã®å©ä»åµã®çŸåšã®å©åãã3 ïŒ
ã§ãããšãïŒãã®åµåžäŸ¡æ Œã¯101.91 åã§ããïŒãã®ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã¯<span style="border:1px solid #000">ãâ£ã</span>ã§ããã
ãäžæ¹ïŒå©åãã®å€åã«å¯ŸããåµåžäŸ¡æ Œã®å€åçãè¡šãææšãïŒä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã§ãããããšãã°ïŒå©åãã4 ïŒ
ã§ãã³ãŒã¬ãŒã»ãã¥ã¬ãŒã·ã§ã³ã2.86 ã§ããåµåžã®ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã¯<span style="border:1px solid #000">ãâ€ã</span>ã§ããããããã£ãŠïŒãã®åµåžã®å©åãã4 ïŒ
ãã4.2 ïŒ
ãžç¬æã«äžæãããšãããšïŒä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããŠåµåžäŸ¡æ Œã®å€åãè¿äŒŒèšç®ããã°ïŒåµåžäŸ¡æ Œã¯çŸåšã®äŸ¡æ Œãã<span style="border:1px solid #000">ãâ¥ã</span>ïŒ
äžèœããããšã«ãªãã
ããã ãïŒä¿®æ£ãã¥ã¬ãŒã·ã§ã³ãçšããåµåžäŸ¡æ Œã®å€åã®è¿äŒŒèšç®ã¯ïŒå©åãã倧ããå€åããå ŽåïŒå®éã®åµåžäŸ¡æ Œã®å€åãšã®éã®èª€å·®ã倧ãããªããšããåé¡ããããããã§ïŒãã®è£æ£ãšããŠçšããããã®ãïŒ<span style="border:1px solid #000">ãâŠã</span>ãšåŒã°ããææšã§ããã
<span style="border:1px solid #000">å3</span> <span style="border:1px solid #000">å2</span>ã®æç« ã®âŠã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã
:ã¢ïŒã€ãã¥ããŒãŒã·ã§ã³
:ã€ïŒåµåžæ Œä»ã
:ãŠïŒããã©ã«ããªã¹ã¯
:ãšïŒã³ã³ãã¯ã·ãã£
:ãªïŒä¿¡çšã¹ãã¬ãã
== æ£è§£ãšè§£èª¬ ==
=== å1â ===
ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒããïŒ
: (1+0.03)<sup>2</sup> = (1+0.02)Ã(1+<sub>1</sub>r<sub>2</sub>)
: 1+<sub>1</sub>r<sub>2</sub> = 4.01%
=== å1â¡ ===
ã¹ãããã»ã¬ãŒããšãã©ã¯ãŒãã»ã¬ãŒãã®é¢ä¿åŒããïŒ
: (1+0.04)<sup>3</sup> = (1+0.03)<sup>2</sup>Ã(1+<sub>2</sub>r<sub>3</sub>)
: 1+<sub>2</sub>r<sub>3</sub> = 6.03%
=== å1⢠===
3÷(1+0.02)<sup>1</sup> + 3÷(1+0.03)<sup>2</sup> + 103÷(1+0.04)<sup>3</sup> â 97.34å
=== å2⣠===
4å÷(1+0.03)<sup>1</sup>÷101.91åÃ1幎 + 104å÷(1+0.03)<sup>2</sup>÷101.91åÃ2幎 = 1.96幎
=== å2â€â¥ ===
; ä¿®æ£ãã¥ã¬ãŒã·ã§ã³
:2.86÷(1+0.04) = 2.75
; ä¿®æ£ãã¥ã¬ãŒã·ã§ã³ã«ããåµåžäŸ¡æ Œå€åçã®ç®å®
:-2.75Ã(4.2%-4%) = -0.55%
=== å3⊠===
ãš
: [[../第2ååé¡2|âåã®åé¡]]
: [[../第2ååé¡4|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:11:10Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C3 |
24,867 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第2ååé¡4 | æ¬¡ã®æç« ãèªã¿,å1~å5ã«çããªããããªã,èšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2 äœãŸã§çããããšã
ã³ãŒã«ãªãã·ã§ã³ã¯ããæéãŸã§ã«,å®ããããæš©å©è¡äœ¿äŸ¡æ Œã§åè³ç£ã賌å
¥ããæš©å©ã§ãããä»,åè³ç£ã¯æºæãŸã§é
åœãã,ãšãŒããã¢ã³åã®ã³ãŒã«ãªãã·ã§ã³ãåæãšãããã³ãŒã«ãªãã·ã§ã³ã®äŸ¡å€ãèšç®ããå Žå,è€è£œã®æŠå¿µãçšããŠè©äŸ¡ããããšãã§ãããããã§ã¯äºé
ã¢ãã«ãçšãããªãã·ã§ã³äŸ¡æ Œã®è©äŸ¡ãèããã
å1 ã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œã決ãã倿°ã«ã¯,1åè³ç£äŸ¡æ Œ,2æš©å©è¡äœ¿äŸ¡æ Œ,3æºæãŸã§ã®æé,4ç¡ãªã¹ã¯å©åç,5åè³ç£äŸ¡æ Œã®å€åç,ãããããã®ãã¡ãªãã·ã§ã³äŸ¡æ Œãšè² ã®é¢ä¿ããã倿°ã1ã5ããäžã€éžã³ãªããã
å2 çŸåš5,000 åã®åžå ŽäŸ¡æ Œã§ååŒãããŠããAç€Ÿæ ª1 æ ªã,1 幎åŸã«10,000 åã«ãªãã,2,500 åã«ãªããã©ã¡ããäºã€ã®ç¶æ
ãããªããšããããã®å Žå,æš©å©è¡äœ¿äŸ¡æ Œã5,500 åã®ã³ãŒã«ãªãã·ã§ã³ãäžæè€è£œãããšèãããš,Aç€Ÿæ ªãäœæ ªä¿æãã¹ãã§ãããçããªããã
å3 ç¡ãªã¹ã¯å©åçã幎ç1 %ãšãããš,è€è£œããããã«ãããåãå
¥ããã¹ããçããªããã
å4 è€è£œããããšã«ããã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œãæ±ããªããã
å5 ãªãã·ã§ã³æŠç¥ãšããŠ,åè³ç£äŸ¡æ Œãã©ã¡ãã«ã倧ããåããªããšèŠèŸŒãã§ããæè³å®¶ãçµãæŠç¥ãšããŠæãé©åãªèšå·ãäžã€éžã³ãªããã
2
â»æ ªåŒã®è³Œå
¥æ°ãXæ ª,å®å
šè³ç£ã®è³Œå
¥é¡ãYåãšããã
ãã£ãŠ,
ã€ãŸã,Aç€Ÿæ ªã0.6æ ªè³Œå
¥ã,å®å
šè³ç£ã¯1,485.15ååå
¥ã(-1,485.15å賌å
¥)ããã°ããã
ãŸã,-C = -5,000X -Yãã,
ã€(ã·ã§ãŒãã»ã¹ãã©ãã«) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬¡ã®æç« ãèªã¿,å1~å5ã«çããªããããªã,èšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2 äœãŸã§çããããšã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã³ãŒã«ãªãã·ã§ã³ã¯ããæéãŸã§ã«,å®ããããæš©å©è¡äœ¿äŸ¡æ Œã§åè³ç£ã賌å
¥ããæš©å©ã§ãããä»,åè³ç£ã¯æºæãŸã§é
åœãã,ãšãŒããã¢ã³åã®ã³ãŒã«ãªãã·ã§ã³ãåæãšãããã³ãŒã«ãªãã·ã§ã³ã®äŸ¡å€ãèšç®ããå Žå,è€è£œã®æŠå¿µãçšããŠè©äŸ¡ããããšãã§ãããããã§ã¯äºé
ã¢ãã«ãçšãããªãã·ã§ã³äŸ¡æ Œã®è©äŸ¡ãèããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å1 ã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œã決ãã倿°ã«ã¯,1åè³ç£äŸ¡æ Œ,2æš©å©è¡äœ¿äŸ¡æ Œ,3æºæãŸã§ã®æé,4ç¡ãªã¹ã¯å©åç,5åè³ç£äŸ¡æ Œã®å€åç,ãããããã®ãã¡ãªãã·ã§ã³äŸ¡æ Œãšè² ã®é¢ä¿ããã倿°ã1ã5ããäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å2 çŸåš5,000 åã®åžå ŽäŸ¡æ Œã§ååŒãããŠããAç€Ÿæ ª1 æ ªã,1 幎åŸã«10,000 åã«ãªãã,2,500 åã«ãªããã©ã¡ããäºã€ã®ç¶æ
ãããªããšããããã®å Žå,æš©å©è¡äœ¿äŸ¡æ Œã5,500 åã®ã³ãŒã«ãªãã·ã§ã³ãäžæè€è£œãããšèãããš,Aç€Ÿæ ªãäœæ ªä¿æãã¹ãã§ãããçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å3 ç¡ãªã¹ã¯å©åçã幎ç1 %ãšãããš,è€è£œããããã«ãããåãå
¥ããã¹ããçããªããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å4 è€è£œããããšã«ããã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œãæ±ããªããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å5 ãªãã·ã§ã³æŠç¥ãšããŠ,åè³ç£äŸ¡æ Œãã©ã¡ãã«ã倧ããåããªããšèŠèŸŒãã§ããæè³å®¶ãçµãæŠç¥ãšããŠæãé©åãªèšå·ãäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "2",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "â»æ ªåŒã®è³Œå
¥æ°ãXæ ª,å®å
šè³ç£ã®è³Œå
¥é¡ãYåãšããã",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã£ãŠ,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã€ãŸã,Aç€Ÿæ ªã0.6æ ªè³Œå
¥ã,å®å
šè³ç£ã¯1,485.15ååå
¥ã(-1,485.15å賌å
¥)ããã°ããã",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãŸã,-C = -5,000X -Yãã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ã€(ã·ã§ãŒãã»ã¹ãã©ãã«)",
"title": "æ£è§£ãšè§£èª¬"
}
]
| null | : [[../第2ååé¡3|âåã®åé¡]]
: [[../第2ååé¡4|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®æç« ãèªã¿ïŒ<span style="border:1px solid #000">å1</span>ïœ<span style="border:1px solid #000">å5</span>ã«çããªããããªãïŒèšç®åé¡ã«ã€ããŠã¯ïŒæ°å€ãå°æ°ç¹ç¬¬2 äœã§å²ãåããªãå Žåã«ã¯èšç®éäžã§ã®åæšäºå
¥ã¯ããïŒæçµæ°å€ã®å°æ°ç¹ç¬¬3äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2 äœãŸã§çããããšã
ãã³ãŒã«ãªãã·ã§ã³ã¯ããæéãŸã§ã«ïŒå®ããããæš©å©è¡äœ¿äŸ¡æ Œã§åè³ç£ã賌å
¥ããæš©å©ã§ãããä»ïŒåè³ç£ã¯æºæãŸã§é
åœããïŒãšãŒããã¢ã³åã®ã³ãŒã«ãªãã·ã§ã³ãåæãšãããã³ãŒã«ãªãã·ã§ã³ã®äŸ¡å€ãèšç®ããå ŽåïŒè€è£œã®æŠå¿µãçšããŠè©äŸ¡ããããšãã§ãããããã§ã¯äºé
ã¢ãã«ãçšãããªãã·ã§ã³äŸ¡æ Œã®è©äŸ¡ãèããã
<span style="border:1px solid #000">å1</span> ã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œã決ãã倿°ã«ã¯ïŒâ åè³ç£äŸ¡æ ŒïŒâ¡æš©å©è¡äœ¿äŸ¡æ ŒïŒâ¢æºæãŸã§ã®æéïŒâ£ç¡ãªã¹ã¯å©åçïŒâ€åè³ç£äŸ¡æ Œã®å€åçïŒãããããã®ãã¡ãªãã·ã§ã³äŸ¡æ Œãšè² ã®é¢ä¿ããã倿°ãâ ãâ€ããäžã€éžã³ãªããã
<span style="border:1px solid #000">å2</span> çŸåš5,000 åã®åžå ŽäŸ¡æ Œã§ååŒãããŠããïŒ¡ç€Ÿæ ª1 æ ªãïŒ1 幎åŸã«10,000 åã«ãªããïŒ2,500 åã«ãªããã©ã¡ããäºã€ã®ç¶æ
ãããªããšããããã®å ŽåïŒæš©å©è¡äœ¿äŸ¡æ Œã5,500 åã®ã³ãŒã«ãªãã·ã§ã³ãäžæè€è£œãããšèãããšïŒïŒ¡ç€Ÿæ ªãäœæ ªä¿æãã¹ãã§ãããçããªããã
<span style="border:1px solid #000">å3</span> ç¡ãªã¹ã¯å©åçã幎ç1 ïŒ
ãšãããšïŒè€è£œããããã«ãããåãå
¥ããã¹ããçããªããã
<span style="border:1px solid #000">å4</span> è€è£œããããšã«ããã³ãŒã«ãªãã·ã§ã³äŸ¡æ Œãæ±ããªããã
<span style="border:1px solid #000">å5</span> ãªãã·ã§ã³æŠç¥ãšããŠïŒåè³ç£äŸ¡æ Œãã©ã¡ãã«ã倧ããåããªããšèŠèŸŒãã§ããæè³å®¶ãçµãæŠç¥ãšããŠæãé©åãªèšå·ãäžã€éžã³ãªããã
:ã¢ïŒåãæš©å©è¡äœ¿äŸ¡æ Œã®ã³ãŒã«ãªãã·ã§ã³ãè²·ãïŒããããªãã·ã§ã³ãè²·ãæŠç¥
:ã€ïŒåãæš©å©è¡äœ¿äŸ¡æ Œã®ã³ãŒã«ãªãã·ã§ã³ã売ãïŒããããªãã·ã§ã³ãå£²ãæŠç¥
:ãŠïŒåãæš©å©è¡äœ¿äŸ¡æ Œã®ã³ãŒã«ãªãã·ã§ã³ãè²·ãïŒããããªãã·ã§ã³ãå£²ãæŠç¥
:ãšïŒåãæš©å©è¡äœ¿äŸ¡æ Œã®ã³ãŒã«ãªãã·ã§ã³ã売ãïŒããããªãã·ã§ã³ãè²·ãæŠç¥
== æ£è§£ãšè§£èª¬ ==
=== å1 ===
â¡
=== å2ïœå4 ===
{| class="wikitable"
|+Aç€Ÿæ ªã®æ ªäŸ¡
!çŸåš
!
!1幎åŸ
|-
|
|ââ
|10,000
|-
|5,000
|â€
|
|-
|
|ââ
|2,500
|}
{| class="wikitable"
|+ã³ãŒã«ãªãã·ã§ã³ã®ãã£ãã·ã¥ãããŒ
!çŸåš
!
!1幎åŸ
|-
|
|ââ
|4,500å
|-
| -Cå
|â€
|
|-
|
|ââ
|0å
|}
{| class="wikitable"
|+ã³ãŒã«ãªãã·ã§ã³ãšåããã£ãã·ã¥ãããŒãšãªãè€è£œããŒããã©ãªãª
!çŸåš
!
!1幎åŸ
|-
|
|ââ
|10,000X +1.01Y
|-
| -5,000X - Y
|â€
|
|-
|
|ââ
|2,500X +1.01Y
|}
â»æ ªåŒã®è³Œå
¥æ°ãXæ ªïŒå®å
šè³ç£ã®è³Œå
¥é¡ãYåãšããã
ãã£ãŠïŒ
:10,000X +1.01Y = 4,500
:2,500X +1.01Y = 0
:⎠X = 0.6æ ªïŒY=-1,485.15å
ã€ãŸãïŒAç€Ÿæ ªã0.6æ ªè³Œå
¥ãïŒå®å
šè³ç£ã¯1,485.15ååå
¥ãïŒ-1,485.15å賌å
¥ïŒããã°ããã
ãŸãïŒ-C = -5,000X -YããïŒ
:C = 5,000Ã0.6 +(-1,485.15) = 1,514.85å
=== å5 ===
ã€ïŒã·ã§ãŒãã»ã¹ãã©ãã«ïŒ
: [[../第2ååé¡3|âåã®åé¡]]
: [[../第2ååé¡4|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:11:15Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C4 |
24,870 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/çµå¶åŠ/第2ååé¡1 | æ¬¡ã®æç« ãèªã¿,以äžã®å1åã³å2ã«çããªããããªã,èšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2äœã§å²ãåããªãå Žåã«ã¯,èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2äœãŸã§çããããšã
X瀟ã¯,çŸåš2幎éã®æ°èŠæè³ãããžã§ã¯ãã宿œãã¹ããåŠããæ€èšããŠããããã®æè³ãããžã§ã¯ãã¯,çŸæç¹ã«ãããŠ120 ååã®æè³ãè¡ã,1幎ç®ãš2幎ç®ã«ãšãã«850 ååã®å£²äžé«ãšãªãããã®æè³ãããžã§ã¯ãã®å幎ã®åææè²»ã¯åææäŸ¡æ ŒãšäžèŽãããã®ãšã,売äžé«ãšåææäŸ¡æ Œã®å·®ããã®æè³ãããžã§ã¯ããææ«ã«çã¿åºããã£ãã·ã¥ã»ãããŒãšãããçŸæç¹ã«ãããŠ,1幎ç®ã®åææäŸ¡æ Œã¯750 ååãšæåŸ
ãã,2幎ç®ã®åææäŸ¡æ Œã¯70%ã®ç¢ºçã§375 åå(ã±ãŒã¹1),30%ã®ç¢ºçã§1,500 åå(ã±ãŒã¹2)ãšãªãã
ãã®æè³ãããžã§ã¯ãã¯1幎ç®çµäºåŸãã宿œããããšãå¯èœã§ãã,ãã®å Žåã«ã¯1幎ç®çµäºåŸã«120 ååã®æè³ãè¡ã£ãŠ850 ååã®å£²äžé«ãšãªã,1幎éã§æè³ãããžã§ã¯ãã¯çµäºããããŸã,åææäŸ¡æ Œãã±ãŒã¹1 ãšãªãã®ã,ã±ãŒã¹2 ãšãªãã®ãã¯,æè³æã«ã¯æãããšãªã£ãŠããã
ãªã,ãã®æè³ãããžã§ã¯ãã«çšããå²åŒçã¯20%ãšã,ç¡ãªã¹ã¯å©åçã¯10%ãšããããŸã,çŸæç¹ã§æè³ã宿œããå Žåã§ã1幎ç®çµäºåŸã«æè³ã宿œããå Žåã§ã,æè³çµäºæã«ãããåœè©²äºæ¥ã®è³ç£ã®æ®å䟡å€ã¯ãŒããšããã
å1 æ¬¡ã®æäžã®ç©ºæ¬1ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸã,空æ¬2åã³3ã«åœãŠã¯ãŸãæãé©åãªèšå·ãããããäžã€éžã³ãªããã
çŸæç¹ã«ãããŠ,ãã®æè³ãããžã§ã¯ãã宿œããå Žå,æ£å³çŸåšäŸ¡å€(NPV)㯠1 ååãšãªã,NPVæ³ã«åºã¥ãã°æè³ã 2 ããŸã,ãã®å Žåã®å
éšåçç(IRR)ã¯25%ããã 3 ã
å2 ãã®æè³ãããžã§ã¯ãããªã¢ã«ã»ãªãã·ã§ã³ã»ã¢ãããŒãã«åºã¥ãè©äŸ¡ããã
å2-1 åææäŸ¡æ Œãåè³ç£äŸ¡æ Œãšããå Žå,ã±ãŒã¹1ãšãªããªã¹ã¯äžç«ç¢ºçãæ±ããªããã
å2-2 æ¬¡ã®æäžã®ç©ºæ¬4ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸã,空æ¬5ã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã
1幎ç®çµäºåŸã«æè³ãããžã§ã¯ãã宿œããå Žå,ãªã¹ã¯äžç«ç¢ºçãšç¡ãªã¹ã¯å©åçãçšããŠè©äŸ¡ããæè³ãããžã§ã¯ãã®çŸæç¹ã«ãããNPV㯠4 ååãšãªã,æè³ã 5 ã
å2-3 ãã®ãããªãªã¢ã«ã»ãªãã·ã§ã³ã¯äœãšåŒã°ããããæãé©åãªèšå·ãäžã€éžã³ãªããã
ãã£ãŠ,ãªã¹ã¯äžç«ç¢ºçãqãšãããš,ç¡ãªã¹ã¯å©åçã10%ã§ãããã,
ãŸã,æè³ãããžã§ã¯ãã®ãã£ãã·ã¥ã»ãããŒã¯,
ãããã£ãŠ,ãªã¹ã¯äžç«ç¢ºçã§ç®å®ãã2幎åŸã®æåŸ
ãã£ãã·ã¥ã»ãããŒã¯,
ãããå²ãåŒããŠ, | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬¡ã®æç« ãèªã¿,以äžã®å1åã³å2ã«çããªããããªã,èšç®åé¡ã«ã€ããŠã¯,æ°å€ãå°æ°ç¹ç¬¬2äœã§å²ãåããªãå Žåã«ã¯,èšç®éäžã§ã®åæšäºå
¥ã¯ãã,æçµæ°å€ã®å°æ°ç¹ç¬¬3äœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬2äœãŸã§çããããšã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "X瀟ã¯,çŸåš2幎éã®æ°èŠæè³ãããžã§ã¯ãã宿œãã¹ããåŠããæ€èšããŠããããã®æè³ãããžã§ã¯ãã¯,çŸæç¹ã«ãããŠ120 ååã®æè³ãè¡ã,1幎ç®ãš2幎ç®ã«ãšãã«850 ååã®å£²äžé«ãšãªãããã®æè³ãããžã§ã¯ãã®å幎ã®åææè²»ã¯åææäŸ¡æ ŒãšäžèŽãããã®ãšã,売äžé«ãšåææäŸ¡æ Œã®å·®ããã®æè³ãããžã§ã¯ããææ«ã«çã¿åºããã£ãã·ã¥ã»ãããŒãšãããçŸæç¹ã«ãããŠ,1幎ç®ã®åææäŸ¡æ Œã¯750 ååãšæåŸ
ãã,2幎ç®ã®åææäŸ¡æ Œã¯70%ã®ç¢ºçã§375 åå(ã±ãŒã¹1),30%ã®ç¢ºçã§1,500 åå(ã±ãŒã¹2)ãšãªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®æè³ãããžã§ã¯ãã¯1幎ç®çµäºåŸãã宿œããããšãå¯èœã§ãã,ãã®å Žåã«ã¯1幎ç®çµäºåŸã«120 ååã®æè³ãè¡ã£ãŠ850 ååã®å£²äžé«ãšãªã,1幎éã§æè³ãããžã§ã¯ãã¯çµäºããããŸã,åææäŸ¡æ Œãã±ãŒã¹1 ãšãªãã®ã,ã±ãŒã¹2 ãšãªãã®ãã¯,æè³æã«ã¯æãããšãªã£ãŠããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãªã,ãã®æè³ãããžã§ã¯ãã«çšããå²åŒçã¯20%ãšã,ç¡ãªã¹ã¯å©åçã¯10%ãšããããŸã,çŸæç¹ã§æè³ã宿œããå Žåã§ã1幎ç®çµäºåŸã«æè³ã宿œããå Žåã§ã,æè³çµäºæã«ãããåœè©²äºæ¥ã®è³ç£ã®æ®å䟡å€ã¯ãŒããšããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å1 æ¬¡ã®æäžã®ç©ºæ¬1ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸã,空æ¬2åã³3ã«åœãŠã¯ãŸãæãé©åãªèšå·ãããããäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "çŸæç¹ã«ãããŠ,ãã®æè³ãããžã§ã¯ãã宿œããå Žå,æ£å³çŸåšäŸ¡å€(NPV)㯠1 ååãšãªã,NPVæ³ã«åºã¥ãã°æè³ã 2 ããŸã,ãã®å Žåã®å
éšåçç(IRR)ã¯25%ããã 3 ã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å2 ãã®æè³ãããžã§ã¯ãããªã¢ã«ã»ãªãã·ã§ã³ã»ã¢ãããŒãã«åºã¥ãè©äŸ¡ããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å2-1 åææäŸ¡æ Œãåè³ç£äŸ¡æ Œãšããå Žå,ã±ãŒã¹1ãšãªããªã¹ã¯äžç«ç¢ºçãæ±ããªããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å2-2 æ¬¡ã®æäžã®ç©ºæ¬4ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸã,空æ¬5ã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "1幎ç®çµäºåŸã«æè³ãããžã§ã¯ãã宿œããå Žå,ãªã¹ã¯äžç«ç¢ºçãšç¡ãªã¹ã¯å©åçãçšããŠè©äŸ¡ããæè³ãããžã§ã¯ãã®çŸæç¹ã«ãããNPV㯠4 ååãšãªã,æè³ã 5 ã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å2-3 ãã®ãããªãªã¢ã«ã»ãªãã·ã§ã³ã¯äœãšåŒã°ããããæãé©åãªèšå·ãäžã€éžã³ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã£ãŠ,ãªã¹ã¯äžç«ç¢ºçãqãšãããš,ç¡ãªã¹ã¯å©åçã10%ã§ãããã,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãŸã,æè³ãããžã§ã¯ãã®ãã£ãã·ã¥ã»ãããŒã¯,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãããã£ãŠ,ãªã¹ã¯äžç«ç¢ºçã§ç®å®ãã2幎åŸã®æåŸ
ãã£ãã·ã¥ã»ãããŒã¯,",
"title": "æ£è§£ãšè§£èª¬"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãããå²ãåŒããŠ,",
"title": "æ£è§£ãšè§£èª¬"
}
]
| null | : [[../第1ååé¡2|âåã®åé¡]]
: [[../第2ååé¡2|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®æç« ãèªã¿ïŒä»¥äžã®<span style="border:1px solid #000">å1</span>åã³<span style="border:1px solid #000">å2</span>ã«çããªããããªãïŒèšç®åé¡ã«ã€ããŠã¯ïŒæ°å€ãå°æ°ç¹ç¬¬ïŒäœã§å²ãåããªãå Žåã«ã¯ïŒèšç®éäžã§ã®åæšäºå
¥ã¯ããïŒæçµæ°å€ã®å°æ°ç¹ç¬¬ïŒäœãåæšäºå
¥ããŠå°æ°ç¹ç¬¬ïŒäœãŸã§çããããšã
ã瀟ã¯ïŒçŸåšïŒå¹Žéã®æ°èŠæè³ãããžã§ã¯ãã宿œãã¹ããåŠããæ€èšããŠããããã®æè³ãããžã§ã¯ãã¯ïŒçŸæç¹ã«ãããŠ120 ååã®æè³ãè¡ãïŒïŒå¹Žç®ãšïŒå¹Žç®ã«ãšãã«850 ååã®å£²äžé«ãšãªãããã®æè³ãããžã§ã¯ãã®å幎ã®åææè²»ã¯åææäŸ¡æ ŒãšäžèŽãããã®ãšãïŒå£²äžé«ãšåææäŸ¡æ Œã®å·®ããã®æè³ãããžã§ã¯ããææ«ã«çã¿åºããã£ãã·ã¥ã»ãããŒãšãããçŸæç¹ã«ãããŠïŒïŒå¹Žç®ã®åææäŸ¡æ Œã¯750 ååãšæåŸ
ããïŒïŒå¹Žç®ã®åææäŸ¡æ Œã¯70ïŒ
ã®ç¢ºçã§375 ååïŒã±ãŒã¹ïŒïŒïŒ30ïŒ
ã®ç¢ºçã§1,500 ååïŒã±ãŒã¹ïŒïŒãšãªãã
ããã®æè³ãããžã§ã¯ãã¯ïŒå¹Žç®çµäºåŸãã宿œããããšãå¯èœã§ããïŒãã®å Žåã«ã¯ïŒå¹Žç®çµäºåŸã«120 ååã®æè³ãè¡ã£ãŠ850 ååã®å£²äžé«ãšãªãïŒïŒå¹Žéã§æè³ãããžã§ã¯ãã¯çµäºããããŸãïŒåææäŸ¡æ Œãã±ãŒã¹1 ãšãªãã®ãïŒã±ãŒã¹2 ãšãªãã®ãã¯ïŒæè³æã«ã¯æãããšãªã£ãŠããã
ããªãïŒãã®æè³ãããžã§ã¯ãã«çšããå²åŒçã¯20ïŒ
ãšãïŒç¡ãªã¹ã¯å©åçã¯10ïŒ
ãšããããŸãïŒçŸæç¹ã§æè³ã宿œããå Žåã§ãïŒå¹Žç®çµäºåŸã«æè³ã宿œããå Žåã§ãïŒæè³çµäºæã«ãããåœè©²äºæ¥ã®è³ç£ã®æ®å䟡å€ã¯ãŒããšããã
{|
|+'''å³1ãçŸæç¹ã§æè³ã宿œ'''
|çŸæç¹
|ã1幎ç®
|
|2幎ç®
|æè³çµäº
|-
|âââââ
|ââââââââââââ
|âŒâââ
|ââââââââââââââââ
|âââââ
|-
|â
æè³é¡
120åå
|(åææäŸ¡æ Œã¯750åå)
|
|(åææäŸ¡æ Œãã±ãŒã¹1ãªã®ãïŒ
ã±ãŒã¹2ãªã®ãã¯ïŒããããªã)
|
|}
{|
|+'''å³2ã1幎ç®çµäºåŸã«æè³ã宿œ'''
|çŸæç¹
|ã1幎ç®
|
|2幎ç®
|æè³çµäº
|-
|âââââ
|ââââââââââââ
|âŒâââ
|ââââââââââââââââ
|âââââ
|-
|
|
|â
æè³é¡
120åå
|(åææäŸ¡æ Œãã±ãŒã¹1ãªã®ãïŒ
ã±ãŒã¹2ãªã®ãã¯ïŒããã£ãŠãã)
|
|}
{| class="wikitable"
|+衚ãçŸæç¹ã§æè³ãè¡ã£ãå Žåã®æåŸ
ãã£ãã·ã¥ã»ãããŒ
| rowspan="2" |
| rowspan="2" |1幎ç®
| colspan="2" |2幎ç®
|-
|ã±ãŒã¹1 (70%)
|ã±ãŒã¹2 (30%)
|-
|(A) 売äžé«
|850åå
|850åå
|850åå
|-
|(B) åææäŸ¡æ Œ
|750åå
|375åå
|1,500åå
|-
|æåŸ
ãã£ãã·ã¥ã»ãããŒïŒ(A)ïŒ(B)ïŒ
|100åå
|475åå
|ïŒ650åå
|}
<span style="border:1px solid #000">å1</span> æ¬¡ã®æäžã®ç©ºæ¬â ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸãïŒç©ºæ¬â¡åã³â¢ã«åœãŠã¯ãŸãæãé©åãªèšå·ãããããäžã€éžã³ãªããã
ãçŸæç¹ã«ãããŠïŒãã®æè³ãããžã§ã¯ãã宿œããå ŽåïŒæ£å³çŸåšäŸ¡å€ïŒïŒ®ïŒ°ïŒ¶ïŒã¯<span style="border:1px solid #000">ãâ ã</span>ååãšãªãïŒïŒ®ïŒ°ïŒ¶æ³ã«åºã¥ãã°æè³ã<span style="border:1px solid #000">ãâ¡ã</span>ããŸãïŒãã®å Žåã®å
éšåççïŒïŒ©ïŒ²ïŒ²ïŒã¯25ïŒ
ããã<span style="border:1px solid #000">ãâ¢ã</span>ã
:ã¢ïŒå®æœãã¹ãã§ãã
:ã€ïŒå®æœãã¹ãã§ãªã
:ãŠïŒå®æœããŠãããªããŠããã
:ãšïŒé«ã
:ãªïŒäœã
<span style="border:1px solid #000">å2</span> ãã®æè³ãããžã§ã¯ãããªã¢ã«ã»ãªãã·ã§ã³ã»ã¢ãããŒãã«åºã¥ãè©äŸ¡ããã
<span style="border:1px solid #000">å2-1</span> åææäŸ¡æ Œãåè³ç£äŸ¡æ Œãšããå ŽåïŒã±ãŒã¹ïŒãšãªããªã¹ã¯äžç«ç¢ºçãæ±ããªããã
<span style="border:1px solid #000">å2-2</span> æ¬¡ã®æäžã®ç©ºæ¬â£ã«åœãŠã¯ãŸãæ°å€ãçããªããããŸãïŒç©ºæ¬â€ã«åœãŠã¯ãŸãæãé©åãªèšå·ãäžã€éžã³ãªããã
ãïŒå¹Žç®çµäºåŸã«æè³ãããžã§ã¯ãã宿œããå ŽåïŒãªã¹ã¯äžç«ç¢ºçãšç¡ãªã¹ã¯å©åçãçšããŠè©äŸ¡ããæè³ãããžã§ã¯ãã®çŸæç¹ã«ãããã¯<span style="border:1px solid #000">ãâ£ã</span>ååãšãªãïŒæè³ã<span style="border:1px solid #000">ãâ€ã</span>ã
:ã¢ïŒå®æœããæ¹ããã
:ã€ïŒå®æœããªãæ¹ããã
:ãŠïŒå®æœããŠãããªããŠããã
<span style="border:1px solid #000">å2-3</span> ãã®ãããªãªã¢ã«ã»ãªãã·ã§ã³ã¯äœãšåŒã°ããããæãé©åãªèšå·ãäžã€éžã³ãªããã
:ã¢ïŒæ€éãªãã·ã§ã³
:ã€ïŒå»¶æãªãã·ã§ã³
:ãŠïŒäº€æãªãã·ã§ã³
:ãšïŒæ¡åŒµãªãã·ã§ã³
== æ£è§£ãšè§£èª¬ ==
=== å1 ===
; æåŸ
ãã£ãã·ã¥ã»ãããŒ
: 1幎ç®ïŒ100åå
: 2幎ç®ïŒ475ååÃ0.7ïŒ(ïŒ650ååÃ0.3)ïŒ137.5åå
; NPV
: 100åå÷(1+0.2)<sup>1</sup>ïŒ137.5åå÷(1+0.2)<sup>2</sup>ïŒ120ååâ58.82ååïŒ0
: âŽæè³ã宿œãã¹ãã
: 100åå÷(1+0.25)<sup>1</sup>ïŒ137.5åå÷(1+0.25)<sup>2</sup>ïŒ120ååïŒ48ååïŒ0
: âŽIRRïŒ25%
=== å2 ===
==== 2-1ïŒ2-2 ====
{| class="wikitable"
|+ åææäŸ¡æ Œã®åã
|-
! 1å¹Žç® !! !! 2幎ç®
|-
| || ââ || 375åå
|-
| 750åå || †||
|-
| || ââ || 1,500åå
|}
ãã£ãŠïŒãªã¹ã¯äžç«ç¢ºçãqãšãããšïŒç¡ãªã¹ã¯å©åçã10%ã§ããããïŒ
:375ååÃqïŒ1,500ååÃ(1ïŒq)ïŒ750ååÃ(1+0.1)
:qïŒ60%
ãŸãïŒæè³ãããžã§ã¯ãã®ãã£ãã·ã¥ã»ãããŒã¯ïŒ
: åææäŸ¡æ ŒãäžèœãããšãïŒã±ãŒã¹1ïŒïŒ475åå
: åææäŸ¡æ ŒãäžæãããšãïŒã±ãŒã¹2ïŒïŒãŒãïŒæè³ããªãïŒ
ãããã£ãŠïŒãªã¹ã¯äžç«ç¢ºçã§ç®å®ãã2幎åŸã®æåŸ
ãã£ãã·ã¥ã»ãããŒã¯ïŒ
: 2å¹ŽåŸæåŸ
ãã£ãã·ã¥ã»ãããŒïŒ475ååÃ0.6ïŒ0Ã0.4ïŒ427.5åå
ãããå²ãåŒããŠïŒ
: 1å¹ŽåŸæåŸ
ãã£ãã·ã¥ã»ãããŒïŒ427.5åå÷1.1ïŒ259.0909âŠåå
: 1幎åŸNPVïŒ259.0909âŠååïŒ120ååïŒ139.0909âŠåå
: 2幎åŸNPVïŒ139.0909âŠåå÷1.1â126.45åå
==== 2-3 ====
: ã€
: [[../第1ååé¡2|âåã®åé¡]]
: [[../第2ååé¡2|次ã®åé¡â]]
[[ã«ããŽãª:çµå¶åŠ]] | null | 2022-11-28T08:10:51Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%B5%8C%E5%96%B6%E5%AD%A6/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C1 |
24,871 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³ | 第2åã®è§£çã«åœãã£ãŠã®å
šè¬ç泚æäºé
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "第2åã®è§£çã«åœãã£ãŠã®å
šè¬ç泚æäºé
",
"title": "第2å"
}
]
| null | == 第1å ==
* [[/第1ååé¡1]]
* [[/第1ååé¡2]]
== 第2å ==
<u>第2åã®è§£çã«åœãã£ãŠã®å
šè¬ç泚æäºé
</u>
#åé¡ïŒã®åïŒåã³åïŒïŒ»åïŒïŒã«ã€ããŠïŒåè¡ããšã«å ç®ãã¹ãéé¡ãšæžç®ãã¹ãéé¡ããããšãã¯ïŒçžæ®ºããŠçŽé¡ã§èšå
¥ãïŒå ç®ãã¹ãéé¡ãšæžç®ãã¹ãéé¡ããšãã«çããªããšãã¯ïŒå ç®ãã¹ãéé¡ã®æ¬ã®ã¿ã«ïŒïŒãŒãïŒãèšå
¥ããªããã
#端æ°åŠçã¯ïŒçæ¡çšçŽã«æç€ºããããã®ãé€ãïŒïŒåæªæºã®ç«¯æ°ãåãæšãŠãªããã
#å顿äžã®XXX,XXX,XXX ã®éé¡ã¯åèªã§æ±ããªããã
#è§£çã¯å¿
ãçæ¡çšçŽã®æå®ãããæ å
ã«èšå
¥ããªããã
* [[/第2ååé¡1å1]]
* [[/第2ååé¡1å2]]
* [[/第2ååé¡2]]
* [[/第2ååé¡3å1]]
* [[/第2ååé¡3å2]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:39:42Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95 |
24,872 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡1å1 | æ®éæ³äººã§ããç²æ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœæ(èªå¹³æ29 幎4æ1æ¥ è³å¹³æ30 幎3æ31 æ¥)ã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠ,次ã®[è³æ]1.ã11.ã«åºã¥ã,çæ¡çšçŽã«åŸã£ãŠè§£çããªããããªã,ç¹ã«æç€ºãããŠãããã®ãé€ã,åœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãããã«èšç®ããªããã
[è³æ]
Dç€Ÿæ ªåŒã¯,éäžå Žã®å
åœæ³äººã®æ ªåŒã§ãããåœç€Ÿã¯,D瀟ã®çºè¡æžæ ªåŒç·æ°200,000 æ ªã®ãã¡5,000 æ ªãåæä»¥åããç¶ç¶ããŠä¿æããŠãããDç€Ÿæ ªåŒã®åž³ç°¿äŸ¡é¡ã¯1æ ªåœãã650 åã§ãã,çšåäžã®åž³ç°¿äŸ¡é¡ãšäžèŽããŠãããD瀟ã¯,å¹³æ29 幎6æ30 æ¥ã«èªç€Ÿæ ªè²·ãã宿œã,åœç€Ÿã¯,ä¿æããDç€Ÿæ ªåŒã®ãã¡2,500 æ ªã1æ ªåœãã1,900 å(æäŸ¡)ã§D瀟ã«è²æž¡ãããåœç€Ÿã¯,ãã®è²æž¡ã«ã€ããŠ,次ã®äŒèšåŠçãè¡ã£ãŠãã,D瀟ãè²æž¡å¯ŸäŸ¡ã®æ¯æã«éããŠæ§é€ããæºæ³æåŸçšé¡ç(çšç:20.42%)ãæ³äººçšçã«èšäžããããªã,D瀟ã«ãããèªç€Ÿæ ªè²·ãçŽåã®è³æ¬éçã®é¡ã¯,200,000,000 åã§ãã£ãã
åœç€Ÿã¯,å¹³æ26 幎10 æ1æ¥ã«åœç€Ÿãšè³æ¬é¢ä¿ã®ãªã第äžè
ããE瀟ã®çºè¡æžæ ªåŒã®å
šãŠã25,000,000 åã§è³Œå
¥ã,ãã®åŸç¶ç¶ããŠä¿æããŠãããããã,çµå¶çµ±åã®ææãåºãããšãã§ãã,ç¶ç¶ããŠæ¥çžŸãäžæ¯ã§ãã£ããã,Eç€Ÿãæž
ç®ããããšãšã,å¹³æ29 幎6æ30 æ¥ã«è§£æ£ã決è°ããããã®åŸ,å幎12 æ15 æ¥ã«æ®äœè²¡ç£ã確å®ã,å幎12 æ28 æ¥ã«åœç€Ÿã«å¯ŸããŠæ®äœè²¡ç£2,000,000 åãåé
ã,æž
ç®çµäºããããªã,ãã®æž
ç®æã«ãããEç€Ÿæ ªåŒã®äŒèšäžã®åž³ç°¿äŸ¡é¡ã¯13,000,000 åã§ãã,åæä»¥åã«Eç€Ÿæ ªåŒã«å¯Ÿããè©äŸ¡æ12,000,000 åãèšäžããã,çšåäž,ãã®è©äŸ¡æã¯èªããããªããã,ç³å調æŽãããŠããŠããããŸã,ãã®æ®äœè²¡ç£ã®åé
ã«ãã,é
åœçã®é¡ãšã¿ãªãããéé¡ã¯çããŠããªãã
åœç€Ÿã¯,Eç€Ÿã®æž
ç®ã«äŒŽãæ®äœè²¡ç£ã®åé æã«,次ã®äŒèšåŠçãè¡ã£ãã
åœç€Ÿã¯,å¹³æ29 幎6æ23 æ¥ã«æ ªäž»ç·äŒãéå¬ã,ãã®åŸã®åç· åœ¹äŒã«ãããŠ,ååç· åœ¹ã®çµŠäžã決å®ããã,åœç€Ÿã®æ¥çžŸã奜調ã§ãã£ãããšãã,å¹³æ29 幎12 æ15 æ¥ã«éå¬ããåç· åœ¹äŒã«ãããŠ,å°ååç· åœ¹Kåã³åžžååç· åœ¹Lã«å¯Ÿããæé¡çµŠäžãå¢é¡ããŠããããªã,ååç· åœ¹ãžã®çµŠäžã®æ¯æçã®ç¶æ³ã¯,次ã®ãšããã§ãããå°ååç· åœ¹Kåã³åžžååç· åœ¹Lã«å¯ŸããŠæ¯çµŠããè³äžã«ã€ããŠã¯,驿³ã«äºå確å®å±åºçµŠäžã®å±åºãè¡ã£ãŠãã,å±åºã©ããã«æ¯æãè¡ãããŠããããŸã,ååç· åœ¹ã«æ¯çµŠãã絊äžã®ãã¡ã«,äžçžåœã«é«é¡ãªéšåã®éé¡ãšããããã®ã¯ãªãããããã®çµŠäžåã³è³äžã¯,åœæã®è²»çšãšããŠèšäžããŠããã
åœç€Ÿã®åœæã«ãããæªææ³äººçšçã®äŒèšäžã®å¢æžã¯,以äžã®ãšããã§ãã£ãããªã,åæã®æ±ºç®ã«ãããŠã¯,èŠèŸŒçŽä»é¡ãšåé¡ã®æªææ³äººçšçãèšäžããŠãã,åæã®ç§çšå
¬èª²ã«ä¿ãçšåäžã®èª¿æŽã¯,å
šãŠé©åã«è¡ãããŠããã
(泚)å°æ¹æ³äººçšãå«ãŸããŠããã
解説ããŒãžåç
§ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ®éæ³äººã§ããç²æ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœæ(èªå¹³æ29 幎4æ1æ¥ è³å¹³æ30 幎3æ31 æ¥)ã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠ,次ã®[è³æ]1.ã11.ã«åºã¥ã,çæ¡çšçŽã«åŸã£ãŠè§£çããªããããªã,ç¹ã«æç€ºãããŠãããã®ãé€ã,åœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãããã«èšç®ããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "[è³æ]",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Dç€Ÿæ ªåŒã¯,éäžå Žã®å
åœæ³äººã®æ ªåŒã§ãããåœç€Ÿã¯,D瀟ã®çºè¡æžæ ªåŒç·æ°200,000 æ ªã®ãã¡5,000 æ ªãåæä»¥åããç¶ç¶ããŠä¿æããŠãããDç€Ÿæ ªåŒã®åž³ç°¿äŸ¡é¡ã¯1æ ªåœãã650 åã§ãã,çšåäžã®åž³ç°¿äŸ¡é¡ãšäžèŽããŠãããD瀟ã¯,å¹³æ29 幎6æ30 æ¥ã«èªç€Ÿæ ªè²·ãã宿œã,åœç€Ÿã¯,ä¿æããDç€Ÿæ ªåŒã®ãã¡2,500 æ ªã1æ ªåœãã1,900 å(æäŸ¡)ã§D瀟ã«è²æž¡ãããåœç€Ÿã¯,ãã®è²æž¡ã«ã€ããŠ,次ã®äŒèšåŠçãè¡ã£ãŠãã,D瀟ãè²æž¡å¯ŸäŸ¡ã®æ¯æã«éããŠæ§é€ããæºæ³æåŸçšé¡ç(çšç:20.42%)ãæ³äººçšçã«èšäžããããªã,D瀟ã«ãããèªç€Ÿæ ªè²·ãçŽåã®è³æ¬éçã®é¡ã¯,200,000,000 åã§ãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åœç€Ÿã¯,å¹³æ26 幎10 æ1æ¥ã«åœç€Ÿãšè³æ¬é¢ä¿ã®ãªã第äžè
ããE瀟ã®çºè¡æžæ ªåŒã®å
šãŠã25,000,000 åã§è³Œå
¥ã,ãã®åŸç¶ç¶ããŠä¿æããŠãããããã,çµå¶çµ±åã®ææãåºãããšãã§ãã,ç¶ç¶ããŠæ¥çžŸãäžæ¯ã§ãã£ããã,Eç€Ÿãæž
ç®ããããšãšã,å¹³æ29 幎6æ30 æ¥ã«è§£æ£ã決è°ããããã®åŸ,å幎12 æ15 æ¥ã«æ®äœè²¡ç£ã確å®ã,å幎12 æ28 æ¥ã«åœç€Ÿã«å¯ŸããŠæ®äœè²¡ç£2,000,000 åãåé
ã,æž
ç®çµäºããããªã,ãã®æž
ç®æã«ãããEç€Ÿæ ªåŒã®äŒèšäžã®åž³ç°¿äŸ¡é¡ã¯13,000,000 åã§ãã,åæä»¥åã«Eç€Ÿæ ªåŒã«å¯Ÿããè©äŸ¡æ12,000,000 åãèšäžããã,çšåäž,ãã®è©äŸ¡æã¯èªããããªããã,ç³å調æŽãããŠããŠããããŸã,ãã®æ®äœè²¡ç£ã®åé
ã«ãã,é
åœçã®é¡ãšã¿ãªãããéé¡ã¯çããŠããªãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åœç€Ÿã¯,Eç€Ÿã®æž
ç®ã«äŒŽãæ®äœè²¡ç£ã®åé æã«,次ã®äŒèšåŠçãè¡ã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åœç€Ÿã¯,å¹³æ29 幎6æ23 æ¥ã«æ ªäž»ç·äŒãéå¬ã,ãã®åŸã®åç· åœ¹äŒã«ãããŠ,ååç· åœ¹ã®çµŠäžã決å®ããã,åœç€Ÿã®æ¥çžŸã奜調ã§ãã£ãããšãã,å¹³æ29 幎12 æ15 æ¥ã«éå¬ããåç· åœ¹äŒã«ãããŠ,å°ååç· åœ¹Kåã³åžžååç· åœ¹Lã«å¯Ÿããæé¡çµŠäžãå¢é¡ããŠããããªã,ååç· åœ¹ãžã®çµŠäžã®æ¯æçã®ç¶æ³ã¯,次ã®ãšããã§ãããå°ååç· åœ¹Kåã³åžžååç· åœ¹Lã«å¯ŸããŠæ¯çµŠããè³äžã«ã€ããŠã¯,驿³ã«äºå確å®å±åºçµŠäžã®å±åºãè¡ã£ãŠãã,å±åºã©ããã«æ¯æãè¡ãããŠããããŸã,ååç· åœ¹ã«æ¯çµŠãã絊äžã®ãã¡ã«,äžçžåœã«é«é¡ãªéšåã®éé¡ãšããããã®ã¯ãªãããããã®çµŠäžåã³è³äžã¯,åœæã®è²»çšãšããŠèšäžããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åœç€Ÿã®åœæã«ãããæªææ³äººçšçã®äŒèšäžã®å¢æžã¯,以äžã®ãšããã§ãã£ãããªã,åæã®æ±ºç®ã«ãããŠã¯,èŠèŸŒçŽä»é¡ãšåé¡ã®æªææ³äººçšçãèšäžããŠãã,åæã®ç§çšå
¬èª²ã«ä¿ãçšåäžã®èª¿æŽã¯,å
šãŠé©åã«è¡ãããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(泚)å°æ¹æ³äººçšãå«ãŸããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "解説ããŒãžåç
§ã",
"title": "è§£ç解説"
}
]
| null | : [[../第1ååé¡2|âåã®åé¡]]
: [[../第2ååé¡1å2|次ã®åé¡â]]
== åé¡ ==
ãæ®éæ³äººã§ããç²æ ªåŒäŒç€ŸïŒä»¥äžïŒãåœç€ŸããšãããïŒã®åœæïŒèªå¹³æ29 å¹ŽïŒæïŒæ¥ è³å¹³æ30 å¹ŽïŒæ31 æ¥ïŒã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠïŒæ¬¡ã®ïŒ»è³æïŒœïŒïŒã11ïŒã«åºã¥ãïŒçæ¡çšçŽã«åŸã£ãŠè§£çããªããããªãïŒç¹ã«æç€ºãããŠãããã®ãé€ãïŒåœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãããã«èšç®ããªããã
ïŒ»è³æïŒœ
=== ïŒïŒå
šè¬çãªäºé
åã³æ³šæäºé
===
:⎠åœç€Ÿã¯ïŒèšç«ä»¥æ¥ç¶ç¶ããŠé©æ³ã«éè²ç³åæžãæåºããå
åœæ³äººã§ïŒæ©æ¢°éšåã®è£œé 販売ãäºæ¥ãšããéäžå ŽäŒç€Ÿã§ããã
:âµ åœç€Ÿã¯ïŒèšç«ä»¥æ¥åæäŒç€Ÿã«è©²åœããªãã
:â¶ åœç€Ÿã¯ïŒæ³äººçšåã³äºæ¥çšçã«ã€ããŠïŒïŒãæã®ç³åæéã®å»¶é·ã®ç³è«ãè¡ãïŒæ¿èªãåããŠããã
:â· åœç€Ÿã®åœææ«ã«ãããè³æ¬éã®é¡ã¯ïŒ500,000,000 åã§ããã
:âž åœç€Ÿã¯ïŒæ¶è²»çšåã³å°æ¹æ¶è²»çšã®çµçåŠçãšããŠçšææ¹åŒãæ¡çšããŠãããå顿äžã®ååŒéé¡ã¯å
šãŠçšæãã®éé¡ã§ããã
:â¹ å顿äžã®äœæ°çšã¯éåºçæ°çšåã³åžçºææ°çšã®åèšéé¡ã§ããããŸãïŒäºæ¥çšçã«ã¯å°æ¹æ³äººç¹å¥çšãå«ãŸããŠããã
:⺠å顿äžã®æºæ³æåŸçšé¡çã«ã¯ïŒæºæ³æåŸçšã®é¡ã«å ããŠïŒåŸ©èç¹å¥æåŸçšã®é¡ãå«ãŸããŠããã
=== ïŒïŒåå婿¯åã³ååé
åœéçã«é¢ããè³æ ===
:âŽ åœæã®åå婿¯åã³ååé
åœéçã®å
èš³ã¯ïŒäžè¡šã®ãšããã§ãããåœç€Ÿã§ã¯ïŒæçèšç®æžäžïŒäžè¡šã®ãåå
¥éé¡ããåå婿¯åã¯ååé
åœéã«ïŒãæºæ³æåŸçšé¡çããç§çšå
¬èª²åã¯æ³äººçšçã«èšäžããŠããã
{| class="wikitable"
|éæç
|åºå
|èšç®æéïŒæ³š6ïŒ
|åå
¥éé¡ïŒæ³š7ïŒ
|æºæ³æåŸçšé¡ç
|åè
|-
|Aç€Ÿæ ªåŒ
|å°äœéã®é
åœ
|å¹³æ29幎1æ1æ¥
ïœå¹³æ29幎12æ31æ¥
|2,000,000å
|408,400å
|ïŒæ³š1ïŒ
|-
|Bç€Ÿæ ªåŒ
|å°äœéã®é
åœ
|å¹³æ28幎7æ1æ¥
ïœå¹³æ29幎6æ30æ¥
|300,000å
|45,945å
|ïŒæ³š2ïŒ
|-
|Cç€Ÿæ ªåŒ
|å°äœéã®é
åœ
|å¹³æ28幎7æ1æ¥
ïœå¹³æ29幎6æ30æ¥
|10,500,000å
|0å
|ïŒæ³š3ïŒ
|-
|Nå€åœåµåž
|å©å
|ïŒ
|1,000,000å
|0å
|ïŒæ³š4ïŒ
|-
|宿é é
|å©å
|ïŒ
|100,000å
|15,315å
|ïŒæ³š5ïŒ
|-
|åèš
|
|
|
|469,660å
|
|}
::ïŒæ³šïŒïŒ ïŒ¡ç€Ÿæ ªåŒã¯éäžå Žã®å
åœæ³äººã®æ ªåŒã§ãããåœç€Ÿã¯ïŒå¹³æ28 å¹ŽïŒæïŒæ¥ã«ïŒ¡ç€Ÿã®çºè¡æžæ ªåŒç·æ°ã®70ïŒ
ãååŸãïŒãã®åŸç¶ç¶ããŠä¿æããŠããã瀟ã¯å¹³æ29 幎12æ31 æ¥ãåºæºæ¥ïŒå¹³æ30 å¹ŽïŒæ26 æ¥ãå¹åçºçæ¥ãšããŠå°äœéã®é
åœãè¡ã£ãã::ïŒæ³šïŒïŒ ïŒ¢ç€Ÿæ ªåŒã¯æ±èšŒãã¶ãŒãºã«äžå ŽãããŠããå
åœæ³äººã®æ ªåŒã§ããïŒåœç€Ÿã¯å¹³æ29å¹ŽïŒæïŒæ¥ã«ååŸãïŒãã®åŸç¶ç¶ããŠä¿æããŠããã瀟ã¯å¹³æ29 å¹ŽïŒæ30 æ¥ãåºæºæ¥ïŒåå¹ŽïŒæ26 æ¥ãå¹åçºå¹æ¥ãšããŠå°äœéã®é
åœãè¡ã£ããåœç€Ÿã¯åºæºæ¥ã«ãããŠïŒ¢ç€Ÿã®çºè¡æžæ ªåŒç·æ°ã®ïŒïŒ
ãä¿æããŠããã
::ïŒæ³šïŒïŒ 瀟ã¯ïŒå¹³æ26 å¹ŽïŒæïŒæ¥ã«åœç€Ÿã®100ïŒ
åäŒç€ŸãšããŠïŒžåœã«èšç«ãããå€åœæ³äººã§ããïŒåœç€Ÿã¯ïŒïŒ£ç€Ÿã®èšç«ä»¥æ¥ïŒïŒ£ç€Ÿã®çºè¡æžæ ªåŒç·æ°ã®å
šãŠãç¶ç¶ããŠä¿æããŠããã瀟ã¯å¹³æ29 å¹ŽïŒæ30 æ¥ãåºæºæ¥ïŒå¹³æ29 å¹ŽïŒæ30 æ¥ãå¹åçºçæ¥ãšããŠïŒå°äœéã®é
åœãè¡ã£ããå°äœéã®é
åœã«åœããïŒïŒžåœã«ãããŠå°äœéã®é
åœã«ä¿ãå€åœçš1,575,000 åãæºæ³åŸŽåãããŠããããªãïŒïŒ£ç€Ÿããåœç€Ÿã«çŽæ¥ééãããŠããããïŒæ¥æ¬ã«ãããæºæ³æåŸçšçã®æºæ³åŸŽåã¯ãããŠããªããæ¥æ¬ãšïŒžåœãšã¯ç§çšæ¡çŽçãç· çµããŠãããïŒïŒžåœã«ããã瀟ã®èª²çšæåŸã®èšç®äžïŒãã®å°äœéã®é
åœã¯æéã«ç®å
¥ãããŠããªããã®ã§ããããŸãïŒïŒ£ç€Ÿã®æåŸã«å¯ŸããŠã¯å€åœåäŒç€Ÿåç®çšå¶ã®é©çšã¯ãªãã
::ïŒæ³šïŒïŒ å€åœåµåžã¯ïŒå€åœæ³äººãæ¥æ¬ã®åœå€ã§çºè¡ããå貚建ãŠã®åµåžã§ããïŒå¹ŽïŒåïŒå©åãæããããã®ã§ãããåœç€Ÿã¯ïŒïŒ®å€åœåµåžãåæä»¥åããä¿æãïŒçºè¡äŒç€Ÿã®æåšå°ã§ããåœã§å©åã«ä¿ãå€åœçš100,000 åãæºæ³åŸŽåããïŒå¹³æ30 å¹ŽïŒæ20æ¥ã«å€åœçšæ§é€åŸã®å©åãåãåã£ããåœè©²åµåžã®å©åã¯ïŒãã®çºè¡äŒç€Ÿããåœç€Ÿã«çŽæ¥ééãããŠããããïŒæ¥æ¬ã«ãããæºæ³æåŸçšçã®æºæ³åŸŽåã¯ãããŠããªãããªãïŒæ¥æ¬ãšïŒ¹åœãšã¯ç§çšæ¡çŽçãç· çµããŠããªãã
::ïŒæ³šïŒïŒ 宿é éã¯ïŒå¹³æ29 å¹ŽïŒæ21 æ¥ã«é ãå
¥ãããã®ã§ããïŒæºææ¥ã§ããå¹³æ30å¹ŽïŒæ20 æ¥ã«é å
¥æ¥ããã®å©åãåé ããŠãããæºææ¥ä»¥éïŒå®æé éã¯ç¶ç¶ããŠããªãã
::ïŒæ³šïŒïŒ ãèšç®æéãã¯ïŒååã®é
åœçã«ä¿ãåºæºæ¥ã®ç¿æ¥ããä»åã®é
åœçã«ä¿ãåºæºæ¥ãŸã§ã®æéãèšããŠããã
::ïŒæ³šïŒïŒ ãåå
¥éé¡ãã¯ïŒæºæ³æåŸçšé¡çåã³å€åœçšé¡ã®æ§é€åã®éé¡ã§ããã
:âµ ååé
åœçã®çéäžç®å
¥é¡ã®èšç®äžïŒé¢é£ããè³æã¯æ¬¡ã®ãšããã§ããã
::â åœç€Ÿãåœæã«æ¯æã£ãè² åµå©åïŒæåœ¢å²åŒæåã³ããã«æºãããã®ãå«ããïŒã®éé¡ã¯15,000,000 åã§ããã
::â¡ åœç€Ÿã®ç¢ºå®ããæ±ºç®ã«ããã貞å察ç
§è¡šã«èšäžãããŠããéé¡ã¯ïŒæ¬¡ã®ãšããã§ããã
{| class="wikitable"
|é
ç®
|åææ«æ®é«
|åœææ«æ®é«
|-
|ç·è³ç£é¡
|8,184,314,600å
|8,590,685,400å
|-
|Aç€Ÿæ ªåŒ
|95,179,250å
|95,179,250å
|-
|Bç€Ÿæ ªåŒ
|0å
|10,000,000å
|-
|ç¹°å»¶çšéè³ç£
|15,000,000å
|19,000,000å
|-
|åœå
å®å
šåäŒç€Ÿããã®åå
¥é
|100,000,000å
|100,000,000å
|}
:::ïŒæ³šïŒ ïŒ¡ç€Ÿæ ªåŒã®ååŸäŸ¡é¡ãçšåäžã®æäŸ¡ãããäœãéé¡ã§ãã£ãããšããïŒçšåäžïŒïŒ¡ç€Ÿæ ªåŒã®ååŸäŸ¡é¡ã«å ç®ããŠããéé¡ã10,000,000 åããïŒåæããç³å調æŽãããŠããŠããããŸãïŒïŒ¡ç€Ÿæ ªåŒä»¥å€ã®æäŸ¡èšŒåžã®äŒèšäžãšçšåäžã®åž³ç°¿äŸ¡é¡ã¯äžèŽããŠããã
::⢠ååé
åœçã®é¡ããæ§é€ããè² åµå©åã®é¡ã®èšç®ã¯ååæ³ã«ãããã®ãšãïŒäžèšä»¥å€ã®äºé
ã¯èæ
®ããå¿
èŠã¯ãªããã®ãšããã
=== ïŒïŒïŒ€ç€Ÿã«ããèªç€Ÿæ ªè²·ãã«é¢ããè³æ ===
ãïŒ€ç€Ÿæ ªåŒã¯ïŒéäžå Žã®å
åœæ³äººã®æ ªåŒã§ãããåœç€Ÿã¯ïŒïŒ€ç€Ÿã®çºè¡æžæ ªåŒç·æ°200,000 æ ªã®ãã¡5,000 æ ªãåæä»¥åããç¶ç¶ããŠä¿æããŠãããïŒ€ç€Ÿæ ªåŒã®åž³ç°¿äŸ¡é¡ã¯ïŒæ ªåœãã650 åã§ããïŒçšåäžã®åž³ç°¿äŸ¡é¡ãšäžèŽããŠããã瀟ã¯ïŒå¹³æ29 å¹ŽïŒæ30 æ¥ã«èªç€Ÿæ ªè²·ãã宿œãïŒåœç€Ÿã¯ïŒä¿æããïŒ€ç€Ÿæ ªåŒã®ãã¡2,500 æ ªãïŒæ ªåœãã1,900 åïŒæäŸ¡ïŒã§ïŒ€ç€Ÿã«è²æž¡ãããåœç€Ÿã¯ïŒãã®è²æž¡ã«ã€ããŠïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãŠããïŒïŒ€ç€Ÿãè²æž¡å¯ŸäŸ¡ã®æ¯æã«éããŠæ§é€ããæºæ³æåŸçšé¡çïŒçšçïŒ20.42ïŒ
ïŒãæ³äººçšçã«èšäžããããªãïŒïŒ€ç€Ÿã«ãããèªç€Ÿæ ªè²·ãçŽåã®è³æ¬éçã®é¡ã¯ïŒ200,000,000 åã§ãã£ãã
{|
|(åæ¹)
|çŸéé é
|XXX,XXX,XXXå
|(貞æ¹)
|Dç€Ÿæ ªåŒ
|1,625,000å
|-
|
|æ³äººçšç
|XXX,XXX,XXXå
|
|Dç€Ÿæ ªåŒå£²åŽç
|3,125,000å
|}
=== ïŒïŒåäŒç€Ÿã®æž
ç®ã«é¢ããè³æ ===
ãåœç€Ÿã¯ïŒå¹³æ26 幎10 æïŒæ¥ã«åœç€Ÿãšè³æ¬é¢ä¿ã®ãªã第äžè
ãã瀟ã®çºè¡æžæ ªåŒã®å
šãŠã25,000,000 åã§è³Œå
¥ãïŒãã®åŸç¶ç¶ããŠä¿æããŠããããããïŒçµå¶çµ±åã®ææãåºãããšãã§ããïŒç¶ç¶ããŠæ¥çžŸãäžæ¯ã§ãã£ãããïŒïŒ¥ç€Ÿãæž
ç®ããããšãšãïŒå¹³æ29 å¹ŽïŒæ30 æ¥ã«è§£æ£ã決è°ããããã®åŸïŒå幎12 æ15 æ¥ã«æ®äœè²¡ç£ã確å®ãïŒå幎12 æ28 æ¥ã«åœç€Ÿã«å¯ŸããŠæ®äœè²¡ç£2,000,000 åãåé
ãïŒæž
ç®çµäºããããªãïŒãã®æž
ç®æã«ãããïŒ¥ç€Ÿæ ªåŒã®äŒèšäžã®åž³ç°¿äŸ¡é¡ã¯13,000,000 åã§ããïŒåæä»¥åã«ïŒ¥ç€Ÿæ ªåŒã«å¯Ÿããè©äŸ¡æ12,000,000 åãèšäžãããïŒçšåäžïŒãã®è©äŸ¡æã¯èªããããªãããïŒç³å調æŽãããŠããŠããããŸãïŒãã®æ®äœè²¡ç£ã®åé
ã«ããïŒé
åœçã®é¡ãšã¿ãªãããéé¡ã¯çããŠããªãã
ãåœç€Ÿã¯ïŒïŒ¥ç€Ÿã®æž
ç®ã«äŒŽãæ®äœè²¡ç£ã®åé æã«ïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|çŸéé é
|2,000,000å
|(貞æ¹)
|Eç€Ÿæ ªåŒ
|13,000,000å
|-
|
|E瀟æž
ç®æ
|11,000,000å
|
|
|
|}
=== ïŒïŒæžäŸ¡ååŽã«é¢ããè³æ ===
:⎠åœç€Ÿã®æžäŸ¡ååŽè³ç£ã®ãã¡ïŒç³å調æŽã®æ€èšãèŠãããã®ã¯ïŒäžè¡šã®ãšããã§ããããªãïŒåœç€Ÿã¯èšç«ä»¥æ¥ïŒæžäŸ¡ååŽè³ç£ã®ååŽæ¹æ³éžå®ã®å±åºãè¡ã£ãŠããªãã
{| class="wikitable"
|çš®é¡ã»çްç®ç
|ååŸäŸ¡é¡
|äºæ¥ã®çšã«
äŸããæ¥
|åœæã«èšäžãã
è²»çšåã³æå€±ã®é¡
|æ³å®èçšå¹Žæ°
|-
|æ©æ¢°è£
眮F
|30,000,000å
|å¹³æ29幎6æ1æ¥
|æžäŸ¡ååŽè²»ïŒ10,000,000å
|10幎
|-
|æ©æ¢°è£
眮G
|150,000,000å
|å¹³æ25幎6æ1æ¥
|æžäŸ¡ååŽè²»ïŒ12,800,000å
|10幎
|-
|ãïŒè³æ¬çæ¯åºïŒ
|ïŒ
|å¹³æ29幎6æ1æ¥
|ä¿®ç¹è²»ïŒ15,000,000å
|ïŒ
|-
|ããœã³ã³H
|3,000,000å
|å¹³æ28幎10æ1æ¥
|æžäŸ¡ååŽè²»ïŒ750,000å
åºå®è³ç£é€åŽæïŒ1,500,000å
|4幎
|-
|ãœãããŠã§ã¢J
|5,000,000å
|å¹³æ28幎9æ1æ¥
|æžäŸ¡ååŽè²»ïŒ1,670,000å
|5幎
|}
::â äžå€ã®æ©æ¢°è£
眮ã¯ïŒå¹³æ29 å¹ŽïŒæïŒæ¥ã«30,000,000 åã§ååŸãïŒäºæ¥ã®çšã«äŸããããã®è³æ¬çæ¯åºãå¿
èŠãšããïŒçŽã¡ã«äºæ¥ã®çšã«äŸããŠãããæ©æ¢°è£
çœ®ïŒŠã®æ³å®èçšå¹Žæ°ã¯10 幎ã§ããïŒååŸæã«ãããŠïŒå¹ŽãçµéããŠãããåœç€Ÿã¯ïŒäœ¿çšå¯èœæéãåççã«èŠç©ããããšãã§ããªãã£ãããïŒæ³å®èçšå¹Žæ°ããçµé幎æ°ãå·®ãåŒããŠèšç®ãã幎æ°ïŒå¹Žãèçšå¹Žæ°ãšããå®çæ³ã«ããïŒåœæã®æžäŸ¡ååŽè²»ãèšäžããŠããã
::â¡ æ©æ¢°è£
眮ã¯ïŒå¹³æ25 å¹ŽïŒæïŒæ¥ã«150,000,000 åã§ååŸãïŒåæ¥ããäºæ¥ã®çšã«äŸãïŒæ³å®èçšå¹Žæ°ã«ããå®çæ³ã«ããåœæã®æžäŸ¡ååŽè²»ãèšäžããŠãããæ©æ¢°è£
眮ã®åœææéŠã«ãããçšåäžã®æªååŽæ®é«ã¯64,000,000 åã§ããïŒæžäŸ¡ååŽè¶
éé¡ã¯ãªãããŸãïŒå¹³æ29 å¹ŽïŒæïŒæ¥ã«ïŒæ©æ¢°è£
çœ®ïŒ§ã®æ¹è¯ãè¡ãïŒ15,000,000 åã®è³æ¬çæ¯åºãè¡ã£ãŠãããïŒãã®å
šé¡ãä¿®ç¹è²»ãšããŠè²»çšåŠçããããªãïŒè³æ¬çæ¯åºéšåã¯ïŒçŽã¡ã«äºæ¥ã®çšã«äŸããã
::⢠ããœã³ã³ïŒšã¯ïŒå¹³æ28 幎10 æïŒæ¥ã«ïŒå°åœãã150,000 åã§20 å°è³Œå
¥ãïŒçŽã¡ã«äºæ¥ã®çšã«äŸããŠãããäŒèšäžã¯ïŒèçšå¹Žæ°ãåççã«èŠç©ãã£ã幎æ°ïŒå¹Žãšããå®çæ³ã«ããåœæã®æžäŸ¡ååŽè²»ãèšäžããŠããã仿¹ïŒçšåäžã¯ïŒæ³äººç𿳿œè¡ä»€ç¬¬133 æ¡ã®ïŒïŒäžæ¬ååŽè³ç£ã®æéç®å
¥ïŒã®èŠå®ãé©çšããŠããããªãïŒåœæã«ãããŠïŒå¹³æ29 幎11æ25 æ¥ã«ïŒãããã®ããœã³ã³ãå
šãŠé€åŽãïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|æžäŸ¡ååŽè²»
|750,000å
|(貞æ¹)
|åšå
·åå
|3,000,000å
|-
|
|æžäŸ¡ååŽçޝèšé¡
|750,000å
|
|
|
|-
|
|åºå®è³ç£é€åŽæ
|1,500,000å
|
|
|
|}
::⣠ãœãããŠã§ã¢ïŒªã¯ïŒå¹³æ28 å¹ŽïŒæïŒæ¥ã«5,000,000 åã§ååŸãïŒçŽã¡ã«äºæ¥ã®çšã«äŸããŠãããäŒèšäžã¯ïŒãœãããŠã§ã¢ã®ã©ã€ããµã€ã¯ã«ãèæ
®ããŠèŠç©ãã£ã幎æ°ïŒå¹Žãèçšå¹Žæ°ãšããå®é¡æ³ã«ããåœæã®æžäŸ¡ååŽè²»ãèšäžããŠããããªãïŒåæããç¹°ãè¶ãããæžäŸ¡ååŽè¶
éé¡ã390,833 åããã
:âµ å¹³æ24 å¹ŽïŒæïŒæ¥ä»¥åŸã«ååŸããæžäŸ¡ååŽè³ç£ã®ååŽççã¯äžè¡šã®ãšããã§ããã
{| class="wikitable"
| colspan="2" |æ³å®èçšå¹Žæ°
|3幎
|4幎
|5幎
|6幎
|10幎
|-
|å®é¡æ³
|ååŽç
|0.334
|0.250
|0.200
|0.167
|0.100
|-
| rowspan="3" |å®çæ³
|ååŽç
|0.667
|0.500
|0.400
|0.333
|0.200
|-
|æ¹å®ååŽç
|1.000
|1.000
|0.500
|0.334
|0.250
|-
|ä¿èšŒç
|0.11089
|0.12499
|0.10800
|0.09911
|0.06552
|}
=== ïŒïŒåœ¹å¡çµŠäžã«é¢ããè³æ ===
ãåœç€Ÿã¯ïŒå¹³æ29 å¹ŽïŒæ23 æ¥ã«æ ªäž»ç·äŒãéå¬ãïŒãã®åŸã®åç· åœ¹äŒã«ãããŠïŒååç· åœ¹ã®çµŠäžã決å®ãããïŒåœç€Ÿã®æ¥çžŸã奜調ã§ãã£ãããšããïŒå¹³æ29 幎12 æ15 æ¥ã«éå¬ããåç· åœ¹äŒã«ãããŠïŒå°ååç· åœ¹ïŒ«åã³åžžååç· åœ¹ïŒ¬ã«å¯Ÿããæé¡çµŠäžãå¢é¡ããŠããããªãïŒååç· åœ¹ãžã®çµŠäžã®æ¯æçã®ç¶æ³ã¯ïŒæ¬¡ã®ãšããã§ãããå°ååç· åœ¹ïŒ«åã³åžžååç· åœ¹ïŒ¬ã«å¯ŸããŠæ¯çµŠããè³äžã«ã€ããŠã¯ïŒé©æ³ã«äºå確å®å±åºçµŠäžã®å±åºãè¡ã£ãŠããïŒå±åºã©ããã«æ¯æãè¡ãããŠããããŸãïŒååç· åœ¹ã«æ¯çµŠãã絊äžã®ãã¡ã«ïŒäžçžåœã«é«é¡ãªéšåã®éé¡ãšããããã®ã¯ãªãããããã®çµŠäžåã³è³äžã¯ïŒåœæã®è²»çšãšããŠèšäžããŠããã
:⎠å°ååç· åœ¹ïŒ«
:ãå¹³æ29 å¹ŽïŒæããå幎12 æãŸã§ã¯æé¡1,000,000 åïŒå¹³æ30 å¹ŽïŒæããåå¹ŽïŒæãŸã§ã¯æé¡1,150,000 åã®çµŠäžãæ¯æãããŠããïŒå ããŠïŒå¹³æ29 å¹ŽïŒæåã³12 æã«ïŒãããã2,000,000 åã®è³äžãæ¯æãããŠããã
:ããã®ã»ãïŒæž¡å亀éè²»ã®åç®ã§æ¯æ50,000 åãæ¯çµŠãïŒåœæã®è²»çšãšããŠèšäžããŠãããïŒãã®æ¯çµŠããå
šé¡ã«ã€ããŠïŒæ³äººã®æ¥åã®ããã«äœ¿çšããããã®ã§ãããæããã«ãããŠããªãã
:âµ åžžååç· åœ¹ïŒ¬
:ãå¹³æ29 å¹ŽïŒæããå幎12 æãŸã§ã¯æé¡800,000 åïŒå¹³æ30 å¹ŽïŒæããåå¹ŽïŒæãŸã§ã¯æé¡900,000 åã®çµŠäžãæ¯æãããŠããïŒå ããŠïŒå¹³æ29 å¹ŽïŒæåã³12 æã«ïŒãããã1,500,000 åã®è³äžãæ¯æãããŠãããåžžååç· åœ¹ïŒ¬ã¯ïŒçµçéšé·ãå
Œä»»ããŠããããšããïŒæ¯çµŠããã絊äžã®ãã¡ïŒçµçéšé·ãšããŠã®è·åã«å¯Ÿå¿ããéé¡ã¯ïŒå¹³æ29 å¹ŽïŒæããå幎12 æãŸã§ã¯æé¡640,000 åïŒå¹³æ30 å¹ŽïŒæããåå¹ŽïŒæãŸã§ã¯æé¡720,000 åã§ããïŒåœç€Ÿã®éšé·è·ã«å¯Ÿãã絊äžãšããŠã¯æšæºçãªéé¡ã§ãããåžžååç· åœ¹ïŒ¬ã«å¯ŸããŠæ¯çµŠãããçµçéšé·ãšããŠã®çµŠäžä»¥å€ã®çµŠäžåã³è³äžã¯ïŒå
šãŠåç· åœ¹ãšããŠã®è·åã«å¯Ÿå¿ãããã®ã§ããã
:â¶ éåžžå€åç· åœ¹ïŒ
:ãå¹³æ29 å¹ŽïŒæåã³å幎10 æã«ãããŠïŒåœæåã®åœ¹å¡çµŠäžãšããŠïŒãããã600,000 åãæ¯æã£ãŠããããªãïŒéåžžå€åç· åœ¹ïŒã«å¯Ÿãã絊äžã«ã€ããŠã¯ïŒäºå確å®å±åºçµŠäžã®å±åºã¯è¡ã£ãŠããªãã
=== ïŒïŒç§çšå
¬èª²ã«é¢ããè³æ ===
ãåœç€Ÿã®åœæã«ãããæªææ³äººçšçã®äŒèšäžã®å¢æžã¯ïŒä»¥äžã®ãšããã§ãã£ãããªãïŒåæã®æ±ºç®ã«ãããŠã¯ïŒèŠèŸŒçŽä»é¡ãšåé¡ã®æªææ³äººçšçãèšäžããŠããïŒåæã®ç§çšå
¬èª²ã«ä¿ãçšåäžã®èª¿æŽã¯ïŒå
šãŠé©åã«è¡ãããŠããã
{| class="wikitable"
|ç§ç®
|åœææ«æ®é«
|åœæå¢å é¡
|åœææžå°é¡
|åœææ«æ®é«
|-
|æªææ³äººçšç
|
|
|
|
|-
|ãæ³äººçš(泚)
|90,000,000å
|65,000,000å
|90,000,000å
|65,000,000å
|-
|ãäœæ°çš
|16,000,000å
|11,250,000å
|16,000,000å
|11,250,000å
|-
|ãäºæ¥çšç
|44,000,000å
|14,750,000å
|44,000,000å
|14,750,000å
|-
|åèš
|150,000,000å
|91,000,000å
|150,000,000å
|91,000,000å
|}
ïŒæ³šïŒå°æ¹æ³äººçšãå«ãŸããŠããã
:⎠平æ29 å¹ŽïŒæ30 æ¥ã«ïŒåæåã®èŠèŸŒçŽä»é¡150,000,000 åïŒæ³äººçšåã³å°æ¹æ³äººçš90,000,000 åïŒäœæ°çš16,000,000 åïŒäºæ¥çšç44,000,000 åïŒãçŽä»ãïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|æªææ³äººçšç
|150,000,000å
|(貞æ¹)
|çŸéé é
|150,000,000å
|}
:ãå¹³æ29 å¹ŽïŒæ30 æ¥ã«ïŒåæåã®ç¢ºå®ç³åæžãæåºãïŒç¢ºå®ç³åã«åºã¥ãçŽä»ãã¹ãçšé¡ã¯åèš130,000,000 åïŒæ³äººçšåã³å°æ¹æ³äººçš77,000,000 åïŒäœæ°çš14,500,000 åïŒäºæ¥çšç38,500,000 åïŒã§ãã£ãããã®åŸïŒå¹³æ29 å¹ŽïŒæã«ïŒç¢ºå®çšé¡ãšèŠèŸŒçŽä»é¡ãšã®å·®é¡ãå
¥éããïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|çŸéé é
|20,000,000å
|(貞æ¹)
|æªææ³äººçšç
|20,000,000å
|}
: âµ å¹³æ29 幎12 æïŒæ¥ã«ïŒåœæã®äžéçŽä»é¡ãæ¯æã£ããïŒçŽæéåŸã®çŽä»ãšãªã£ããäžéçŽä»é¡ã¯åèš65,000,000 åïŒæ³äººçšåã³å°æ¹æ³äººçš38,500,000 åïŒäœæ°çš7,250,000 åïŒäºæ¥çšç19,250,000 åïŒã§ããïŒçŽä»æã«æ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|ä»®ææ³äººçšç
|65,000,000å
|(貞æ¹)
|çŸéé é
|65,000,000å
|}
:ãæ¬æ±ºç®ã«ãããŠïŒæªææ³äººçšçã®ææ«æ®é«ãïŒåœæã®ç¢ºå®ç³åèŠèŸŒçŽä»é¡91,000,000 åïŒæ³äººçšåã³å°æ¹æ³äººçš65,000,000 åïŒäœæ°çš11,250,000 åïŒäºæ¥çšç14,750,000 åïŒã«ãªãããã«ïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|æ³äººçšç
|117,500,000å
|(貞æ¹)
|æªææ³äººçšç
|71,000,000å
|-
|
|ç§çšå
¬èª²
|18,500,000å
|
|ä»®ææ³äººçšç
|65,000,000å
|}
:â¶ çšå¹æäŒèšã®é©çšã«é¢ããŠïŒæ¬¡ã®äŒèšåŠçãè¡ã£ãã
{|
|(åæ¹)
|ç¹°å»¶çšéè³ç£
|4,000,000å
|(貞æ¹)
|æ³äººçšç調æŽé¡
|4,000,000å
|}
:â· ç§çšå
¬èª²åå®ã«ïŒç³å調æŽã®èŠåŠã®æ€èšãèŠãããã®ãšããŠïŒæ¬¡ã®ãã®ãå«ãŸããŠããã
::â æ³äººçšçã®äžéçŽä»é¡ãçŽæéåŸã«æ¯æã£ãããšã«å¯Ÿããå»¶æ»çšåã³å»¶æ»éïŒ6,200 å
::â¡ åºå®è³ç£çšïŒå¹³æ29 幎4 æ3 æ¥ãè³Šèª²æ±ºå®æ¥ïŒã®å¹Žéäžæ¬çŽçšé¡ïŒ6,800,000 å
::â¢ åŸæ¥å¡ãæ¥åäžïŒèªåè»ã®é転äžã«äº€ééåãããŠæ¯æã£ãååéïŒ30,000 å
=== 8ïŒæºæ³æåŸçšçåã³å€åœçšã«é¢ããè³æ ===
:⎠ãïŒïŒåå婿¯åã³ååé
åœéçã«é¢ããè³æãã«èšèŒãããŠããå
åœæ³äººããã®å°äœéã®é
åœåã³é é婿¯ã«ä¿ãäŒèšåŠçã¯ïŒæ¬¡ã®ãšããã§ããã
{|
|(åæ¹)
|çŸéé é
|1,930,340å
|(貞æ¹)
|ååé
åœé
|2,300,000å
|-
|
|æ³äººçšç
|469,660å
|
|åå婿¯
|100,000å
|}
:âµ ãïŒïŒåå婿¯åã³ååé
åœéçã«é¢ããè³æãã«èšèŒãããŠããå€åœæ³äººããã®é
åœéåã³å€åœåµåžã®å©åã«ä¿ãäŒèšåŠçã¯ïŒæ¬¡ã®ãšããã§ããã
{|
|(åæ¹)
|çŸéé é
|9,825,000å
|(貞æ¹)
|ååé
åœé
|10,500,000å
|-
|
|ç§çšå
¬èª²
|1,675,000å
|
|åå婿¯
|1,000,000å
|}
:â¶ ãïŒïŒïŒ€ç€Ÿã«ããèªç€Ÿæ ªè²·ãã«é¢ããè³æãã«èšèŒãããŠããååŒã«ä¿ãäŒèšåŠçã¯ïŒåè³æã«èšèŒã®ãšããã§ããã
:ⷠåœåã³ïŒ¹åœã«ãããŠæºæ³åŸŽåãããå€åœçšã«ã€ããŠå€åœçšé¡æ§é€ãé©çšããå ŽåïŒãã®å€åœçšã®é¡ã¯æ³äººçšæ³ç¬¬69 æ¡ç¬¬1 é
ã«èŠå®ããæ§é€å¯Ÿè±¡å€åœæ³äººçšã®é¡ã«è©²åœãããã®ãšããã
:ããŸãïŒæ³äººçšæ³ç¬¬69 æ¡ç¬¬1 é
ã«èŠå®ããæ§é€é床é¡ã¯300,000 åã§ããã
=== ïŒïŒäº€éè²»çã«é¢ããè³æ ===
:âŽ åœæã®æçèšç®æžäžïŒäº€éè²»ã«èšäžãããŠããäºé
ã¯ïŒæ¬¡ã®ãšããã§ããã
::â å¹³æ29 å¹ŽïŒæ23 æ¥ã«éå¬ãããæ ªäž»ç·äŒåŸã«åç· åœ¹åã³ç£æ»åœ¹ã®ã¿ã§è¡ããã飲é£è²»ã300,000 åããã
::â¡ åœæã«åœç€Ÿåœ¹å¡åã³å¶æ¥ç€Ÿå¡ãåŸæå
ãæããŠè¡ã£ããŽã«ããã¬ïŒè²»ã2,200,000 åããã
::â¢ åœæã«è¡ã£ãåŸæå
æ¥åŸ
ã®ããã®é£²é£è²»ã§ïŒäººåœããã®æ¯åºéé¡ã5,000 åãè¶
ãããã®ãåèš3,000,000 åããã
::â£ åœæã«è¡ã£ãåŸæå
æ¥åŸ
ã®ããã®é£²é£è²»ã§ïŒäººåœããã®æ¯åºéé¡ã5,000 å以äžã®ãã®ãåèš5,000,000 åããã
:âµ åœæã®æ±ºç®ã«ãããŠïŒæ¯åºæã«è©³çްãäžæã§ãã£ãããšããïŒä»®æéã«èšäžãããŸãŸãšãªã£ãŠãã亀éè²»ïŒå
šãŠåŸæå
æ¥åŸ
ã®ããã®é£²é£è²»ã§ïŒäººåœããã®æ¯åºéé¡ã5,000 åãè¶
ããŠãããã®ïŒã855,000 åããã
:â¶ äžèšâŽåã³âµã«ãããŠïŒäº€éè²»çã«ä¿ãæ§é€å¯Ÿè±¡å€æ¶è²»çšé¡çã«ã€ããŠã¯èæ
®ããªãã
=== 10ïŒå¯ééã«é¢ããè³æ ===
:âŽ åœæã«ãããå¯ééã®çšååŠçãšããŠæ€èšãèŠãããã®ã¯ïŒæ¬¡ã®ãšããã§ããã
::â åœæã«æ¯åºããŠïŒè²»çšãšããŠäŒèšåŠçãè¡ã£ãç¹å®å
¬çå¢é²æ³äººã«å¯Ÿããå¯ééã4,700,000 åããã
::â¡ åœæã«æ¯åºããŠïŒè²»çšãšããŠäŒèšåŠçãè¡ã£ãå°åã®ç¥äºãžã®å¯éã1,500,000 åããã
::⢠平æ29 å¹ŽïŒæ30 æ¥ã«å®ææ³äººïŒ°ãžã®å¯éã®ç³èŸŒã¿ãè¡ãïŒåææ«ã«æªæéãšããŠè²»çšåŠçãè¡ãïŒåœæã«æ¯åºãããã®ã2,500,000 åããã
::⣠平æ30 å¹ŽïŒæ30 æ¥ã«ç€ŸäŒçŠç¥æ³äººïŒ±ãžã®å¯éã®ç³èŸŒã¿ãè¡ã£ããïŒåœææ«ã«ãããŠæ¯åºããŠããªãããïŒåœæã«ãããŠæªæéãšããŠè²»çšåŠçãè¡ã£ããã®ã3,000,000 åããã
:âµ å¯ééã®æéç®å
¥é床é¡ã®èšç®ã«ãããŠã¯ïŒæ¬¡ã®éé¡ã䜿çšããããšã
:*åœæã®æåŸã®éé¡ïŒæ³äººçšç³åæžå¥è¡šåã®ä»®èšæ¬ã®éé¡ïŒïŒ450,000,000 å
:*åœææ«ã«ãããè³æ¬éçã®é¡ïŒ1,005,000,000 å
=== 11ïŒæ¬ æéã«é¢ããè³æ ===
:⎠åœç€Ÿã«ã¯ïŒåã
æïŒèªå¹³æ27 å¹ŽïŒæïŒæ¥ è³å¹³æ28 å¹ŽïŒæ31 æ¥ïŒã«çããçšåäžã®æ¬ æéã®ãã¡ïŒåæãŸã§ã«æéã®é¡ã«ç®å
¥ãããã«ç¹°ãè¶ãããéé¡ã15,000,000 åããã
:âµ ãïŒïŒåäŒç€Ÿã®æž
ç®ã«é¢ããè³æãã«èšèŒãããŠãã瀟ã«ã¯ïŒæ¬¡ã®ãšããã®çšåäžã®æ¬ æéããã£ãããããã®æ¬ æéã¯ïŒïŒ¥ç€Ÿã«ãããŠïŒæéã®é¡ã«ç®å
¥ãããŠãããïŒæ¬ æéã®ç¹°æ»ãã«ããéä»ã®èšç®ã®åºç€ãšãããŠããªããã®ã§ããïŒå¹³æ26 å¹ŽïŒæ30 æ¥ä»¥åããä¿æããŠããè³ç£ã®è²æž¡çã«ããçããæå€±ã¯å«ãŸããŠããªãããŸãïŒå¹³æ26 å¹ŽïŒæ30 æ¥ã«ãããŠïŒïŒ¥ç€Ÿã®çšåäžã®ç°¿äŸ¡çŽè³ç£äŸ¡é¡ãšæäŸ¡çŽè³ç£äŸ¡é¡ã¯äžèŽããŠããã瀟ã¯ïŒèšç«ä»¥æ¥ïŒä»ã®äŒç€Ÿãšå䜵ããäºå®ã¯ãªãããªãïŒïŒ¥ç€Ÿã¯éå»ããç¶ç¶ããŠé©æ³ã«éè²ç³åæžãæåºããŠããŠããã
{| class="wikitable"
|æ¬ æéãçããäºæ¥å¹ŽåºŠ
|æ¬ æéé¡
|-
|èªå¹³æ25幎10æ1æ¥ãè³å¹³æ26幎9æ30æ¥
|5,000,000å
|-
|èªå¹³æ26幎10æ1æ¥ãè³å¹³æ27幎9æ30æ¥
|4,000,000å
|-
|èªå¹³æ27幎10æ1æ¥ãè³å¹³æ28幎9æ30æ¥
|3,000,000å
|-
|èªå¹³æ28幎10æ1æ¥ãè³å¹³æ29幎9æ30æ¥
|10,750,000å
|-
|èªå¹³æ29幎7æ1æ¥ãè³å¹³æ29幎12æ15æ¥
|1,250,000å
|}
:â¶ åœç€Ÿã®æ¬ æéæ§é€åã®æåŸéé¡ã¯ïŒ460,000,000 åã§ããã
== è§£çé
ç® ==
; ïŒååé
åœçã«ã€ããŠã®ç³å調æŽïŒ
:Aç€Ÿæ ªåŒ
:Bç€Ÿæ ªåŒ
:Cç€Ÿæ ªåŒ
;ïŒD瀟ã«ããèªç€Ÿæ ªè²·ãã«ã€ããŠã®ç³å調æŽïŒ
:Dç€Ÿæ ªåŒïŒæºæ³æåŸçšçã«ã€ããŠã®ç³å調æŽãé€ããïŒ
;ïŒåäŒç€Ÿã®æž
ç®ã«ã€ããŠã®ç³å調æŽïŒ
:ã4ïŒåäŒç€Ÿã®æž
ç®ã«é¢ããè³æãã®äŒèšåŠçã«ã€ããŠ
;ïŒæžäŸ¡ååŽã«ã€ããŠã®ç³å調æŽïŒ
:æ©æ¢°è£
眮F
:æ©æ¢°è£
眮G
:ããœã³ã³H
:ãœãããŠã§ã¢J
;ïŒåœ¹å¡çµŠäžã«ã€ããŠã®ç³å調æŽïŒ
:å°ååç· åœ¹K
:åžžååç· åœ¹L
:éåžžå€åç· åœ¹M
;ïŒç§çšå
¬èª²ã«ã€ããŠã®ç³å調æŽïŒ
:<u>7ïŒç§çšå
¬èª²ã«é¢ããè³æ</u>
::âŽã«ã€ããŠ
::âµã«ã€ããŠ
::â¶ã«ã€ããŠ
::â·ã«ã€ããŠ
;ïŒæºæ³æåŸçšçåã³å€åœçšã«ã€ããŠã®ç³å調æŽïŒ
:æºæ³æåŸçšçåã³å€åœçš
;ïŒäº€éè²»çã«ã€ããŠã®ç³å調æŽïŒ
:<u>9ïŒäº€éè²»çã«é¢ããè³æ</u>
::âŽã«ã€ããŠ
::âµã«ã€ããŠ
;ïŒå¯ééã«ã€ããŠã®ç³å調æŽïŒ
:<u>10ïŒå¯ééã«é¢ããè³æ</u>
::æ¯åºå¯ééã®æéç®å
¥é床é¡è¶
éé¡
::äžèšä»¥å€ã®èª¿æŽé¡
;ïŒæ¬ æéã«ã€ããŠã®ç³å調æŽïŒ
:ã11ïŒæ¬ æéã«é¢ããè³æãã«ã€ããŠ
;ïŒæ³äººçšé¡ã®èšç®ïŒ
:æåŸçšé¡æ§é€é¡åã³åŸ©èç¹å¥æåŸçšé¡æ§é€é¡
:å€åœçšé¡æ§é€é¡
== è§£ç解説 ==
[[/è§£ç解説|解説ããŒãž]]åç
§ã
: [[../第1ååé¡2|âåã®åé¡]]
: [[../第2ååé¡1å2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:39:54Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C1%E5%95%8F1 |
24,877 | èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ | 11.1 äŸæ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.1 äŸæ",
"title": ""
}
]
| 11.1 äŸæ | 11.1 äŸæ
{|
|-
|style="text-align:left" |<span id="11.1.æ1" class="anchor"></span>1.æãã®ç®ã¯æãã®ç¥ã€ããŠã§ã®æ¹åã«ïŒ
|style="text-align:right"|×. ×¢Öµ×× ÖµÖ«×× ×ÖŒ ×Ö¶×ÖŸ×××× ×Ö±×××ÖµÖ«×× ×ÖŒ
|-
|style="text-align:left" |<span id="11.1.æ2" class="anchor"></span>2.ãã®äºæžã®å£ã®äžã«ã¯å€§ããªç³ãããïŒïŒ
|style="text-align:right"|×. ×¢Ö·× ×€ÖŽÖŒ× ×Ö·×Ö°ÖŒ×ֵך ×Ö¶Ö«×Ö¶× ×Ö°ÖŒ×××Öž×
|-
|style="text-align:left" |<span id="11.1.æ3" class="anchor"></span>3.ç座ã®åœ¢ã®äžã«äººéã®å€èŠã®åŠãå§¿ãããïŒ
|style="text-align:right"|×. ×¢Ö·× ×Ö°ÖŒ××֌ת ×Ö·×ÖŽÖŒ×¡ÖµÖŒ× ×Ö°ÖŒ××֌ת ×Ö°ÖŒ×ַךְ×Öµ× ×Öž×Öž×
|-
|style="text-align:left" |<span id="11.1.æ4" class="anchor"></span>4.æ°žé ããæ°žé ãŸã§ïŒæ±ã¯ç¥.
|style="text-align:right"|×. ×Öµ×¢×Ö¹×Öž× ×Ö°×¢Ö·× ×¢×Ö¹×Öž× ×Ö·×ªÖžÖŒ× ×Öµ×
|-
|style="text-align:left" |<span id="11.1.æ5" class="anchor"></span>5.ãã®ååå¹ŽïŒæ±ã®ç¥ã€ããŠã§ã¯æ±ãšãšãã«ïŒ
|style="text-align:right"|×. ×Ö¶× ×ַךְ×֞֌ע֎×× ×©Öž×× Öž× ×××× ×Ö±×××Ö¶Ö«××Öž ×¢ÖŽ×Ö°ÖŒ×Öž
|-
|style="text-align:left" |<span id="11.1.æ6" class="anchor"></span>6.åæã¡ã®ç·ãäºå人ãç§ãšäžç·ã«ããïŒ
|style="text-align:right"|×. ×Öµ×©× ×ÖŽ×ªÖŽÖŒ× ×Ö²×֎ש֎֌××× ×ÖŽ××©× ×Ö°ÖŒ× Öµ×ÖŸ×Ö·Ö«×ÖŽ×
|-
|style="text-align:left" |<span id="11.1.æ7" class="anchor"></span>7.æ¥ã®äžã«æ°ããããšã¯äœããªãïŒ
|style="text-align:right"|×. ×Öµ×× ×ÖžÖŒ×ÖŸ×Öž×Öž×©× ×ªÖ·ÖŒ×ַת ×ַשֶ֌××ֶש×
|-
|style="text-align:left" |<span id="11.1.æ8" class="anchor"></span>8.ãµãŠã«ã®ãã¹ãŠã®æ¥ã
ïŒïŒäžçïŒïŒã€ã¹ã©ãšã«ãšããªã·ã人ãšã®æŠããæ¿ããã£ãïŒ
|style="text-align:right"|×. ×Ö²×Öž×§Öž× ×Ö·×ÖŽÖŒ×Ö°×Öž×Öž× ×ÖµÖŒ×× ×֎שְ×ך֞×Öµ× ×ÖŒ×Öµ×× ×€Ö°ÖŒ×֎שְ×ת֎֌×× ×Ö¹ÖŒ× ×Ö°×Öµ× ×©Öž×××ÖŒ×
|-
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:14Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E4%BE%8B%E6%96%87 |
24,878 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡1å1/è§£ç解説 | â»ä»¥äžãåäœå
300,000Ã20%=60,000(æžç®)
10,500,000Ã95%=9,975,000(æžç®)
11,000,000(å ç®)â»å®å
šæ¯é
é¢ä¿ãããããæçåŠèª
éåæäŒæ¥ãéåžžå€åœ¹å¡ã«æ¯çµŠãããã®ã¯,äºå確å®å±åºããããªããã,調æŽäžèŠ
(åæç©ç«ãŠ150,000,000-åœææªå厩ã20,000,000)-æ³äººçš77,000,000-äœæ°çš14,500,000=38,500,000
4,000,000(æžç®)
å»¶æ»çšåã³å»¶æ»é6,200+ååé30,000=36,200(å ç®)
ã¿ãªãé
åœ2,250,000Ã20.42%=459,450(å ç®)
2,581,137(å ç®)
Aç€Ÿæ ªåŒ408,400+Bç€Ÿæ ªåŒ22,972+宿é é15,315+D瀟ã¿ãªãé
åœ459,450=906,137 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "â»ä»¥äžãåäœå",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "300,000Ã20%=60,000(æžç®)",
"title": "ååé
åœçã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "10,500,000Ã95%=9,975,000(æžç®)",
"title": "ååé
åœçã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "11,000,000(å ç®)â»å®å
šæ¯é
é¢ä¿ãããããæçåŠèª",
"title": "åäŒç€Ÿã®æž
ç®ã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "éåæäŒæ¥ãéåžžå€åœ¹å¡ã«æ¯çµŠãããã®ã¯,äºå確å®å±åºããããªããã,調æŽäžèŠ",
"title": "圹å¡çµŠäžã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "(åæç©ç«ãŠ150,000,000-åœææªå厩ã20,000,000)-æ³äººçš77,000,000-äœæ°çš14,500,000=38,500,000",
"title": "ç§çšå
¬èª²ã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "4,000,000(æžç®)",
"title": "ç§çšå
¬èª²ã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å»¶æ»çšåã³å»¶æ»é6,200+ååé30,000=36,200(å ç®)",
"title": "ç§çšå
¬èª²ã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã¿ãªãé
åœ2,250,000Ã20.42%=459,450(å ç®)",
"title": "æºæ³æåŸçšçåã³å€åœçšã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "2,581,137(å ç®)",
"title": "æºæ³æåŸçšçåã³å€åœçšã«ã€ããŠã®ç³å調æŽ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "Aç€Ÿæ ªåŒ408,400+Bç€Ÿæ ªåŒ22,972+宿é é15,315+D瀟ã¿ãªãé
åœ459,450=906,137",
"title": "æ³äººçšé¡ã®èšç®"
}
]
| â»ä»¥äžãåäœå | : [[../../第1ååé¡2|âåã®åé¡]]
: [[../../第2ååé¡1å2|次ã®åé¡â]]
â»ä»¥äžãåäœå
== åœç€Ÿã«ã€ã㊠==
; æ¥çš®
: æ©æ¢°éšåã®è£œé 販売
; è³æ¬é
: 500,000,000åïŒ1åå
== ååé
åœçã«ã€ããŠã®ç³åèª¿æŽ ==
=== Aç€Ÿæ ªåŒïŒé¢é£æ³äººæ ªåŒçïŒ ===
; çšåäžAç€Ÿæ ªåŒåž³ç°¿äŸ¡é¡
: 95,179,250+10,000,000ïŒ105,179,250
; æ§é€è² åµå©å<ref>[https://www.nta.go.jp/law/tsutatsu/kihon/hojin/03/03_02_03.htm åºæ¬éé3-2-5]</ref>
: 15,000,000Ã(åææ«Aç€Ÿæ ªåŒ105,179,250ïŒåœææ«Aç€Ÿæ ªåŒ105,179,250)ïŒ(åææ«ç·è³ç£8,184,314,600ïŒåœææ«ç·è³ç£)ïŒ188,100
; çéäžç®å
¥é¡
: 2,000,00ïŒ188,100 =1,811,900ïŒæžç®ïŒ
=== Bç€Ÿæ ªåŒïŒéæ¯é
ç®çæ ªåŒçïŒ ===
300,000Ã20%ïŒ60,000ïŒæžç®ïŒ
=== Cç€Ÿæ ªåŒïŒå€åœåäŒç€Ÿé
åœçïŒ ===
10,500,000Ã95%ïŒ9,975,000ïŒæžç®ïŒ
== D瀟ã«ããèªç€Ÿæ ªè²·ãã«ã€ããŠã®ç³åèª¿æŽ ==
=== Dç€Ÿæ ªåŒïŒæºæ³æåŸçšçã«ã€ããŠã®ç³å調æŽãé€ããïŒ ===
; ååŸééç
: @1,900Ã2,500æ ªïŒ4,750,000
; è³æ¬éç
: 200,000,000Ã2,500æ ªïŒ200,000æ ªïŒ2,500,000
; ã¿ãªãé
åœ
: 4,750,000ïŒ2,500,000ïŒ2,250,000
; çéäžç®å
¥
: 2,250,000Ã20%ïŒ450,000ïŒæžç®ïŒ
== åäŒç€Ÿã®æž
ç®ã«ã€ããŠã®ç³åèª¿æŽ ==
=== ã4ïŒåäŒç€Ÿã®æž
ç®ã«é¢ããè³æãã®äŒèšåŠçã«ã€ã㊠===
11,000,000ïŒå ç®ïŒâ»å®å
šæ¯é
é¢ä¿ãããããæçåŠèª
== æžäŸ¡ååŽã«ã€ããŠã®ç³åèª¿æŽ ==
=== æ©æ¢°è£
眮FïŒäžå€è³ç£ïŒ ===
; èçšå¹Žæ°
: æªçµé幎æ°5幎ïŒçµé幎æ°5幎Ã20%ïŒ6幎
: âŽååŽç0.333
; ä¿èšŒé¡ã®å€å®
: (1)æéŠåž³ç°¿äŸ¡é¡30,000,000ÃååŽç0.333ïŒ9,990,000
: (2)ååŸäŸ¡é¡30,000,000Ãä¿èšŒç0.09911ïŒ2,973,300
: âŽéåžžååŽ
; ååŽé床é¡
: æéŠåž³ç°¿äŸ¡é¡30,000,000ÃååŽç0.333Ã10æ/12æïŒ8,325,000
; ååŽè¶
éé¡
: 10,000,000ïŒ8,325,000ïŒ1,675,000ïŒå ç®ïŒ
=== æ©æ¢°è£
眮G ===
==== åŸåéšå ====
; ä¿èšŒé¡ã®å€å®
: (1)æéŠåž³ç°¿äŸ¡é¡64,000,000ÃååŽç0.200ïŒ12,800,000
: (2)ååŸäŸ¡é¡150,000,000Ãä¿èšŒç0.06552ïŒ9,828,000
: âŽéåžžååŽ
; ååŽé床é¡
: æéŠåž³ç°¿äŸ¡é¡64,000,000ÃååŽç0.200ïŒ12,800,000
; ååŽè¶
éé¡
: 12,800,000ïŒ12,800,000ïŒ0
==== è³æ¬çæ¯åºéšå ====
; ä¿èšŒé¡ã®å€å®
: (1)æéŠåž³ç°¿äŸ¡é¡15,000,000ÃååŽç0.200ïŒ3,000,000
: (2)ååŸäŸ¡é¡15,000,000Ãä¿èšŒç0.06552ïŒ982,800
: âŽéåžžååŽ
; ååŽé床é¡
: æéŠåž³ç°¿äŸ¡é¡15,000,000ÃååŽç0.200Ã10æ/12æïŒ2,500,000
; ååŽè¶
éé¡
: è²»çšåŠç15,000,000ïŒ2,500,000ïŒ12,500,000ïŒå ç®ïŒ
=== ããœã³ã³HïŒäžæ¬ååŽè³ç£ïŒ ===
; æéç®å
¥é床é¡
: @150,000Ã20å°Ã12/36ïŒ1,000,000
; é床è¶
éé¡
: (ååŽè²»750,000ïŒé€åŽæ1,500,000)ïŒ1,000,000ïŒ1,250,000ïŒå ç®ïŒ
=== ãœãããŠã§ã¢J ===
; ååŽé床é¡
: ååŸäŸ¡é¡5,000,000ÃååŽç0.200ïŒ1,000,000
; ååŽè¶
éé¡
: 1,670,000ïŒ1,000,000ïŒ670,000ïŒå ç®ïŒ
== 圹å¡çµŠäžã«ã€ããŠã®ç³åèª¿æŽ ==
=== å°ååç· åœ¹KïŒå®æåé¡çµŠäžã®å¢é¡æ¹å®ïŒ ===
; æ¹å®å絊äž
: 1,000,000ïŒæž¡å亀éè²»50,000ïŒ1,050,000
; æ¹å®åŸ
: 1,150,000ïŒæž¡å亀éè²»50,000ïŒ1,200,000
; æéäžç®å
¥
: (1,200,000ïŒ1,050,000)Ã3æïŒ450,000ïŒå ç®ïŒ
=== åžžååç· åœ¹LïŒäœ¿çšäººå
Œå圹å¡ã§ãªã圹å¡ïŒ ===
; æéäžç®å
¥
: (900,000ïŒ800,000)Ã3æïŒ300,000ïŒå ç®ïŒ
=== éåžžå€åç· åœ¹M ===
éåæäŒæ¥ãéåžžå€åœ¹å¡ã«æ¯çµŠãããã®ã¯ïŒäºå確å®å±åºããããªãããïŒèª¿æŽäžèŠ
== ç§çšå
¬èª²ã«ã€ããŠã®ç³åèª¿æŽ ==
=== âŽã«ã€ããŠïŒçŽçšå
åœéã®åœæå厩ãïŒ ===
(åæç©ç«ãŠ150,000,000ïŒåœææªå厩ã20,000,000)ïŒæ³äººçš77,000,000ïŒäœæ°çš14,500,000ïŒ38,500,000
=== âµã«ã€ã㊠===
; æ³äººçšã»äœæ°çš
: 38,500,000ïŒ7,250,000ïŒ45,750,000ïŒå ç®ïŒ
; çŽçšå
åœé
: 71,000,000ïŒå ç®ïŒ
; èš
: 116,750,000ïŒå ç®ïŒ
=== â¶ã«ã€ã㊠===
4,000,000ïŒæžç®ïŒ
=== â·ã«ã€ã㊠===
å»¶æ»çšåã³å»¶æ»é6,200ïŒååé30,000ïŒ36,200ïŒå ç®ïŒ
== æºæ³æåŸçšçåã³å€åœçšã«ã€ããŠã®ç³åèª¿æŽ ==
=== å
åœæ³äººã®é
åœã»å©æ¯ ===
; Bç€Ÿæ ªåŒæåŸçšã®ææ°æå
: 1ã«æ/12ã«æïŒ1/2 âŽç°¡äŸ¿æ³
; æ ªåŒ
: A瀟408,400ïŒB瀟45,945Ã1/2ïŒ431,372
; ãã®ä»
: 宿é é15,315
; èš
: 446,687ïŒå ç®ïŒ
=== å€åœæ³äººã®é
åœã»å©æ¯ ===
; Cç€Ÿæ ªåŒ
: 1,575,000ïŒå ç®ïŒ
; Nå€åœåµåž
: çšé¡100,000ïŒåœè©²åœæåŸ1,000,000Ã35% âŽ100,000ïŒå ç®ïŒ
; èš
: 1,675,000ïŒå ç®ïŒ
=== D瀟èªç€Ÿæ ªè²·ã ===
ã¿ãªãé
åœ2,250,000Ã20.42%ïŒ459,450ïŒå ç®ïŒ<ref>èšç®æéã«ããšã¥ããŠåé
ãããããã§ã¯ãªãããæéæåäžèŠã[http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=340CO0000000097 æ³äººç𿳿œè¡ä»€140æ¡ã®2第1é
]åç
§ã</ref>
=== åèš ===
2,581,137ïŒå ç®ïŒ
== 亀éè²»çã«ã€ããŠã®ç³åèª¿æŽ ==
=== âŽã«ã€ã㊠===
; æ¯åºäº€éè²»
: 瀟å
飲é£è²»300,000ïŒãŽã«ããã¬ãŒ2,200,000ïŒæ¥åŸ
飲é£è²»3,000,000ïŒ5,500,000
: æ¥åŸ
飲é£è²»ïŒ(1)瀟å€ã®è
ã«å¯Ÿããæ¥åŸ
ã®ããã®é£²é£è²»ã§ãã£ãŠïŒ(2)1人åœãã5,000åè¶
; 亀éè²»çã®æéäžç®å
¥é¡
: 5,500,000ïŒæ¥åŸ
飲é£è²»3,000,000Ã50%ïŒ4,000,000ïŒå ç®ïŒ
=== âµã«ã€ã㊠===
; ä»®æäº€éè²»èªå®æ
: 855,000
; 亀éè²»çã®æéäžç®å
¥é¡
: 855,000ïŒ855,000Ã50%ïŒ427,500ïŒå ç®ïŒ
; èš
: 427,500ïŒæžç®ïŒ
== å¯ééã«ã€ããŠã®ç³åèª¿æŽ ==
=== ãã®ä»ã®èª¿æŽé¡ ===
; åææªæå¯ééèªå®¹
: 2,500,000ïŒæžç®ïŒ
; æªæå¯ééåŠèª
: 3,000,000ïŒå ç®ïŒ
; èš
: 500,000ïŒå ç®ïŒ
=== æ¯åºå¯ééã®æéç®å
¥é床é¡è¶
éé¡ ===
; æå®å¯ä»é
: ãŒã
; ç¹å®å¯éé
: 4,700,000
; äžè¬å¯éé
: å°åç¥äº1,500,000ïŒå®ææ³äºº2,500,000ïŒ4,000,000
; æ¯åºå¯ééèš
: 8,700,000
; ç¹å®å¯ééã®æéç®å
¥é床é¡
: {ææ«è³æ¬é1,005,000,000Ã12æ/12æÃ3.75/1,000ïŒ(å¥è¡šåã®ä»®èš450,000,000ïŒæ¯åºèš8,700,000)Ã6.25/100}Ã1/2ïŒ16,218,750
: 16,218,750ïŒ4,700,000 âŽ4,700,000
; äžè¬å¯ééã®æéç®å
¥é床é¡
: {ææ«è³æ¬é1,005,000,000Ã12æ/12æÃ2.5/1,000ïŒ(å¥è¡šåã®ä»®èš450,000,000ïŒæ¯åºèš8,700,000)Ã2.5/100}Ã1/4ïŒ3,495,000
; æéäžç®å
¥é¡
: æ¯åºèš8,700,000ïŒç¹å®é床4,700,000ïŒäžè¬é床3,495,000ïŒ505,000ïŒå ç®ïŒ
== æ¬ æéã«ã€ããŠã®ç³åèª¿æŽ ==
=== ã11ïŒæ¬ æéã«é¢ããè³æãã«ã€ã㊠===
; åœç€Ÿæ¬ æé
: 15,000,000
; Eç€Ÿæ¬ æé
: æ¯é
åŸæ¬ æé4,000,000ïŒ3,000,000ïŒ10,750,000ïŒ1,250,000ïŒ19,000,000
; èš
: 34,000,000
; é床é¡
: 34,000,000ïŒæ¬ ææ§é€åæåŸéé¡640,000,000Ã55% âŽ34,000,000ïŒæžç®ïŒ
== æ³äººçšé¡ã®èšç® ==
=== æåŸçšé¡æ§é€é¡åã³åŸ©èç¹å¥æåŸçšé¡æ§é€é¡ ===
Aç€Ÿæ ªåŒ408,400ïŒBç€Ÿæ ªåŒ22,972ïŒå®æé é15,315ïŒD瀟ã¿ãªãé
åœ459,450ïŒ906,137
=== å€åœçšé¡æ§é€é¡ ===
; Nå€åœåµåž
: å¥è¡šåã§å ç®ããé¡100,000ïŒæ§é€é床é¡300,000
: âŽ100,000
== èæ³š ==
<references />
: [[../../第1ååé¡2|âåã®åé¡]]
: [[../../第2ååé¡1å2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:39:58Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C1%E5%95%8F1/%E8%A7%A3%E7%AD%94%E8%A7%A3%E8%AA%AC |
24,883 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡1å2 | åœç€Ÿã¯,èšç«æããè³æ¬éã®é¡ã50,000,000 åã§ãã黿°è£œååžå£²æ¥ãå¶ãæ ªåŒäŒç€Ÿã§ãã,æ ªäž»ã¯å
šãŠå人ã§ãããåœç€Ÿã®åœæ(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠ,以äžã®[è³æ]1.ã5.ã«åºã¥ã,次ã®[å]1.åã³[å]2.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,åœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã¯èæ
®ããå¿
èŠã¯ãªãã
[è³æ]
4,000,000(å ç®)âµå¹³æ23幎5æ13æ¥ãå«ãäºæ¥å¹ŽåºŠã«æéç®å
¥ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åœç€Ÿã¯,èšç«æããè³æ¬éã®é¡ã50,000,000 åã§ãã黿°è£œååžå£²æ¥ãå¶ãæ ªåŒäŒç€Ÿã§ãã,æ ªäž»ã¯å
šãŠå人ã§ãããåœç€Ÿã®åœæ(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠ,以äžã®[è³æ]1.ã5.ã«åºã¥ã,次ã®[å]1.åã³[å]2.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,åœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã¯èæ
®ããå¿
èŠã¯ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "[è³æ]",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "4,000,000(å ç®)âµå¹³æ23幎5æ13æ¥ãå«ãäºæ¥å¹ŽåºŠã«æéç®å
¥",
"title": "è§£ç解説"
}
]
| null | : [[../第2ååé¡1å1|âåã®åé¡]]
: [[../第2ååé¡2|次ã®åé¡â]]
== åé¡ ==
ãåœç€Ÿã¯ïŒèšç«æããè³æ¬éã®é¡ã50,000,000 åã§ãã黿°è£œååžå£²æ¥ãå¶ãæ ªåŒäŒç€Ÿã§ããïŒæ ªäž»ã¯å
šãŠå人ã§ãããåœç€Ÿã®åœæïŒèªå¹³æ29 幎4 æ1 æ¥ãè³å¹³æ30 幎3 æ31 æ¥ïŒã«ãããçŽä»ãã¹ãæ³äººçšé¡ã®èšç®ã«é¢ããŠïŒä»¥äžã®ïŒ»è³æïŒœ1ïŒã5ïŒã«åºã¥ãïŒæ¬¡ã®ïŒ»å1ïŒåã³ïŒ»å2ïŒã«çããªããããªãïŒè€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯ïŒåœæã®çŽä»ãã¹ãæ³äººçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã¯èæ
®ããå¿
èŠã¯ãªãã
;å
:1ïŒæ¬¡ã®ïŒ»è³æïŒœ1ïŒã4ïŒã®äŒèšåŠçã«ã€ããŠïŒåœæã®æåŸã®éé¡ã®èšç®äžïŒç³å調æŽãã¹ãéé¡ãçããªããã
;å
:2ïŒïŒ»è³æïŒœ5ïŒâµã«åºã¥ãïŒåœæã®äžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã®èšç®ã«ãããŠäœ¿çšããã貞åå®çžŸçãèšç®ããªããããªãïŒè²žåå®çžŸçã¯å°æ°ç¹ç¬¬4 äœæªæºã®ç«¯æ°ãåãäžããã
'''ïŒ»è³æïŒœ'''
;1ïŒåŸæå
瀟ã«å¯Ÿãã嵿š©ã«é¢ããäºé
:ãåŸæå
瀟ã«å¯ŸããŠåœææ«ã«å£²æé3,000,000 ååã³è²žä»é4,000,000 åãæããŠãããïŒïŒ¡ç€Ÿãšã®ç¶ç¶çãªååŒã忢ãïŒååŒåæ¢ã®æïŒæåŸã®åŒæžæåã³æåŸã®åŒæžã®æã®ãããã®æããã1 幎6 ãæä»¥äžãçµéããããïŒåœææ«ã«æ¬¡ã®äŒèšåŠçãè¡ã£ãããªãïŒè²žä»éã¯ïŒå¹³æ28 幎6 æ15 æ¥ã«å£²æéããæºæ¶è²»è²žåå¥çŽã«ãã貞ä»éã«æ¯ãæ¿ãããã®ã§ããããŸãïŒïŒ¡ç€Ÿã«å¯Ÿãããããã®åµæš©ã®æ
ä¿ãšããŠïŒïŒ¡ç€Ÿææã®åå°ã«æµåœæš©ãèšå®ããŠããïŒåœææ«ã«ãããæ
ä¿äŸ¡å€ã¯1,000,000 åãšèŠç©ããããã
{|
|(åæ¹)
|貞åæå€±
|2,999,999å
|(貞æ¹)
|売æé
|2,999,999å
|-
|
|貞åæå€±
|3,999,999å
|
|貞ä»é
|3,999,999å
|}
; 2ïŒåŸæå
瀟ã«å¯Ÿãã嵿š©ã«é¢ããäºé
:ãåŸæå
瀟ã«å¯Ÿãã売æé5,000,000 åã®ãã¡4,000,000 åã¯ïŒå¹³æ23 幎5 æ13 æ¥ã®åçèšç»èªå¯ã®æ±ºå®ã«ããåãæšãŠãããŠãããïŒåæãŸã§äŒèšåŠçãããŠããªãã£ãããã®ããïŒåœææ«ã«æ¬¡ã®äŒèšåŠçãè¡ã£ãããªãïŒå¹³æ23 幎5 æ13 æ¥ãå«ãäºæ¥å¹ŽåºŠã«ãããŠïŒãã®4,000,000 åã¯ç³å調æŽã«ããæéã®é¡ã«ç®å
¥ãããŠããã
{|
|(åæ¹)
|貞åæå€±
|4,000,000å
|(貞æ¹)
|売æé
|4,000,000å
|}
; 3ïŒåŸæå
瀟ã«å¯Ÿãã嵿š©ã«é¢ããäºé
: ãåŸæå
瀟ã«å¯ŸããŠå£²æé10,000,000 åãæããŠãããïŒå¹³æ27 幎7 æ7 æ¥ã«æŽçèšç»èªå¯ã®æ±ºå®ãããïŒ6,500,000 åã¯åãæšãŠããïŒæ®é¡ã®3,500,000 åã«ã€ããŠã¯ïŒå¹³æ28 幎1 ææ«æ¥ã第1 åãšããŠïŒæ¯å¹Ž1 ææ«æ¥ã«ïŒ500,000 åãã€7 åã§åå²åŒæžãããããšãšãªãïŒéå»3åã¯èšç»ã©ããã«åŒæžãããŠããããã®åãæšãŠãããéé¡6,500,000 åã«ã€ããŠã¯ïŒæŽçèšç»èªå¯ã®æ±ºå®ã®ãã£ãäºæ¥å¹ŽåºŠã«ãããŠïŒè²žåæå€±ãšããŠè²»çšåŠçããããïŒåå²åŒæžé¡ã«ã€ããŠã¯ïŒåæãŸã§ïŒäœãäŒèšåŠçãããŠããªãã£ããããã§ïŒåœæã«æ¬¡ã®äŒèšåŠçãè¡ãïŒå£²æéæ®é«ã®å
šé¡ã貞ååŒåœéã«ç¹°ãå
¥ããã
{|
|(åæ¹)
|貞ååŒåœéç¹°å
¥é¡
|2,000,000å
|(貞æ¹)
|貞ååŒåœé
|2,000,000å
|}
;4ïŒäžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã«é¢ããäºé
: ãäžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã«ã€ããŠïŒåœææ«ã«æ¬¡ã®ãšããäŒèšåŠçãè¡ã£ãããªãïŒåæãŸã§ïŒäžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã®ç¹°å
¥ãã¯è¡ã£ãŠããªãã£ãã
{|
|(åæ¹)
|貞ååŒåœéç¹°å
¥é¡
|8,000,000å
|(貞æ¹)
|貞ååŒåœéç¹°å
¥é¡
|8,000,000å
|}
; 5ïŒäžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã®èšç®ã«é¢ããè³æ
: âŽãåœææ«ã®éé嵿š©ã®éé¡ã¯æ¬¡ã®ãšããã§ããïŒïŒ»è³æïŒœ1ïŒãš2ïŒã®äŒèšåŠçãè¡ã£ãåŸã®éé¡ã§ããããªãïŒåµåè
ããåãå
¥ããéé¡ãããããïŒãã®å
šéšåã¯äžéšãå®è³ªçã«åµæš©ãšã¿ãããªãéé嵿š©ã¯ãªãããŸãïŒåœæã«èšäžãããŠãã貞ååŒåœéã¯ïŒïŒ»è³æïŒœ3ïŒãš4ïŒã«ãããŠäŒèšåŠçãè¡ããããã®ã®ã¿ã§ããã
:*ååæåœ¢ïŒ154,600,000 å
:*売 æ éïŒ520,560,501 å
:*貞 ä» éïŒ 33,500,001 å
:*æªåå
¥éïŒ 15,600,000 å
:âµã貞åå®çžŸçã®èšç®ã®åºç€ãšãªãåæä»¥åã®åäºæ¥å¹ŽåºŠæ«ã«ãããäžæ¬è©äŸ¡éé嵿š©ã®éé¡ïŒå£²æåµæš©çã«ä¿ã貞åæå€±ã®éé¡çã¯ïŒæ¬¡ã®ãšããã§ããã
{| class="wikitable"
|äºæ¥å¹ŽåºŠ
|åäºæ¥å¹ŽåºŠæ«ã«ãããäžæ¬è©äŸ¡éé嵿š©ã®éé¡
|売æåµæš©çã«ä¿ã貞åæå€±ã®éé¡
|åå¥è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéç¹°å
¥é¡
|åå¥è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéæ»å
¥é¡
|-
|èªå¹³æ24幎4æ1æ¥
è³å¹³æ25幎3æ31æ¥
|650,000,000å
|2,000,000å
|3,000,000å
|1,000,000å
|-
|èªå¹³æ25幎4æ1æ¥
è³å¹³æ26幎3æ31æ¥
|640,000,000å
|1,400,000å
|1,200,000å
|3,000,000å
|-
|èªå¹³æ26幎4æ1æ¥
è³å¹³æ27幎3æ31æ¥
|680,000,000å
|1,500,000å
|4,000,000å
|1,200,000å
|-
|èªå¹³æ27幎4æ1æ¥
è³å¹³æ28幎3æ31æ¥
|710,000,000å
|8,000,000å
|1,500,000å
|4,000,000å
|-
|èªå¹³æ28幎4æ1æ¥
è³å¹³æ29幎3æ31æ¥
|720,000,000å
|2,600,000å
|0å
|1,500,000å
|}
:â¶ãåžå£²æ¥ã«ã€ããŠïŒç§çšç¹å¥æªçœ®æ³ç¬¬57 æ¡ã®9ïŒäžå°äŒæ¥çã®è²žååŒåœéã®ç¹äŸïŒã§èŠå®ããæ¿ä»€ã§å®ããå²åïŒæ³å®ç¹°å
¥çïŒã¯1,000 åã®10 ã§ããã
== è§£çé
ç® ==
; å1ïŒ
: (1) åŸæå
A瀟ã«å¯Ÿãã嵿š©
: (2) åŸæå
B瀟ã«å¯Ÿãã嵿š©
: (3) åŸæå
C瀟ã«å¯Ÿãã嵿š©
: (4) äžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéç¹°å
¥é¡
; å2ïŒ
: 貞åå®çžŸçïŒå°æ°ç¹ç¬¬4äœæªæºã®ç«¯æ°åäžãïŒ
== è§£ç解説 ==
=== åŸæå
A瀟ã«å¯Ÿãã嵿š© ===
; 売æé
: 2,999,999ïŒå ç®ïŒâµæ
ä¿ç©ããã
; 貞ä»é
: 3,999,999ïŒå ç®ïŒâµå£²äžåµæš©ã§ãªã
=== åŸæå
B瀟ã«å¯Ÿãã嵿š© ===
4,000,000ïŒå ç®ïŒâµå¹³æ23幎5æ13æ¥ãå«ãäºæ¥å¹ŽåºŠã«æéç®å
¥
=== åŸæå
C瀟ã«å¯Ÿãã嵿š© ===
; åœææ«ã®åç«äžèœèŠèŸŒé¡
: 2,000,000ïŒH31.1.31ïœ.H34.1.31ïŒ
; 決å®ã®ãã£ãäºæ¥å¹ŽåºŠã®ç¿æéŠãã5幎以å
ã«åŒæžãããéé¡
: 1,500,000ïŒH33.3.31ãŸã§ã«åŒæžãããåïŒ
; ç¹°å
¥é床é¡
: 500,000
; ç¹°å
¥è¶
éé¡
: 1,500,000ïŒå ç®ïŒ
=== äžæ¬è©äŸ¡éé嵿š© ===
; äžæ¬è©äŸ¡éé嵿š©
: (154,600,000ïŒ520,560,501ïŒ33,500,001ïŒ15,600,000)ïŒA瀟6,999,998ïŒD瀟2,000,000ïŒ729,560,500
; 貞åå®çžŸç
: [{忝æé貞åæå€±(1,500,000ïŒ8,000,000ïŒ2,600,000)ïŒåå¥ç¹°å
¥(4,000,000ïŒ1,500,000ïŒ0)ïŒå奿»å
¥(1,200,000ïŒ4,000,000ïŒ1,500,000)}Ã12æ/36æ] ïŒ [åã
ã
æïœåæäžæ¬è©äŸ¡éé嵿š©(680,000,000ïŒ710,000,000ïŒ720,000,000)÷3äºæ¥å¹ŽåºŠ]
: â0.0052
; 貞åå®çžŸçã«ããç¹°å
¥é床é¡
: äžæ¬è©äŸ¡éé嵿š©792,560,500Ã0.052ïŒ3,792,154
; æ³å®ç¹°å
¥çã«ããç¹°å
¥é床é¡
: äžæ¬è©äŸ¡éé嵿š©792,560,500Ã10/1,000ïŒ7,292,605
; ç¹°å
¥é床é¡
: 7,292,605ïŒæå©éžæïŒ
; ç¹°å
¥è¶
éé¡
: 8,000,000ïŒ7,292,605ïŒ707,395ïŒå ç®ïŒ
== åç
§æ³ä»€ç ==
* [https://www.nta.go.jp/taxes/shiraberu/taxanswer/hojin/5501.htm No.5501 äžæ¬è©äŸ¡éé嵿š©ã«ä¿ã貞ååŒåœéã®èšå®ïœåœçšåº]
* [http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=340CO0000000097 æ³äººç𿳿œè¡ä»€96æ¡]
* [http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=332CO0000000043 ç§çšç¹å¥æªçœ®æ³æœè¡ä»€33æ¡ã®7]
* [https://www.nta.go.jp/law/tsutatsu/kihon/hojin/09/09_06_01.htm æ³äººçšæ³åºæ¬éé9-6-1ïŒ9-6-2ïŒ9-6-3]
: [[../第2ååé¡1å1|âåã®åé¡]]
: [[../第2ååé¡2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:40:02Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C1%E5%95%8F2 |
24,884 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡2 | å±
äœè
ã§ããA(55 æ³)ã®å¹³æ29 幎åã®æåŸçšã®èšç®ã«ã€ããŠ,以äžã®[è³æ]1.ã7.ã«åºã¥ã,次ã®[å]1.ã[å]4.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,å¹³æ29 幎åã®çŽä»ãã¹ãæåŸçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã
[è³æ]
åèè³æãã1,500,000
賌å
¥äŸ¡æ Œ25,000,000+ä»²ä»ææ°æ850,000+å°çŽä»£15,000+ç»é²å
èš±çš250,000=26,115,000
(A 205,000+A 8,400+B 15,000+C 39,000+D 7,000)-100,000=174,400 â»4,200,000Ã5%=210,000>100,000
A 1,047,000+B 197,000+C 197,000+D 197,000=1,638,000 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å±
äœè
ã§ããA(55 æ³)ã®å¹³æ29 幎åã®æåŸçšã®èšç®ã«ã€ããŠ,以äžã®[è³æ]1.ã7.ã«åºã¥ã,次ã®[å]1.ã[å]4.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,å¹³æ29 幎åã®çŽä»ãã¹ãæåŸçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "[è³æ]",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "åèè³æãã1,500,000",
"title": "è§£ç解説"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "賌å
¥äŸ¡æ Œ25,000,000+ä»²ä»ææ°æ850,000+å°çŽä»£15,000+ç»é²å
èš±çš250,000=26,115,000",
"title": "è§£ç解説"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(A 205,000+A 8,400+B 15,000+C 39,000+D 7,000)-100,000=174,400 â»4,200,000Ã5%=210,000>100,000",
"title": "è§£ç解説"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "A 1,047,000+B 197,000+C 197,000+D 197,000=1,638,000",
"title": "è§£ç解説"
}
]
| null | : [[../第2ååé¡1å2|âåã®åé¡]]
: [[../第2ååé¡3å1|次ã®åé¡â]]
== åé¡ ==
å±
äœè
ã§ããïŒ55 æ³ïŒã®å¹³æ29 幎åã®æåŸçšã®èšç®ã«ã€ããŠïŒä»¥äžã®ïŒ»è³æïŒœ1ïŒã7ïŒã«åºã¥ãïŒæ¬¡ã®ïŒ»å1ïŒãå4ïŒã«çããªããããªãïŒè€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯ïŒå¹³æ29 幎åã®çŽä»ãã¹ãæåŸçšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã
;å
:1ïŒäºæ¥æåŸã®éé¡ã®èšç®ã«é¢ããŠïŒæ¬¡ã®éé¡ãçããªããã
::âŽãäºæ¥æåŸã®ç·åå
¥éé¡
::âµãïŒ»è³æïŒœ2ïŒâ¶ã«ããïŒäºæ¥æåŸã®éé¡ã®èšç®äžïŒå¿
èŠçµè²»ãšãªãéé¡
::â¶ãïŒ»è³æïŒœ2ïŒâ·ã«ããïŒäºæ¥æåŸã®éé¡ã®èšç®äžïŒå¿
èŠçµè²»ãšãªãæžäŸ¡ååŽè²»ã®éé¡
::â·ãéè²ç³åç¹å¥æ§é€é¡
;å
:2ïŒæ¬¡ã®åæåŸã®éé¡ãçããªããã
::âŽãäžåç£æåŸã®éé¡
::âµãçµŠäžæåŸã®éé¡
::â¶ãç·å課çšãšãªãè²æž¡æåŸã®éé¡
::â·ãäžææåŸã®éé¡
::âžãéæåŸã®éé¡
;å
:3ïŒåå°å»ºç©çã®è²æž¡æåŸã®éé¡ã®èšç®ã«é¢ããŠïŒæ¬¡ã®éé¡ãçããªããããªãïŒååŸè²»ã®èšç®ã«è€æ°ã®æ¹æ³ãããå Žåã¯ïŒååŸè²»ãæãå€ããªãæ¹æ³ã«ããèšç®ããªããã
::âŽãåå°ã®ååŸè²»ã®éé¡
::âµã建ç©ã®ååŸè²»ã®éé¡
;å
:4ïŒæ¬¡ã®æåŸæ§é€ã®éé¡ãçããªããã
::âŽãå»çè²»æ§é€ã®éé¡
::âµã瀟äŒä¿éºææ§é€ã®éé¡
::â¶ãçåœä¿éºææ§é€ã®éé¡
::â·ãæ¶é€æ§é€ã®éé¡
'''ïŒ»è³æïŒœ'''
;1ïŒå
šè¬çãªäºé
åã³æ³šæäºé
:âŽãã¯ïŒè¡£æåã®å°å£²æ¥ãå¶ãåãïŒéšå±æ°6 宀ã®ã¢ããŒããææãïŒè³è²žãè¡ã£ãŠããããªãïŒãã®äžåç£è³è²žæ¥ã¯äºæ¥çèŠæš¡ãšãããªãçšåºŠã®ãã®ã§ããã
::âµãã®å®¶ææ§æã¯ïŒåŠ»ïŒ¢ïŒ55 æ³ïŒïŒé·ç·ïŒ£ïŒ30 æ³ïŒïŒé·å¥³ïŒ€ïŒ24 æ³ïŒã§ããïŒå
šãŠçèšãäžãšããŠãããã¯ïŒ¡ã®è¡£æåå°å£²æ¥ã®éè²äºæ¥å°åŸè
ã§ãããã¯ç¿»è𳿥ãšããŠã®äºæ¥æåŸãããïŒå¹³æ29 幎åã®ç·æåŸéé¡ã¯3,530,000 åã§ãããã¯åŠçã§ããïŒïŒ¡ã®ã¢ããŒãã®è³è²žæ¥ã§ã¢ã«ãã€ããããŠããïŒãã以å€ã«åå
¥ã¯ãªãããªãïŒå¹Žéœ¢ã¯ããããïŒå¹³æ29 幎12 æ31 æ¥çŸåšã«ããããã®ã§ããã
:â¶ãã¯ïŒäºæ¥ã®éå§æããéè²ç³åæžãæåºããããšã«ã€ãæèœçšå眲é·ã®æ¿èªãåããŠããïŒäºæ¥æåŸåã³äžåç£æåŸã«ä¿ãååŒãè€åŒç°¿èšã«ããèšåž³ãïŒãã®èšåž³ã«åºã¥ãæçèšç®æžåã³è²žå察ç
§è¡šãæ·»ä»ãã確å®ç³åæžãïŒæ³å®ç³åæéå
ã«æåºããŠããã
:â·ãã«å¯ŸããŠæ¯çµŠããéè²äºæ¥å°åŸè
絊äžã«é¢ããå±åºã¯ïŒé©æ³ã«ãªãããŠããïŒå±ãåºããéé¡ã®ç¯å²å
ã§çµŠäžãæ¯æãããŠããã
:âžãæžäŸ¡ååŽè³ç£ã®ååŽæ¹æ³ã«ã€ããŠã¯ïŒå±åºãè¡ã£ãŠããªãã
:â¹ãæ¶è²»çšåã³å°æ¹æ¶è²»çšã«ã€ããŠã¯èæ
®ããªãã
;2ïŒè¡£æåã®å°å£²æ¥ã«é¢é£ããäºé
:âŽãè¡£æåã®å°å£²æ¥ã«é¢é£ããå¹³æ29 幎ã®åå
¥ã¯ïŒæ¬¡ã®ãšããã§ããã
::â ãè¡£æåã®å£²äžé«ã¯9,500,000 åã§ããã
::â¡ãäºæ¥çšã«äœ¿çšããŠããããœã³ã³ïŒååŸäŸ¡é¡95,000 åïŒã®å£²åŽã«ããåå
¥ã5,000 åããããªãïŒãã®ããœã³ã³ã¯ïŒïŒ¡ã®æ¥åã®æ§è³ªãã倿ããŠåºæ¬çã«éèŠãªãã®ïŒå°é¡éèŠè³ç£ïŒãšã¯ãããªããã®ã§ããã
::â¢ãäºæ¥è³éã®ããã®é éã«ä¿ã婿¯ïŒæºæ³æåŸçšçæ§é€åïŒã1,500 åããã
:âµãååã®ã¹ãŒã1 çïŒè²©å£²äŸ¡æ Œ60,000 åïŒä»å
¥äŸ¡æ Œ45,000 åïŒãã®è¡£æãšããŠèªå®¶æ¶è²»ãããä»å
¥äŸ¡æ Œã¯ä»å
¥é«ãšããŠå¿
èŠçµè²»ã«èšäžãããŠãããïŒè²©å£²äŸ¡æ Œ60,000 åã¯ïŒäžèšâŽâ ã®å£²äžé«ã«ã¯å«ãŸããŠããªãã
:â¶ãäºæ¥ã«äœ¿çšããŠããåºèã®å»ºç©ã¯ïŒ¢ã®ææã§ããïŒïŒ¡ã¯ïŒ¢ããè³åããŠïŒå¹³æ29 幎1 æããå幎12 æãŸã§æ¯æ20,000 åïŒå¹Žéåèš240,000 åã®å®¶è³ãæ¯æã£ãŠããããã®å»ºç©ã¯ïŒå¹³æ20 幎7 æ1 æ¥ã«ïŒïŒ¢ãææããŠããåå°ã«ååŸäŸ¡é¡10,000,000 åã§å»ºç¯ãããã®ã§ããïŒæ³å®èçšå¹Žæ°ã¯22 幎ã§ããããŸãïŒãã®å»ºç©åã³æ·å°ã«ã€ããŠå¹³æ29 幎ã«è³Šèª²æ±ºå®éç¥ã®ãã£ãåºå®è³ç£çš80,000 åã¯ïŒææè
ã§ãããè² æ
ããŠããã
:â·ãäºæ¥ã«äœ¿çšããŠããææã®æžäŸ¡ååŽè³ç£ã¯æ¬¡ã®ãšããã§ããããªãïŒå¹³æ28 幎以åã«ïŒäºæ¥æåŸã®éé¡ã®èšç®äžïŒæžäŸ¡ååŽè²»ãèšäžããŠããªã幎ãããã
:
{| class="wikitable"
|å
容
|æ¥åã®çšã«äŸãã幎æ
|æ³å®èçšå¹Žæ°
|ååŸäŸ¡é¡
|å¹³æ29幎1æ1æ¥çŸåšã®åž³ç°¿äŸ¡é¡
|-
|äºåæ©åš1å°
|å¹³æ23幎1æ
|5幎
|350,000å
|70,000å
|-
|ãšã¢ã³ã³1å°
|å¹³æ25幎7æ
|6幎
|300,000å
|147,750å
|}
:
:âžãéè²ç³åç¹å¥æ§é€åã®äºæ¥æåŸã®éé¡ã¯ïŒ2,000,000 å以äžã§ããã
;3ïŒã¢ããŒãã®è³è²žæ¥ã«é¢é£ããäºé
:âŽãå¹³æ29 幎ã®ã¢ããŒãã®è³è²žã«ããå®¶è³åå
¥ã¯åèš4,320,000 åã§ããïŒãã®å®¶è³ä»¥å€ã®åå
¥ã¯ãªãã
:âµãã¯ïŒïŒ€ã«ã¢ããŒãã®æž
æåã³ç®¡ççãäŸé ŒããŠããïŒå¹³æ29 幎1 æããå幎12 æãŸã§æ¯æ35,000 åïŒå¹Žéåèš420,000 åã®ã¢ã«ãã€ãä»£ãæ¯æã£ãŠããã
:â¶ãäžèšâµã®ã¢ã«ãã€ã代以å€ã®å¹³æ29 幎ã®çµè²»ã®åèšã¯3,780,000 åã§ããïŒå€§èŠæš¡ãªä¿®ç¹ãè¡ã£ãããšã«ããå€é¡ã®æ¯æãå«ãŸããŠããïŒãã®çµè²»ã®å
šé¡ã¯å¿
èŠçµè²»ãšããŠèªãããããã®ã§ããã
;4ïŒå±
äœçšè²¡ç£ã®è²æž¡ã«é¢ããäºé
:âŽãã¯ïŒèªå·±ãææãïŒå±
äœçšã«äœ¿çšããŠãã建ç©åã³ãã®æ·å°ãïŒå¹³æ29 幎2 æ20 æ¥ã«å£²åŽããã売åŽäŸ¡é¡ã¯49,000,000 åïŒå
èš³ã¯åå°30,000,000 åïŒå»ºç©19,000,000 åïŒã§ãããå¹³æ19 幎1 æ30 æ¥ã«åå°ãååŸãïŒãã®äžã«å»ºç©ã建ç¯ãããã®ã§ïŒå»ºç©ã®ååŸæ¥ã¯å¹³æ19 幎11 æ5 æ¥ã§ããïŒå¹³æ19 幎11 æ25 æ¥ããå¹³æ29 幎2 æ5 æ¥ãŸã§å±
äœããŠãããã®ã§ããããªãïŒãã®å»ºç©ã¯æšé ã§ããïŒæ³å®èçšå¹Žæ°ã¯22 幎ã§ããã
:âµãäžèšâŽã®åå°ã®è³Œå
¥äŸ¡æ Œã¯25,000,000 åã§ããïŒãã®åå°ã«é¢ããŠæ¬¡ã®è²»çšãæ¯åºããŠããã
:*åå°è³Œå
¥ã®ããã®ä»²ä»ææ°æïŒ850,000 å
:*åå°è³Œå
¥ã®å£²è²·å¥çŽæžã«è²Œä»ããå°çŽä»£ïŒ15,000 å
:*æææš©ç§»è»¢ç»èšã®ããã®ç»é²å
èš±çšïŒ250,000 å
:â¶ãäžèšâŽã®å»ºç©ã®å»ºç¯è²»çšã¯23,000,000 åã§ããããªãïŒå»ºç©ã®ååŸè²»ã®èšç®ã«åœããïŒå»ºç¯è²»çšä»¥å€ã®è²»çšãèæ
®ããå¿
èŠã¯ãªãã
;5ïŒæåŸéé¡ã®èšç®ã«é¢ããäžèšä»¥å€ã®äºé
:âŽãã¯ïŒ¹æ ªåŒäŒç€Ÿã®éåžžå€åç· åœ¹ã«å°±ä»»ããŠããïŒå¹³æ29 幎åã®åœ¹å¡å ±é
¬ãšããŠ2,400,000 åïŒæºæ³æåŸçšçã®çšåŒåã®éé¡ïŒãåãåã£ãŠããããªãïŒåç· åœ¹äŒãžã®åºåžãªã©éåžžå€åç· åœ¹ã®æ¥åã®ããã«èŠãã亀éè²»ã72,000 åãããïŒãã®äº€éè²»ã¯ïŒ¹æ ªåŒäŒç€Ÿããæ¯çµŠãããŠããªãã
:âµãã¯å¹³æ29 幎ã«èªå·±ã®ææãããŽã«ãäŒå¡æš©åã³çµµç»ã売åŽããããã®è©³çŽ°ã¯æ¬¡ã®ãšããã§ãããïŒãããã®è³ç£ãã®è¶£å³ã®ããã«ææããŠãããã®ã§ããïŒãããã®è³ç£ã䜿çšåã¯æéã®çµéã«ããæžäŸ¡ããè³ç£ã§ã¯ãªãã
:
{| class="wikitable"
|売åŽããè³ç£
|売åŽå¹Žææ¥
|ååŸå¹Žææ¥
|売åŽäŸ¡é¡
|ååŸäŸ¡é¡
|売åŽã®ããã«èŠããè²»çš
|-
|ãŽã«ãäŒå¡æš©1å£
|å¹³æ29幎6æ6æ¥
|å¹³æ24幎9æ10æ¥
|3,000,000å
|2,850,000å
|600,000å
|-
|çµµç»1ç¹
|å¹³æ29幎7æ19æ¥
|å¹³æ26幎12æ9æ¥
|3,800,000å
|2,500,000å
|100,000å
|}
:
:â¶ãã¯å¹³æ29 幎9 æã«çåœä¿éºå¥çŽã«ããæºæä¿éºé5,000,000 åãåãåã£ãããã®çåœä¿éºå¥çŽã®ä¿éºæã¯ïŒ¡ãè² æ
ããŠããïŒæ¯æã£ãä¿éºæã®ç·é¡ã¯4,400,000 åã§ããããªãïŒä¿éºæéã¯30 幎ã§ããã
:â·ããè¶£å³ã§å·çããŠããéçãå¹³æ29 å¹Žã«æèžéèªã«æ²èŒããïŒãã®åçš¿æãšããŠ150,000 åïŒæºæ³æåŸçšçã®çšåŒåã®éé¡ïŒãåãåã£ãŠããããã®éçã®å·çã®ããã®äº€éè²»çã®åæè²»ã¯12,000 åã§ããã
;6ïŒæåŸæ§é€ã«é¢ããäºé
:âŽãå¹³æ29 幎åã®ïŒ¡ã®ç·æåŸéé¡ã¯4,200,000 åã§ããã
:âµãå¹³æ29 幎ã«ïŒ¡ãæ¯æã£ãå»çè²»çã¯æ¬¡ã®ãšããã§ããããªãïŒä¿éºéçã§è£å¡«ãããéé¡ã¯ãªãã
:
{| class="wikitable"
|å»ççãåãã人
|å»ççã®å
容
|æ¯æéé¡
|-
|A
|æ¯ç§å»åž«ã«ããæ²»çè²»
|205,000å
|-
|A
|ç
æ°ã®æ²»çã®ããã®è¬å賌å
¥ä»£
|8,400å
|-
|B
|å»åž«ã«ããæ²»çè²»
|15,000å
|-
|C
|å»åž«ã«ããæ²»çè²»
|39,000å
|-
|D
|å»åž«ã«ããæ²»çè²»
|7,000å
|}
:
:â¶ãå¹³æ29 幎ã«ïŒ¡ãæ¯æã£ã瀟äŒä¿éºæïŒåœæ°å¹Žéä¿éºæåã³åœæ°å¥åº·ä¿éºæïŒã¯æ¬¡ã®ãšããã§ããããªãïŒæ¯æé¡ã«ã¯åçŽä¿éºæéšåã¯ãªãã
:
{| class="wikitable"
|å
容
|æ¯æéé¡
|-
|Aèªèº«ã®ç€ŸäŒä¿éºæ
|1,047,000å
|-
|Bãè² æ
ãã¹ã瀟äŒä¿éºæ
|197,000å
|-
|Cãè² æ
ãã¹ã瀟äŒä¿éºæ
|197,000å
|-
|Dãè² æ
ãã¹ã瀟äŒä¿éºæ
|197,000å
|}
:
:â·ãå¹³æ29 幎ã«ïŒïŒ¡ã¯çåœä¿éºäŒç€Ÿãšã®å¥çŽã«åºã¥ãä¿éºæã次ã®ãšããæ¯æã£ãã
:
{| class="wikitable"
|ä¿éºã®å
容
|ä¿éºéåå人
|å¥çŽç· çµå¹Žæ
|æ¯æä¿éºæã®é¡
|-
|çåœä¿éº
|B
|å¹³æ29幎6æ
|55,000å
|-
|ä»è·å»çä¿éº
|A
|å¹³æ29幎6æ
|20,000å
|-
|å人幎éä¿éº
|A
|å¹³æ2幎4æ
|95,000å
|}
:
:âžã確å®ç³åæžãžã®å¿
èŠæžé¡ã®æ·»ä»çïŒæåŸæ§é€ãåããããã«å¿
èŠãªæç¶ã¯é©æ³ã«è¡ããã®ãšããã
;7ïŒåèè³æ
:âŽãæžäŸ¡ååŽè³ç£ã®ååŽççã¯ïŒäžè¡šã®ãšããã§ããã
:
{| class="wikitable"
|ååŽç
|å®é¡æ³
| colspan="6" |å®çæ³
|-
|ååŸææ
|å¹³æ19幎4æ1æ¥ä»¥åŸ
| colspan="3" |å¹³æ19幎4æ1æ¥ãã
å¹³æ24幎3æ31æ¥ãŸã§
| colspan="3" |å¹³æ24幎4æ1æ¥ä»¥åŸ
|-
|æ³å®èçšå¹Žæ°
|ååŽç
|ååŽç
|æ¹å®ååŽç
|ä¿èšŒç
|ååŽç
|æ¹å®ååŽç
|ä¿èšŒç
|-
|5幎
|0.200
|0.500
|1.000
|0.06249
|0.400
|0.500
|0.10800
|-
|6幎
|0.167
|0.417
|0.500
|0.05776
|0.333
|0.334
|0.09911
|-
|11幎
|0.091
|0.227
|0.250
|0.04123
|0.182
|0.200
|0.05992
|-
|14幎
|0.072
|0.179
|0.200
|0.03389
|0.143
|0.167
|0.04854
|-
|22幎
|0.046
|0.114
|0.125
|0.2296
|0.091
|0.100
|0.03182
|-
|28幎
|0.036
|0.089
|0.091
|0.01866
|0.071
|0.072
|0.02568
|-
|33幎
|0.031
|0.076
|0.077
|0.01585
|0.061
|0.063
|0.02161
|-
|35幎
|0.029
|0.071
|0.072
|0.01532
|0.057
|0.059
|0.02051
|-
|44幎
|0.023
|0.057
|0.059
|0.01210
|0.045
|0.046
|0.01664
|}
:
:âµãæåŸçšæ³ç¬¬28 æ¡ç¬¬4 é
ã«èŠå®ããçµŠäžæåŸæ§é€åŸã®çµŠäžçã®éé¡ïŒå¥è¡šç¬¬äºïŒã¯ïŒæ¬¡ã®ãšããã§ããïŒæç²ïŒã
:
{| class="wikitable"
| colspan="2" |絊äžçã®éé¡
| rowspan="2" |çµŠäžæåŸæ§é€åŸã®çµŠäžçã®éé¡
|-
|以äž
|æªæº
|-
|2,324,000å
|2,328,000å
|1,446,800å
|-
|2,328,000å
|2,332,000å
|1,449,600å
|-
|2,360,000å
|2,364,000å
|1,472,000å
|-
|2,364,000å
|2,368,000å
|1,474,800å
|-
|2,396,000å
|2,400,000å
|1,497,200å
|-
|2,400,000å
|2,404,000å
|1,500,000å
|}
:
== è§£ç解説 ==
=== å1ïŒäºæ¥æåŸ ===
; èªå®¶æ¶è²»
: 60,000Ã70%ïŒ45,000 âŽ45,000
; ç·åå
¥éé¡
: è¡£æå売äž9,500,000ïŒå°é¡æžäŸ¡ååŽè³ç£5,000ïŒèªå®¶æ¶è²»45,000ïŒ9,550,000
; ïŒ»è³æïŒœ2ïŒâ¶ã«ããïŒäºæ¥æåŸã®éé¡ã®èšç®äžïŒå¿
èŠçµè²»ãšãªãéé¡
: åºå®è³ç£çš80,000ïŒå»ºç©æžäŸ¡ååŽè²»10,000,000Ã0.046ïŒ540,000
; ïŒ»è³æïŒœ2ïŒâ·ã«ããïŒäºæ¥æåŸã®éé¡ã®èšç®äžïŒå¿
èŠçµè²»ãšãªãæžäŸ¡ååŽè²»ã®éé¡
: ãšã¢ã³ã³æžäŸ¡ååŽè²»300,000Ã0.167ïŒ50,100
: äºåæ©åšãŒãïŒæ³å®èçšå¹Žæ°çµéæžã¿ïŒ
: â»æ³å®ååŽæ¹æ³ã¯ååïŒå®é¡æ³ã»æ§å®é¡æ³
; éè²ç³åç¹å¥æ§é€é¡
: 650,000ïŒäžåç£æåŸã«å¯Ÿããæ§é€540,000ïŒ110,000ïŒæ§é€åäºæ¥æåŸ2,000,000
: âŽ110,000
=== å2ïŒåæåŸ ===
==== âŽãäžåç£æåŸã®éé¡ ====
; 1. ç·åå
¥éé¡
: 4,320,000
; 2. å¿
èŠçµè²»
: 3,780,000
; 3. éè²ç³åç¹å¥æ§é€
: 1.ïŒ2.ïŒ540,000ïŒ650,000 âŽ540,000
; äžåç£æåŸã®éé¡
: 1.ïŒ2.ïŒ3.ïŒ0
==== âµãçµŠäžæåŸã®éé¡ ====
åèè³æãã1,500,000
==== â¶ãç·å課çšãšãªãè²æž¡æåŸã®éé¡ ====
;è²æž¡æç
:ãŽã«ãäŒå¡æš©3,000,000ïŒ(2,850,000ïŒ600,000)ïŒâ³450,000
:çµµç»3,800,000ïŒ(2,500,000ïŒ100,000)ïŒ1,200,000
:èš750,000
;ç¹å¥æ§é€
: 750,000ïŒ500,000 âŽ500,000
; è²æž¡æåŸ
: è²æž¡æç750,000ïŒç¹å¥æ§é€500,000ïŒ250,000ïŒç·åçæïŒ
==== â·ãäžææåŸã®éé¡ ====
; ç·åå
¥éé¡
: 5,000,000
; æ¯åºããéé¡
: 4,400,000
; ç¹å¥æ§é€
: 5,000,000ïŒ4,400,000ïŒ600,000ïŒ500,000 âŽ500,000
; äžææåŸ
: 600,000ïŒ500,000ïŒ100,000
==== âžãéæåŸã®éé¡ ====
; ç·åå
¥éé¡
: 150,000
; å¿
èŠçµè²»
: 12,000
; äžææåŸ
: 138,000
=== å3ïŒåå°å»ºç©çã®è²æž¡æåŸ ===
==== âŽãåå°ã®ååŸè²»ã®éé¡ ====
賌å
¥äŸ¡æ Œ25,000,000ïŒä»²ä»ææ°æ850,000ïŒå°çŽä»£15,000ïŒç»é²å
èš±çš250,000ïŒ26,115,000
==== âµã建ç©ã®ååŸè²»ã®éé¡ ====
; ååŽç
: èçšå¹Žæ°22幎Ã1.5â33幎 âŽååŽç0.031
: â»æ¬æ¥ã¯æ§å®é¡æ³ååŽçãçšãããïŒè³æäžã«ãªãããæ°å®é¡æ³ååŽçã䜿çšã
; ååŸè²»
: ååŸäŸ¡é¡23,000,000ïŒ(23,000,000Ã0.9Ã0.031Ã9幎)ïŒ17,224,700
: 幎æ°ã¯6ææªæºåæšãŠïŒ6æä»¥äžåäžã
=== å4ïŒæåŸæ§é€ ===
==== âŽãå»çè²»æ§é€ã®éé¡ ====
(A 205,000ïŒA 8,400ïŒB 15,000ïŒC 39,000ïŒD 7,000)ïŒ100,000ïŒ174,400
â»4,200,000Ã5%ïŒ210,000ïŒ100,000
==== âµã瀟äŒä¿éºææ§é€ã®éé¡ ====
A 1,047,000ïŒB 197,000ïŒC 197,000ïŒD 197,000ïŒ1,638,000
==== â¶ãçåœä¿éºææ§é€ã®éé¡ ====
; çåœä¿éºïŒæ°ïŒ
: 30,000ïŒ(55,000ïŒ40,000)Ã1/4ïŒ33,750
; ä»è·å»çä¿éº
: 20,000
; å人幎éä¿éºïŒæ§ïŒ
: 37,500ïŒ(95,000ïŒ50,000)Ã1/4ïŒ48,750
; èš
: 102,500ïŒ120,000 âŽ102,500
==== â·ãæ¶é€æ§é€ã®éé¡ ====
* BïŒãŒãïŒéè²äºæ¥å°åŸè
ã§çµŠäžã®æ¯æããåãããã®ïŒ
* CïŒãŒãïŒåèšæåŸéé¡ã38äžåè¶
ïŒ
* DïŒ380,000ïŒéè²äºæ¥å°åŸè
ã§ãªãïŒAããã®ã¢ã«ãã€ãåå
¥ã¯ãŒããšã¿ãªãïŒ
: [[../第2ååé¡1å2|âåã®åé¡]]
: [[../第2ååé¡3å1|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:40:08Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C2 |
24,886 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡3å2 | åºçæ¥ãå¶ãQæ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœèª²çšæé(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ããã調æŽå¯Ÿè±¡åºå®è³ç£ã«é¢ããä»å
¥ãã«ä¿ãæ¶è²»çšé¡ã®èª¿æŽã«ã€ããŠ,次ã®[è³æ]1.ã3.ã«åºã¥ã,以äžã®[å]ã«çããªããã
[è³æ] | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åºçæ¥ãå¶ãQæ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœèª²çšæé(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ããã調æŽå¯Ÿè±¡åºå®è³ç£ã«é¢ããä»å
¥ãã«ä¿ãæ¶è²»çšé¡ã®èª¿æŽã«ã€ããŠ,次ã®[è³æ]1.ã3.ã«åºã¥ã,以äžã®[å]ã«çããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "[è³æ]",
"title": "åé¡"
}
]
| null | : [[../第2ååé¡3å1|âåã®åé¡]]
: [[../第2ååé¡3å2|次ã®åé¡â]]
== åé¡ ==
ãåºçæ¥ãå¶ãïŒ±æ ªåŒäŒç€ŸïŒä»¥äžïŒãåœç€ŸããšãããïŒã®åœèª²çšæéïŒèªå¹³æ29 幎4 æ1 æ¥ãè³å¹³æ30 幎3 æ31 æ¥ïŒã«ããã調æŽå¯Ÿè±¡åºå®è³ç£ã«é¢ããä»å
¥ãã«ä¿ãæ¶è²»çšé¡ã®èª¿æŽã«ã€ããŠïŒæ¬¡ã®ïŒ»è³æïŒœ1ïŒã3ïŒã«åºã¥ãïŒä»¥äžã®ïŒ»åã«çããªããã
'''ïŒ»è³æïŒœ'''
;1ïŒå
šè¬çãªäºé
åã³æ³šæäºé
:âŽãåœç€Ÿã¯ïŒåœå
ã«æ¬åºãçœ®ãæ ªåŒäŒç€Ÿã§ïŒåŸæ¥ïŒèª²çšè³ç£ã§ããåŠç¿çšæžç±ã®è²©å£²ã®ã¿ãè¡ã£ãŠãããïŒæ°å¹ŽåããïŒåŠæ ¡æè²æ³ã«èŠå®ããæç§çšå³æžã®è²©å£²ïŒæ¶è²»çšæ³å¥è¡šç¬¬äžïŒç¬¬6 æ¡é¢ä¿ïŒç¬¬12 å·ã«è©²åœãããã®ã§ãããïŒãéå§ããããšããïŒèª²çšå£²äžå²åãèããäœäžããŠããã
:âµãèšç«ä»¥æ¥ïŒåœç€Ÿã®åèª²çšæéã«ããã課çšå£²äžé«ã¯5 ååãè¶
ããŠããïŒæ§é€å¯Ÿè±¡ä»å
¥çšé¡ã®éé¡ã®èšç®ã¯äžæ¬æ¯äŸé
åæ¹åŒã«ãã£ãŠè¡ã£ãŠããã
:â¶ãåœç€Ÿã¯ïŒæ¶è²»çšåã³å°æ¹æ¶è²»çšã®çµçåŠçã«ã€ããŠçšææ¹åŒãæ¡çšããŠããïŒå顿äžã«èšèŒãããŠããéé¡ã¯å
šãŠæ¶è²»çšåã³å°æ¹æ¶è²»çšã®é¡ãé€ããéé¡ã§ããã
;2ïŒåèª²çšæéã«ããã課çšå£²äžé¡åã³é課çšå£²äžé¡ã«é¢ããäºé
:æè¿ã®èª²çšæéã«ããã課çšå£²äžé¡åã³é課çšå£²äžé¡ã¯ïŒäžè¡šã®ãšããã§ããã
:{| class="wikitable"
|-
| èª²çšæé || 課çšå£²äžé¡ || é課çšå£²äžé¡ || åèš
|-
| èªå¹³æ26幎4æ1æ¥<br>è³å¹³æ27幎3æ31æ¥ || 980,000,000å || 20,000,000å || 1,000,000,000å
|-
| èªå¹³æ27幎4æ1æ¥<br>è³å¹³æ28幎3æ31æ¥ || 920,000,000å || 230,000,000å || 1,150,000,000å
|-
| èªå¹³æ28幎4æ1æ¥<br>è³å¹³æ29幎3æ31æ¥ || 863,600,000å || 1,261,400,000å || 2,125,000,000å
|-
| èªå¹³æ29幎4æ1æ¥<br>è³å¹³æ30幎3æ31æ¥ || 682,500,000å || 2,817,500,000å || 3,500,000,000å
|}
;3ïŒåºå®è³ç£ã®ååŸã«é¢ããäºé
:âŽãå¹³æ26 幎5 æ10 æ¥ã«ïŒåšåº«ç®¡çã·ã¹ãã ã13,500,000 åã§è³Œå
¥ãïŒåæ¥ããäºæ¥ã®çšã«äŸããŠããããªãïŒå¹³æ30 幎3 æ31 æ¥ã«ãããŠïŒåè³ç£ãåŒãç¶ãææããŠããã
:âµãå¹³æ27 幎9 æ25 æ¥ã«ïŒæ¬¡ã®è³ç£ã20,600,000 åã§è³Œå
¥ãïŒåæ¥ããäºæ¥ã®çšã«äŸããŠããããªãïŒå¹³æ30 幎3 æ31 æ¥ã«ãããŠïŒåè³ç£ãåŒãç¶ãææããŠããã
:{| class="wikitable"
|-
| è³ç£å || å䟡 || æ°é || éé¡
|-
| åšåº«ä¿ç®¡çšæžæ¶ || 300,000å || 2çµ || 600,000å
|-
| 販売管çã·ã¹ãã || 20,000,000å || 1åŒ || 20,000,000å
|}
;å
:ãæ¬¡ã®å²ååã³éé¡ãçããªããããªãïŒâ¶ã®è§£çã«åœããïŒèª¿æŽåã®æ§é€å¯Ÿè±¡ä»å
¥çšé¡ããæ¶è²»çšé¡ã®èª¿æŽé¡ãæ§é€ããå Žåã¯ïŒéé¡ã®åã«â³è¡šç€ºãä»ãïŒèª¿æŽé¡ãèšå
¥ããããšã
:âŽãéç®èª²çšå£²äžå²åïŒå°æ°ç¹ç¬¬3 äœæªæºã®ç«¯æ°ãçããå Žåã¯ïŒãã®ç«¯æ°ãåãæšãŠãããšïŒ
:âµã調æŽå¯Ÿè±¡åºæºçšé¡
:â¶ã調æŽå¯Ÿè±¡åºå®è³ç£ã«é¢ããä»å
¥ãã«ä¿ãæ¶è²»çšé¡ã®èª¿æŽé¡
== è§£ç解説 ==
=== 調æŽå¯Ÿè±¡åºå®è³ç£ ===
; åšåº«ç®¡çã·ã¹ãã
: åœæéã第3幎床ã®èª²çšæéã§ãªãããïŒèª¿æŽå¯Ÿè±¡åºå®è³ç£ã§ãªã
; åšåº«ä¿ç®¡çšæžæ¶
: 300,000ïŒ1,000,000 âŽèª¿æŽå¯Ÿè±¡åºå®è³ç£ã§ãªã
; 販売管çã·ã¹ãã
: 20,000,000â§1,000,000 âŽèª¿æŽå¯Ÿè±¡åºå®è³ç£ã§ãã
=== å€åã®å€å® ===
; ä»å
¥èª²çšæéïŒèª¿æŽå¯Ÿè±¡åºå®è³ç£ãååŸããæ¥ã®å±ããèª²çšæéïŒã®èª²çšå£²äžå²å
: 920,000,000/1,150,000,000ïŒ0.8
; éç®èª²çšå£²äžå²å
: (920,000,000ïŒ863,600,000ïŒ682,500,000)ïŒ(1,150,000,000ïŒ2,125,000,000ïŒ3,500,000,000)ïŒ0.364
; å€åå·®
: 0.8ïŒ0.364ïŒ0.436â§5ïŒ
; å€åç
: (0.8ïŒ0.364)ïŒ0.8ïŒ0.545â§50ïŒ
; çµè«
: èããæžå°
=== 調æŽçšé¡ ===
; 調æŽå¯Ÿè±¡åºæºçšé¡
: 20,000,000Ã6.3ïŒ
ïŒ1,260,000
; 調æŽçšé¡
: 1,260,000Ã0.8ïŒ1,260,000Ã0.364ïŒ549,360ïŒæ§é€ïŒ
== åç
§ ==
* [https://www.nta.go.jp/taxes/shiraberu/taxanswer/shohi/6421.htm No.6421ã課çšå£²äžå²åãèããå€åãããšãã®èª¿æŽïœåœçšåº]
: [[../第2ååé¡3å1|âåã®åé¡]]
: [[../第2ååé¡3å2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:40:17Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C3%E5%95%8F2 |
24,887 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡3å1 | å»ççšæ©åšã®è£œé ã»è²©å£²åã³çŠç¥çšå
·ã®ä»å
¥ã»è²©å£²ãè¡ãPæ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœèª²çšæé(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«é¢ããŠ,次ã®[è³æ]1.ã6.ã«åºã¥ã,以äžã®[å]1.ã[å]4.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,åœèª²çšæéã®çŽä»ãã¹ãæ¶è²»çšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã
(1) åœç€Ÿã¯æ¥æ¬åœå
(以äž,ãåœå
ããšããã)ã«æ¬ç€Ÿãçœ®ãæ ªåŒäŒç€Ÿã§,èšç«ä»¥æ¥æ¶è²»çšã®èª²çšäºæ¥è
ã§ãã,ãããŸã§ç°¡æèª²çšå¶åºŠã®éžæå±åºæžãæåºããããšã¯ãªãã
(2) å顿äžã®èª²çšååŒã«ä¿ãéé¡ã¯,ç¹ã«èª¬æããããã®ãé€ã,æ¶è²»çšçã®é¡(æ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšé¡)ãå«ãã éé¡ã§ããã
(3) 課çšååŒã«é©çšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšã®çšçã¯,å
šãŠ8 %(ãã¡åœçšã§ããæ¶è²»çšã®çšç6.3 %)ãšããã
(4) åœç€Ÿãåœèª²çšæéäžã«è¡ã£ã課çšä»å
¥ãçã«ã€ããŠã¯,ãã®äºå®ãæããã«ãã垳簿åã³è«æ±æžçã,æ³ä»€ã®èšèŒèŠä»¶ãå
šãŠæºãããäžã§,驿³ã«ä¿åãããŠããããŸã,茞åºååŒçã¯,茞åºååŒçã§ããããšã«ã€ã財åç什ã§å®ãããšããã«ãã蚌æãããããã®ã§ããã
(5) åœç€Ÿã®çµç¹ã¯,å»ççšæ©åšäºæ¥éšåã³çŠç¥çšå
·äºæ¥éšäžŠã³ã«æ¬ç€Ÿç®¡çéšãããªããçŠç¥çšå
·äºæ¥éšã¯,åœå
ååŒéšéãšèŒžåºååŒéšéã«åãããŠããããŸã,Båœã«èšçœ®ããæ¯åº(以äž,ãBåœæ¯åºããšããã)ãããã
(6) åå¥å¯Ÿå¿æ¹åŒã«ããä»å
¥çšé¡æ§é€ã«åœãã£ãŠã¯,å顿åã³æ³ä»€çã§ç¹å¥ã®æç€ºãããå Žåãé€ã,å»ççšæ©åšäºæ¥éšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®,çŠç¥çšå
·äºæ¥éšã®ãã¡åœå
ååŒéšéã®è²»çšã¯ãã®ä»ã®è³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®,æ¬ç€Ÿç®¡çéšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çãšãã®ä»ã®è³ç£ã®è²æž¡çã«å
±éããŠèŠãããã®ãšããããªã,çŠç¥çšå
·äºæ¥éšã®ãã¡èŒžåºååŒéšéã®è²»çšã¯é課çšè³ç£ã®èŒžåºååŒã«ã®ã¿èŠãããã®ã§ããã
(7) åœèª²çšæéã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«å¿
èŠãªæ
å ±ã¯,以äžã®[è³æ]2.ã6.ã§å
šãŠç¶²çŸ
ãããŠããã
åœç€Ÿã¯,å»ççšæ©åšäºæ¥éšã«ãããŠ,å»ççšæ©åšXå(以äž,ãXåããšããã)ãåœå€äºæ¥è
ã§ããA瀟(Aåœã«æ¬åºãæã,åœå
ã«æ¯åºãèšããŠããªãã)ãã茞å
¥ã,åœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããã
Xåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã
åœç€Ÿã¯,å»ççšæ©åšäºæ¥éšã«ãããŠ,åœå
ã®äºæ¥è
ããä»å
¥ããéšåãçµã¿ç«ãŠ,åœç€ŸãéçºãããœãããŠã§ã¢ã®ã€ã³ã¹ããŒã«ãè¡ãããšã«ããå»ççšæ©åšYå(以äž,ãYåããšããã)ã補é ã,ãã®å®æããYåãåœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããããŸã,åœç€Ÿã¯,åœå€äºæ¥è
ã§ããB瀟(Båœã«æ¬åºãæã,åœå
ã«æ¯åºãèšããŠããªãã)ã«å¯Ÿã,ä»å
¥ããéšåã®äŸçµŠåã³åœç€Ÿã®ãœãããŠã§ã¢ã©ã€ã»ã³ã¹ã®äŸäžãè¡ãããšã§,Båœã«ãããYåã®ç¬å çãªè£œé ã»è²©å£²ãèªããŠããã
Yåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«çã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã
åœç€Ÿã¯,çŠç¥çšå
·äºæ¥éšã«ãããŠ,åœå
ã®è£œé æ¥è
ããä»å
¥ããçŠç¥çšå
·Zå(以äž,ãZåããšããã)ã,ç¹æ®µã®å å·¥ãè¡ãããšãªã,åœå
åã³åœå€ã«è²©å£²ããŠãããZåã¯,æ¶è²»çšæ³å¥è¡šç¬¬äž(第6 æ¡é¢ä¿)第10 å·ã«èŠå®ãã身äœé害è
çšç©åã«è©²åœããååã§ããã
Zåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã
解説ããŒãžåç
§ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å»ççšæ©åšã®è£œé ã»è²©å£²åã³çŠç¥çšå
·ã®ä»å
¥ã»è²©å£²ãè¡ãPæ ªåŒäŒç€Ÿ(以äž,ãåœç€Ÿããšããã)ã®åœèª²çšæé(èªå¹³æ29 幎4 æ1 æ¥ è³å¹³æ30 幎3 æ31 æ¥)ã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«é¢ããŠ,次ã®[è³æ]1.ã6.ã«åºã¥ã,以äžã®[å]1.ã[å]4.ã«çããªããããªã,è€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯,åœèª²çšæéã®çŽä»ãã¹ãæ¶è²»çšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(1) åœç€Ÿã¯æ¥æ¬åœå
(以äž,ãåœå
ããšããã)ã«æ¬ç€Ÿãçœ®ãæ ªåŒäŒç€Ÿã§,èšç«ä»¥æ¥æ¶è²»çšã®èª²çšäºæ¥è
ã§ãã,ãããŸã§ç°¡æèª²çšå¶åºŠã®éžæå±åºæžãæåºããããšã¯ãªãã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "(2) å顿äžã®èª²çšååŒã«ä¿ãéé¡ã¯,ç¹ã«èª¬æããããã®ãé€ã,æ¶è²»çšçã®é¡(æ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšé¡)ãå«ãã éé¡ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "(3) 課çšååŒã«é©çšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšã®çšçã¯,å
šãŠ8 %(ãã¡åœçšã§ããæ¶è²»çšã®çšç6.3 %)ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(4) åœç€Ÿãåœèª²çšæéäžã«è¡ã£ã課çšä»å
¥ãçã«ã€ããŠã¯,ãã®äºå®ãæããã«ãã垳簿åã³è«æ±æžçã,æ³ä»€ã®èšèŒèŠä»¶ãå
šãŠæºãããäžã§,驿³ã«ä¿åãããŠããããŸã,茞åºååŒçã¯,茞åºååŒçã§ããããšã«ã€ã財åç什ã§å®ãããšããã«ãã蚌æãããããã®ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "(5) åœç€Ÿã®çµç¹ã¯,å»ççšæ©åšäºæ¥éšåã³çŠç¥çšå
·äºæ¥éšäžŠã³ã«æ¬ç€Ÿç®¡çéšãããªããçŠç¥çšå
·äºæ¥éšã¯,åœå
ååŒéšéãšèŒžåºååŒéšéã«åãããŠããããŸã,Båœã«èšçœ®ããæ¯åº(以äž,ãBåœæ¯åºããšããã)ãããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "(6) åå¥å¯Ÿå¿æ¹åŒã«ããä»å
¥çšé¡æ§é€ã«åœãã£ãŠã¯,å顿åã³æ³ä»€çã§ç¹å¥ã®æç€ºãããå Žåãé€ã,å»ççšæ©åšäºæ¥éšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®,çŠç¥çšå
·äºæ¥éšã®ãã¡åœå
ååŒéšéã®è²»çšã¯ãã®ä»ã®è³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®,æ¬ç€Ÿç®¡çéšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çãšãã®ä»ã®è³ç£ã®è²æž¡çã«å
±éããŠèŠãããã®ãšããããªã,çŠç¥çšå
·äºæ¥éšã®ãã¡èŒžåºååŒéšéã®è²»çšã¯é課çšè³ç£ã®èŒžåºååŒã«ã®ã¿èŠãããã®ã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(7) åœèª²çšæéã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«å¿
èŠãªæ
å ±ã¯,以äžã®[è³æ]2.ã6.ã§å
šãŠç¶²çŸ
ãããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åœç€Ÿã¯,å»ççšæ©åšäºæ¥éšã«ãããŠ,å»ççšæ©åšXå(以äž,ãXåããšããã)ãåœå€äºæ¥è
ã§ããA瀟(Aåœã«æ¬åºãæã,åœå
ã«æ¯åºãèšããŠããªãã)ãã茞å
¥ã,åœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "Xåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åœç€Ÿã¯,å»ççšæ©åšäºæ¥éšã«ãããŠ,åœå
ã®äºæ¥è
ããä»å
¥ããéšåãçµã¿ç«ãŠ,åœç€ŸãéçºãããœãããŠã§ã¢ã®ã€ã³ã¹ããŒã«ãè¡ãããšã«ããå»ççšæ©åšYå(以äž,ãYåããšããã)ã補é ã,ãã®å®æããYåãåœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããããŸã,åœç€Ÿã¯,åœå€äºæ¥è
ã§ããB瀟(Båœã«æ¬åºãæã,åœå
ã«æ¯åºãèšããŠããªãã)ã«å¯Ÿã,ä»å
¥ããéšåã®äŸçµŠåã³åœç€Ÿã®ãœãããŠã§ã¢ã©ã€ã»ã³ã¹ã®äŸäžãè¡ãããšã§,Båœã«ãããYåã®ç¬å çãªè£œé ã»è²©å£²ãèªããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "Yåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«çã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "åœç€Ÿã¯,çŠç¥çšå
·äºæ¥éšã«ãããŠ,åœå
ã®è£œé æ¥è
ããä»å
¥ããçŠç¥çšå
·Zå(以äž,ãZåããšããã)ã,ç¹æ®µã®å å·¥ãè¡ãããšãªã,åœå
åã³åœå€ã«è²©å£²ããŠãããZåã¯,æ¶è²»çšæ³å¥è¡šç¬¬äž(第6 æ¡é¢ä¿)第10 å·ã«èŠå®ãã身äœé害è
çšç©åã«è©²åœããååã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "Zåã«ã€ããŠ,åœèª²çšæéã«ããã売äžé«,ä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯,次ã®ãšããã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "解説ããŒãžåç
§",
"title": "è§£ç解説"
}
]
| null | : [[../第2ååé¡2|âåã®åé¡]]
: [[../第2ååé¡3å2|次ã®åé¡â]]
== åé¡ ==
ãå»ççšæ©åšã®è£œé ã»è²©å£²åã³çŠç¥çšå
·ã®ä»å
¥ã»è²©å£²ãè¡ãïŒ°æ ªåŒäŒç€ŸïŒä»¥äžïŒãåœç€ŸããšãããïŒã®åœèª²çšæéïŒèªå¹³æ29 幎4 æ1 æ¥ãè³å¹³æ30 幎3 æ31 æ¥ïŒã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«é¢ããŠïŒæ¬¡ã®ïŒ»è³æïŒœ1ïŒã6ïŒã«åºã¥ãïŒä»¥äžã®ïŒ»å1ïŒãå4ïŒã«çããªããããªãïŒè€æ°ã®èšç®æ¹æ³ããããã®ã«ã€ããŠã¯ïŒåœèª²çšæéã®çŽä»ãã¹ãæ¶è²»çšé¡ãæãå°ãªããªãæ¹æ³ã«ããèšç®ãããã®ãšããã
=== ïŒ»è³æïŒœ ===
=== 1ïŒå
šè¬çãªäºé
åã³æ³šæäºé
===
âŽãåœç€Ÿã¯æ¥æ¬åœå
ïŒä»¥äžïŒãåœå
ããšãããïŒã«æ¬ç€Ÿãçœ®ãæ ªåŒäŒç€Ÿã§ïŒèšç«ä»¥æ¥æ¶è²»çšã®èª²çšäºæ¥è
ã§ããïŒãããŸã§ç°¡æèª²çšå¶åºŠã®éžæå±åºæžãæåºããããšã¯ãªãã
âµãå顿äžã®èª²çšååŒã«ä¿ãéé¡ã¯ïŒç¹ã«èª¬æããããã®ãé€ãïŒæ¶è²»çšçã®é¡ïŒæ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšé¡ïŒãå«ãã éé¡ã§ããã
â¶ã課çšååŒã«é©çšãããæ¶è²»çšåã³å°æ¹æ¶è²»çšã®åèšã®çšçã¯ïŒå
šãŠ8 ïŒ
ïŒãã¡åœçšã§ããæ¶è²»çšã®çšç6.3 ïŒ
ïŒãšããã
â·ãåœç€Ÿãåœèª²çšæéäžã«è¡ã£ã課çšä»å
¥ãçã«ã€ããŠã¯ïŒãã®äºå®ãæããã«ãã垳簿åã³è«æ±æžçãïŒæ³ä»€ã®èšèŒèŠä»¶ãå
šãŠæºãããäžã§ïŒé©æ³ã«ä¿åãããŠããããŸãïŒèŒžåºååŒçã¯ïŒèŒžåºååŒçã§ããããšã«ã€ã財åç什ã§å®ãããšããã«ãã蚌æãããããã®ã§ããã
âžãåœç€Ÿã®çµç¹ã¯ïŒå»ççšæ©åšäºæ¥éšåã³çŠç¥çšå
·äºæ¥éšäžŠã³ã«æ¬ç€Ÿç®¡çéšãããªããçŠç¥çšå
·äºæ¥éšã¯ïŒåœå
ååŒéšéãšèŒžåºååŒéšéã«åãããŠããããŸãïŒïŒ¢åœã«èšçœ®ããæ¯åºïŒä»¥äžïŒãïŒ¢åœæ¯åºããšãããïŒãããã
â¹ãåå¥å¯Ÿå¿æ¹åŒã«ããä»å
¥çšé¡æ§é€ã«åœãã£ãŠã¯ïŒå顿åã³æ³ä»€çã§ç¹å¥ã®æç€ºãããå Žåãé€ãïŒå»ççšæ©åšäºæ¥éšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®ïŒçŠç¥çšå
·äºæ¥éšã®ãã¡åœå
ååŒéšéã®è²»çšã¯ãã®ä»ã®è³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®ïŒæ¬ç€Ÿç®¡çéšã®è²»çšã¯èª²çšè³ç£ã®è²æž¡çãšãã®ä»ã®è³ç£ã®è²æž¡çã«å
±éããŠèŠãããã®ãšããããªãïŒçŠç¥çšå
·äºæ¥éšã®ãã¡èŒžåºååŒéšéã®è²»çšã¯é課çšè³ç£ã®èŒžåºååŒã«ã®ã¿èŠãããã®ã§ããã
âºãåœèª²çšæéã«ãããçŽä»ãã¹ãæ¶è²»çšé¡ã®èšç®ã«å¿
èŠãªæ
å ±ã¯ïŒä»¥äžã®ïŒ»è³æïŒœ2ïŒã6ïŒã§å
šãŠç¶²çŸ
ãããŠããã
=== 2ïŒå»ççšæ©åšïŒžåã®èŒžå
¥åã³è²©å£²ã«é¢ããäºé
===
ãåœç€Ÿã¯ïŒå»ççšæ©åšäºæ¥éšã«ãããŠïŒå»ççšæ©åšïŒžåïŒä»¥äžïŒãåããšãããïŒãåœå€äºæ¥è
ã§ãã瀟ïŒïŒ¡åœã«æ¬åºãæãïŒåœå
ã«æ¯åºãèšããŠããªããïŒãã茞å
¥ãïŒåœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããã
ãåã«ã€ããŠïŒåœèª²çšæéã«ããã売äžé«ïŒä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯ïŒæ¬¡ã®ãšããã§ããã
{| class="wikitable"
|é
ç®
|éé¡
|è£è¶³æ
å ±
|-
|åœå
売äžé«
|2,592,000,000å
|課çšè³ç£ã®è²æž¡ã§ããã
|-
|茞å
¥ä»å
¥é«
|2,160,000,000å
|åã瀟ãã茞å
¥ããŠä»å
¥ãããã®ã§ããããã®éé¡ã«ã¯ïŒïŒžåãä¿çšå°åããåŒãåãéã«çŽä»ããæ¶è²»çšã®é¡126,000,000 ååã³å°æ¹æ¶è²»çšã®é¡34,000,000 åãå«ãŸããŠããã
|}
=== 3ïŒå»ççšæ©åšïŒ¹åã®éšåä»å
¥ã»è£œé åã³è²©å£²ã«é¢ããäºé
===
ãåœç€Ÿã¯ïŒå»ççšæ©åšäºæ¥éšã«ãããŠïŒåœå
ã®äºæ¥è
ããä»å
¥ããéšåãçµã¿ç«ãŠïŒåœç€ŸãéçºãããœãããŠã§ã¢ã®ã€ã³ã¹ããŒã«ãè¡ãããšã«ããå»ççšæ©åšïŒ¹åïŒä»¥äžïŒãåããšãããïŒã補é ãïŒãã®å®æããåãåœå
ã®ç
é¢ã»èšºçæã«è²©å£²ããŠããããŸãïŒåœç€Ÿã¯ïŒåœå€äºæ¥è
ã§ãã瀟ïŒïŒ¢åœã«æ¬åºãæãïŒåœå
ã«æ¯åºãèšããŠããªããïŒã«å¯ŸãïŒä»å
¥ããéšåã®äŸçµŠåã³åœç€Ÿã®ãœãããŠã§ã¢ã©ã€ã»ã³ã¹ã®äŸäžãè¡ãããšã§ïŒïŒ¢åœã«ãããåã®ç¬å çãªè£œé ã»è²©å£²ãèªããŠããã
ãåã«ã€ããŠïŒåœèª²çšæéã«ããã売äžé«ïŒä»å
¥é«çã®éé¡åã³è£è¶³æ
å ±ã¯ïŒæ¬¡ã®ãšããã§ããã
{| class="wikitable"
|é
ç®
|éé¡
|è£è¶³æ
å ±
|-
|宿ååœå
売äžé«
|950,400,000å
|課çšè³ç£ã®è²æž¡ã§ããã
|-
|éšå茞åºå£²äžé«
|200,000,000å
|課çšè³ç£ã®è²æž¡ã§ããã
|-
|äœ¿çšæå£²äžé«
|176,000,000å
|瀟ããåé ããåœç€ŸãææãããœãããŠã§ã¢ã®ã©ã€ã»ã³ã¹äœ¿çšæã§ããïŒãã®ãœãããŠã§ã¢ã®æš©å©ã¯åœå
ã§ç»é²ããããã®ã§ããããªãïŒæ¬ã©ã€ã»ã³ã¹ã®äŸäžã¯ïŒé»æ°éä¿¡å©çšåœ¹åã®æäŸã«ã¯è©²åœããªãã
|-
|ä¿å®ã»ä¿®ç売äžé«
|30,000,000å
|åã«é¢ããä¿å®ã»ä¿®ç売äžé«ã§ããïŒïŒ¢åœæ¯åºã«ãããŠå®æœãããã®ã§ããã
|-
|éšåä»å
¥é«
|648,000,000å
|課çšä»å
¥ãã§ããã
|-
|åŽåè²»ã»è£œé çµè²»
|415,000,000å
|åã«ä¿ã補é è²»çšã§ããïŒèª²çšä»å
¥ããšãªããã®ãïŒ135,000,000 åããã
|}
=== 4ïŒçŠç¥çšå
·ïŒºåã®ä»å
¥åã³è²©å£²ã«é¢ããäºé
===
ãåœç€Ÿã¯ïŒçŠç¥çšå
·äºæ¥éšã«ãããŠïŒåœå
ã®è£œé æ¥è
ããä»å
¥ããçŠç¥çšå
·ïŒºåïŒä»¥äžïŒãåããšãããïŒãïŒç¹æ®µã®å å·¥ãè¡ãããšãªãïŒåœå
åã³åœå€ã«è²©å£²ããŠãããåã¯ïŒæ¶è²»çšæ³å¥è¡šç¬¬äžïŒç¬¬6 æ¡é¢ä¿ïŒç¬¬10 å·ã«èŠå®ãã身äœé害è
çšç©åã«è©²åœããååã§ããã
ãåã«ã€ããŠïŒåœèª²çšæéã«ããã売äžé«ïŒä»å
¥é«ã®éé¡åã³è£è¶³æ
å ±ã¯ïŒæ¬¡ã®ãšããã§ããã
{| class="wikitable"
|é
ç®
|éé¡
|è£è¶³æ
å ±
|-
|åœå
売äžé«
|1,198,000,000
| rowspan="3" |åœå
ã§ä»å
¥ãïŒåœå
åã³åœå€ã«è²©å£²ããŠããåã¯ïŒå
šãŠèº«äœé害è
çšç©åã«è©²åœããŠããïŒä»ã®çšéã«è»¢çšã§ããªããã®ã§ããã
|-
|茞åºå£²äžé«
|120,000,000å
|-
|åœå
ä»å
¥é«
|998,000,000å
|}
=== 5ïŒè²©å£²è²»åã³äžè¬ç®¡çè²»ã«é¢ããäºé
===
{| class="wikitable"
|é
ç®
|éé¡
|è£è¶³æ
å ±
|-
|圹å¡å ±é
¬
|54,000,000å
|圹å¡ã¯å
šå¡çµå¶å
šè¬ã«æºãã£ãŠãããéé¡ã®äžã«é倿åœã¯å«ãŸããŠããªãã
|-
|çµŠäžæåœ
|400,000,000å
|å
èš³ã¯æ¬¡ã®ãšããã§ãããé倿åœã¯ïŒå
šãŠéå€ã«éåžžå¿
èŠã§ãããšèªããããéé¡ã§ããïŒæ¬ç€Ÿç®¡çéšã®é倿åœã«ã¯ïŒæåŸçšæ³äžã®é課çšé床é¡ãè¶
ããéšåã®éé¡ã300,000 åå«ãŸããŠããã
{|
|å»ççšæ©åšäºæ¥éš
|288,000,000å
|-
|ããïŒãã¡é倿åœ
|9,600,000åïŒ
|-
|çŠç¥çšå
·äºæ¥éš
|
|-
|ãåœå
ååŒéšéã«ä¿ããã®
|72,000,000å
|-
|ããïŒãã¡é倿åœ
|6,000,000åïŒ
|-
|ã茞åºååŒéšéã«ä¿ããã®
|14,400,000å
|-
|ããïŒãã¡é倿åœ
|1,800,000åïŒ
|-
|æ¬ç€Ÿç®¡çéš
|17,800,000å
|-
|ããïŒãã¡é倿åœ
|2,800,000åïŒ
|-
|Båœæ¯åº
|7,800,000å
|-
|ããïŒãã¡é倿åœ
|250,000åïŒ
|}
|-
|æ
費亀éè²»
|73,000,000å
|å
èš³ã¯æ¬¡ã®ãšããã§ããã
{|
|åœå
亀éè²»
|
|-
|ãå»ççšæ©åšäºæ¥éš
|29,600,000å
|-
|ãçŠç¥çšå
·äºæ¥éš
|
|-
|ããåœå
ååŒéšéã«ä¿ããã®
|15,120,000å
|-
|ãã茞åºååŒéšéã«ä¿ããã®
|3,200,000å
|-
|ãæ¬ç€Ÿç®¡çéš
|14,720,000å
|-
|åœå€äº€éè²»
|10,360,000å
|}
|-
|è³åæ
|148,520,000å
|å
èš³ã¯æ¬¡ã®ãšããã§ããããªãïŒïŒ¢åœæ¯åºã®è³åæåã³åäžç€Ÿå®
å®¶è³ä»¥å€ã¯ïŒåœå
ã«ãããäºåæåã³å庫ã«ä¿ãè³åæã§ããã
{|
|å»ççšæ©åšäºæ¥éš
|92,000,000å
|-
|çŠç¥çšå
·äºæ¥éš
|
|-
|ãåœå
ååŒéšéã«ä¿ããã®
|18,000,000å
|-
|ã茞åºååŒéšéã«ä¿ããã®
|3,000,000å
|-
|æ¬ç€Ÿç®¡çéš
|16,200,000å
|-
|Båœæ¯åº
|9,600,000å
|-
|åäžç€Ÿå®
å®¶è³
|9,720,000å
|}
åäžç€Ÿå®
ã¯å
šãŠåœå
ã«ããïŒäžèšã®éé¡ã¯ïŒç€Ÿå®
ãå©çšããŠããåŸæ¥å¡ãã城åããæ¬äººè² æ
é¡1,880,000 åãæ§é€ããæ®é¡ã§ããã
|-
|åºå宣äŒè²»
|78,480,000å
|å
èš³ã¯æ¬¡ã®ãšããã§ããããªãïŒïŒ£ç€Ÿã«å§èšããåºå
以å€ã¯ïŒå
šãŠåœå
ã®äºæ¥è
ã«å§èšããŠããã
{|
|å»ççšæ©åšäºæ¥éš
|39,600,000å
|-
| colspan="2" |ããã®ãã¡6,000,000 åã¯ïŒåœå€äºæ¥è
ã§ãã瀟ïŒïŒ£åœã«æ¬åºãæãïŒåœå
ã«æ¯åºãèšããŠããªããïŒãåœå
ã«åããŠé
ä¿¡ããã€ã³ã¿ãŒãããåºåæã§ããïŒãã®æ¯æéé¡ã«æ¶è²»çšåã³å°æ¹æ¶è²»çšã®é¡ã¯å«ãŸããŠããªãããªãïŒãã®åºåã¯ïŒäºæ¥è
åã黿°éä¿¡å©çšåœ¹åã®æäŸã«è©²åœãããã®ã§ããïŒåœèª²çšæéã«å®æœãããã®ã§ããã
|-
|çŠç¥çšå
·äºæ¥éš
|
|-
|ãåœå
ååŒéšéã«ä¿ããã®
|21,600,000å
|-
|æ¬ç€Ÿç®¡çéš
|17,280,000å
|}
<br />
|-
|ãã®ä»ã®çµè²»
|60,000,000å
|å
šãŠèª²çšä»å
¥ãã§ããïŒå
èš³ã¯æ¬¡ã®ãšããã§ããã
{|
|å»ççšæ©åšäºæ¥éš
|16,200,000å
|-
|çŠç¥çšå
·äºæ¥éš
|
|-
|ãåœå
ååŒéšéã«ä¿ããã®
|8,400,000å
|-
|æ¬ç€Ÿç®¡çéš
|35,400,000å
|}
|}
=== 6ïŒå¶æ¥å€æçã«é¢ããäºé
===
{| class="wikitable"
|é
ç®
|éé¡
|è£è¶³æ
å ±
|-
|åå婿¯
|120,000å
|åœå
é éã®å©æ¯ã§ããã
|-
|ååé
åœé
|600,000å
|æææ ªåŒã«ä¿ãå°äœéã®é
åœã§ããã
|-
|éåå
¥
|31,320,000å
|åœæã«æ±äº¬åŽåå±ãã亀ä»ããã婿é5,400,000 åãšïŒ¹åã®è£œé éçšã«ãããŠçããã¹ã¯ã©ãããåœå
ã®äºæ¥è
ãžå£²åŽããåå
¥25,920,000åã®åèšé¡ã§ããã
|-
|æ¯æå©æ¯
|4,320,000å
|åå
¥éã®å©åã§ããã
|}
; å
:1ïŒåœèª²çšæéã«ãããæ¶è²»çšé¡ã®èšç®ã«é¢ããŠïŒæ¬¡ã®éé¡ãæ±ããªããã
::âŽãèª²çšæšæºé¡ïŒååæªæºã®ç«¯æ°åæšãŠïŒ
::âµãèª²çšæšæºé¡ã«å¯Ÿããæ¶è²»çšé¡
; å
:2ïŒåœèª²çšæéã«ããã課çšå£²äžå²åã®èšç®ã«é¢ããŠïŒæ¬¡ã®éé¡ãæ±ããªããã
::âŽã課çšå£²äžé¡ïŒå
çšå£²äžåã³é課çšè³ç£ã®èŒžåºçãå«ãŸãªããïŒ
::âµãå
çšå£²äžé¡ïŒé課çšè³ç£ã®èŒžåºçãå«ãŸãªããïŒ
::â¶ãé課çšè³ç£ã®èŒžåºçã®éé¡
::â·ãé課çšå£²äžé¡ïŒé課çšè³ç£ã®èŒžåºçãå«ãŸãªããïŒ
::âžã課çšå£²äžå²åã®èšç®åŒã®ååã®éé¡
::â¹ã課çšå£²äžå²åã®èšç®åŒã®åæ¯ã®éé¡
;å
:3ïŒåœèª²çšæéã«ãããæ§é€å¯Ÿè±¡ä»å
¥çšé¡ãèšç®ããããã®èª²çšä»å
¥ãçã«ä¿ãæ¶è²»çšé¡ãïŒæ¬¡ã®âŽãâ¶ã«åºåããŠçããªããã
::âŽã課çšä»å
¥ãçã«ä¿ãæ¶è²»çšé¡ã®ãã¡èª²çšè³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®
::âµã課çšä»å
¥ãçã«ä¿ãæ¶è²»çšé¡ã®ãã¡ãã®ä»ã®è³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®
::â¶ã課çšä»å
¥ãçã«ä¿ãæ¶è²»çšé¡ã®ãã¡èª²çšè³ç£ã®è²æž¡çãšãã®ä»ã®è³ç£ã®è²æž¡çã«å
±éããŠèŠãããã®
;å
:4ïŒåå¥å¯Ÿå¿æ¹åŒãšäžæ¬æ¯äŸé
åæ¹åŒã®ããããã«ããïŒåœèª²çšæéã«ãããæ§é€å¯Ÿè±¡ä»å
¥çšé¡ãçããªããããªãïŒïŒ»å2ïŒã®èšç®çµæã«ãããããïŒèª²çšå£²äžå²åã¯60.0 ïŒ
ãšããŠèšç®ããããšã
::âŽãåå¥å¯Ÿå¿æ¹åŒã«ããæ§é€å¯Ÿè±¡ä»å
¥çšé¡
::âµãäžæ¬æ¯äŸé
åæ¹åŒã«ããæ§é€å¯Ÿè±¡ä»å
¥çšé¡
== è§£ç解説 ==
[[/è§£ç解説|解説ããŒãž]]åç
§
: [[../第2ååé¡2|âåã®åé¡]]
: [[../第2ååé¡3å2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:40:10Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C3%E5%95%8F1 |
24,896 | äžçæè²åæã®ç€ŸäŒ å
¬æ° | å
¬æ°ã¯ã瀟äŒç掻ãããŠããããã§éèŠãªé
ç®ã§ããããã£ããå匷ããŠã»ããã
ãã°ãããåŸ
ã¡ãã ããã
以éã®é
ç®ã¯äœæäžã§ãããã°ãããåŸ
ã¡ãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å
¬æ°ã¯ã瀟äŒç掻ãããŠããããã§éèŠãªé
ç®ã§ããããã£ããå匷ããŠã»ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã°ãããåŸ
ã¡ãã ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "以éã®é
ç®ã¯äœæäžã§ãããã°ãããåŸ
ã¡ãã ããã",
"title": ""
}
]
| null | === ã¯ããã« ===
å
¬æ°ã¯ã瀟äŒç掻ãããŠããããã§éèŠãªé
ç®ã§ããããã£ããå匷ããŠã»ããã
=== çŸä»£ã®ç€ŸäŒ ===
ãã°ãããåŸ
ã¡ãã ããã
=== äººæš©ãšæ²æ³ ===
* [[äžçæè²åæã®ç€ŸäŒ å
¬æ°/äººæš©ã®æŽå²|äººæš©ã®æŽå²]]
* ç«æ²äž»çŸ©ãšæ³
* åœæ°äž»æš©
* 倩ç
* å¹³å䞻矩
以éã®é
ç®ã¯äœæäžã§ãããã°ãããåŸ
ã¡ãã ããã
[[Category:äžåŠæ ¡æè²|*]]
[[Category:äžé«äžè²«æè²_瀟äŒ|ããã¿ã]]
[[Category:äžé«äžè²«æè²|ããã¿ã]] | null | 2019-01-04T10:23:16Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%A4%BE%E4%BC%9A_%E5%85%AC%E6%B0%91 |
24,897 | äžçæè²åæã®ç€ŸäŒ å
¬æ°/äººæš©ã®æŽå² | 人暩ãšã¯ã人ãçãŸããªããã«ããŠæã€ã人éãšããŠã®æš©å©ã®ããšã§ããã
人ã¯ã誰ããããããã®ãªãå人ãšããŠå°éããã身äœçã粟ç¥çãçµæžçã«èªç±ã§ãã£ãŠã人ãšããŠã®å°å³ãšæš©å©ãå¹³çã«æã¡ããŸãæ³ã®äžã§å¹³çã§ããã
人暩ã¯ã倧ããèªç±æš©ãå¹³çæš©ãç€ŸäŒæš©ã®äžã€ã«åããããã
äººæš©ã®ææ³ã¯ãè¿ä»£ã«ãªã£ãŠãã確ç«ããããããã®çºæ³ã¯ãããããåã«é¡ãããšãã§ããã
æãæ©ãäººæš©ã®ææ³ãæ³ãšããŠå®ããããã®ã¯ã1215幎ãã€ã®ãªã¹ã®ãã°ãã»ã«ã«ã¿(倧æ²ç« )ã§ãããå
容ã¯ãæ£åœãªè£å€ãŸãã¯åœã®æ³åŸã«ãããªããã°ã身äœã®èªç±ã®æš©å©ã䟵害ãããªããšèšããã®ã ãåœçã®å°å¶æ¿æ²»ã«å察ãã貎æããçã«èªãããããã®ã§ããããã®ããã«ãäººæš©ææ³ã¯å°å¶æ¿æ²»ã«ããæ¯é
ããå®ãããããã«æç«ããã
ãã®åŸã17äžçŽãã18äžçŽã«ãããŠã®è¿ä»£é©åœã«ãããŠãäººæš©ã®ææ³ã¯ç¢ºç«ããããã®ææ³ããã¢ã³ã·ã£ã³ã»ã¬ãžãŒã (é©åœåã®ãã©ã³ã¹ã®èº«åå¶åºŠ)ãã¯ãããšãã身åå¶åºŠãæã¡ç Žãããã®å€§ããªåãšãªã£ãããã§ããã
ãã®æä»£ã®ä»£è¡šçãªææ³å®¶ã¯ãã統治äºè«ãã§å§æ¿ã«å¯Ÿããæµææš©ã蚎ããã€ã®ãªã¹ã®ããã¯ããæ³ã®ç²Ÿç¥ãã§äžæš©åç«ã蚎ãããã©ã³ã¹ã®ã¢ã³ãã¹ãã¥ãŒãã瀟äŒå¥çŽè«ãã§åœæ°äž»æš©ã蚎ãããã©ã³ã¹ã®ã«ãœãŒã®äžäººãæããããã
ã€ã®ãªã¹ã§ã¯äºåºŠã®é©åœ(æž
æåŸé©åœãšåèªé©åœãäžçå²ãåç
§ã®ããš)ãçµãŠã1689å¹Žã«æš©å©ç« å
žãã§ããç«æ²åäž»å¶(è°äŒã®æ¿èªãåŸãäžã§ã®åäž»ã®æ¿æ²»)ãšè°äŒæ¿æ²»ã確ç«ããã
ã¢ã¡ãªã«ã§ã¯ãèªç±æš©ãšå¹³çæš©ãæèšããã¢ã¡ãªã«ç¬ç«å®£èšãåºãããã人éã¯çå¹³çã«äœãããè²ããªãæš©å©ãæã€ãšãããã
ãã©ã³ã¹ã§ã¯1789幎ã«ãã©ã³ã¹é©åœãèµ·ããå幎ãã©ã³ã¹äººæš©å®£èšãåºãããèªç±æš©ãšå¹³çæš©ãæèšãããããŸãããã¹ãŠã®äººéã¯çãŸããªããã«ããŠäººæš©ãæã€ãšæèšãããã
ãã®åŸãè³æ¬äž»çŸ©çµæžã®ããšã§ãè²§å¯ã®æ Œå·®ãæ¡å€§ãåŽåè
ã®ç°å¢ã¯å£æªã ã£ããããã§ãæ®ééžæéåãåŽåéåãèµ·ããããã¹ãŠã®ç·æ§ã«éžææš©ãèªããããããã«ãªããåŽåè
ã®æš©å©ãèªããåããé«ãŸã£ãã
ç¬¬äžæ¬¡äžç倧æŠã®ããšã®ãã€ãã§ã1919幎ãã¯ã€ããŒã«æ²æ³ãå®ããããç€ŸäŒæš©ãã¯ãããŠææåããããç€ŸäŒæš©ãšã¯ã人ã人éãããçæŽ»ããæš©å©ã®ããšã§ãã(詳ããã¯åŸã§èšã)ãç¬¬äºæ¬¡äžç倧æŠã®åŸãåºãååœã®æ²æ³ã§ä¿éãããããã«ãªã£ãã
ãã®åŸã人暩ã¯åœéé£åã®äžç人暩宣èš(1948幎)ãªã©ã§åœéçã«ä¿éãããããã«ãªã£ãã
ææ²»ã«ã¯æ¥æ¬ã«ãäººæš©ã®ææ³ãäŒããããããããã1989幎ã®å€§æ¥æ¬åžåœæ²æ³ã¯æ¬œå®æ²æ³(åäž»ãæããæ²æ³)ã§ããã人暩ã¯äž»æš©è
ã§ãã倩çãè£æ°ã«äžãããè£æ°ã®æš©å©ããšãããããã¯æ³åŸã«ããå¶éããããã®ã§ãã£ãã人暩ã¯äººãçãŸããªããã«æã¡ãæ³ã«ãã£ãŠå¶éããããããå®ããããšããäººæš©ã®ææ³ã®å®æã¯æŠåŸã®æ¥æ¬åœæ²æ³ã®æç«ãŸã§åŸ
ããªããã°ãªããªãã£ãã
1945幎8æ14æ¥ã«æ¥æ¬ã¯ãããã 宣èšå諟ãéåãã15æ¥ã«ãããããç鳿Ÿéããè¡ããã9æ2æ¥ã«ããºãŒãªå·èŠäžã«ãŠéäŒææžèª¿å°ãç¬¬äºæ¬¡äžç倧æŠã¯çµãããåããã®ã§ããã1946幎ãé£ååœæé«åžä»€å®ç·åžä»€éš(以äžGHQ)ã®æç€ºã«ããæ¿åºã¯æ²æ³æ¹æ£ãæ€èšãèæ¡ãäœæããããããããã¯å€©ç䞻暩ã®ãŸãŸã§ãã£ããããGHQã¯ãããäžååãšããŠèªãèæ¡ãäœæããããå
ã«æ¿åºã¯æ¹æ£æ¡ãäœæãåžåœè°äŒã§ä¿®æ£ãçµãäžã§å¯æ±ºãæç«ãæ¥æ¬åœæ²æ³ã¯1946幎11æ3æ¥ã«å
¬åžã1947幎5æ3æ¥ã«æœè¡ãããã
æ¥æ¬åœæ²æ³ã¯å€©ç䞻暩ãè»åœäž»çŸ©ãªã©æŠåã®äœå¶ãåŠå®ããåœæ°äž»æš©ãå¹³å䞻矩ãåºæ¬ç人暩ã®å°éãäžæ¬æ±ã«ããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "人暩ãšã¯ã人ãçãŸããªããã«ããŠæã€ã人éãšããŠã®æš©å©ã®ããšã§ããã",
"title": "人暩ãšã¯"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "人ã¯ã誰ããããããã®ãªãå人ãšããŠå°éããã身äœçã粟ç¥çãçµæžçã«èªç±ã§ãã£ãŠã人ãšããŠã®å°å³ãšæš©å©ãå¹³çã«æã¡ããŸãæ³ã®äžã§å¹³çã§ããã",
"title": "人暩ãšã¯"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "人暩ã¯ã倧ããèªç±æš©ãå¹³çæš©ãç€ŸäŒæš©ã®äžã€ã«åããããã",
"title": "人暩ãšã¯"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äººæš©ã®ææ³ã¯ãè¿ä»£ã«ãªã£ãŠãã確ç«ããããããã®çºæ³ã¯ãããããåã«é¡ãããšãã§ããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æãæ©ãäººæš©ã®ææ³ãæ³ãšããŠå®ããããã®ã¯ã1215幎ãã€ã®ãªã¹ã®ãã°ãã»ã«ã«ã¿(倧æ²ç« )ã§ãããå
容ã¯ãæ£åœãªè£å€ãŸãã¯åœã®æ³åŸã«ãããªããã°ã身äœã®èªç±ã®æš©å©ã䟵害ãããªããšèšããã®ã ãåœçã®å°å¶æ¿æ²»ã«å察ãã貎æããçã«èªãããããã®ã§ããããã®ããã«ãäººæš©ææ³ã¯å°å¶æ¿æ²»ã«ããæ¯é
ããå®ãããããã«æç«ããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®åŸã17äžçŽãã18äžçŽã«ãããŠã®è¿ä»£é©åœã«ãããŠãäººæš©ã®ææ³ã¯ç¢ºç«ããããã®ææ³ããã¢ã³ã·ã£ã³ã»ã¬ãžãŒã (é©åœåã®ãã©ã³ã¹ã®èº«åå¶åºŠ)ãã¯ãããšãã身åå¶åºŠãæã¡ç Žãããã®å€§ããªåãšãªã£ãããã§ããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®æä»£ã®ä»£è¡šçãªææ³å®¶ã¯ãã統治äºè«ãã§å§æ¿ã«å¯Ÿããæµææš©ã蚎ããã€ã®ãªã¹ã®ããã¯ããæ³ã®ç²Ÿç¥ãã§äžæš©åç«ã蚎ãããã©ã³ã¹ã®ã¢ã³ãã¹ãã¥ãŒãã瀟äŒå¥çŽè«ãã§åœæ°äž»æš©ã蚎ãããã©ã³ã¹ã®ã«ãœãŒã®äžäººãæããããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã€ã®ãªã¹ã§ã¯äºåºŠã®é©åœ(æž
æåŸé©åœãšåèªé©åœãäžçå²ãåç
§ã®ããš)ãçµãŠã1689å¹Žã«æš©å©ç« å
žãã§ããç«æ²åäž»å¶(è°äŒã®æ¿èªãåŸãäžã§ã®åäž»ã®æ¿æ²»)ãšè°äŒæ¿æ²»ã確ç«ããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã¢ã¡ãªã«ã§ã¯ãèªç±æš©ãšå¹³çæš©ãæèšããã¢ã¡ãªã«ç¬ç«å®£èšãåºãããã人éã¯çå¹³çã«äœãããè²ããªãæš©å©ãæã€ãšãããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã©ã³ã¹ã§ã¯1789幎ã«ãã©ã³ã¹é©åœãèµ·ããå幎ãã©ã³ã¹äººæš©å®£èšãåºãããèªç±æš©ãšå¹³çæš©ãæèšãããããŸãããã¹ãŠã®äººéã¯çãŸããªããã«ããŠäººæš©ãæã€ãšæèšãããã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®åŸãè³æ¬äž»çŸ©çµæžã®ããšã§ãè²§å¯ã®æ Œå·®ãæ¡å€§ãåŽåè
ã®ç°å¢ã¯å£æªã ã£ããããã§ãæ®ééžæéåãåŽåéåãèµ·ããããã¹ãŠã®ç·æ§ã«éžææš©ãèªããããããã«ãªããåŽåè
ã®æš©å©ãèªããåããé«ãŸã£ãã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ç¬¬äžæ¬¡äžç倧æŠã®ããšã®ãã€ãã§ã1919幎ãã¯ã€ããŒã«æ²æ³ãå®ããããç€ŸäŒæš©ãã¯ãããŠææåããããç€ŸäŒæš©ãšã¯ã人ã人éãããçæŽ»ããæš©å©ã®ããšã§ãã(詳ããã¯åŸã§èšã)ãç¬¬äºæ¬¡äžç倧æŠã®åŸãåºãååœã®æ²æ³ã§ä¿éãããããã«ãªã£ãã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã®åŸã人暩ã¯åœéé£åã®äžç人暩宣èš(1948幎)ãªã©ã§åœéçã«ä¿éãããããã«ãªã£ãã",
"title": "äººæš©ã®ææ³å²"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ææ²»ã«ã¯æ¥æ¬ã«ãäººæš©ã®ææ³ãäŒããããããããã1989幎ã®å€§æ¥æ¬åžåœæ²æ³ã¯æ¬œå®æ²æ³(åäž»ãæããæ²æ³)ã§ããã人暩ã¯äž»æš©è
ã§ãã倩çãè£æ°ã«äžãããè£æ°ã®æš©å©ããšãããããã¯æ³åŸã«ããå¶éããããã®ã§ãã£ãã人暩ã¯äººãçãŸããªããã«æã¡ãæ³ã«ãã£ãŠå¶éããããããå®ããããšããäººæš©ã®ææ³ã®å®æã¯æŠåŸã®æ¥æ¬åœæ²æ³ã®æç«ãŸã§åŸ
ããªããã°ãªããªãã£ãã",
"title": "æ¥æ¬ã§ã®äººæš©ã𿲿³"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "1945幎8æ14æ¥ã«æ¥æ¬ã¯ãããã 宣èšå諟ãéåãã15æ¥ã«ãããããç鳿Ÿéããè¡ããã9æ2æ¥ã«ããºãŒãªå·èŠäžã«ãŠéäŒææžèª¿å°ãç¬¬äºæ¬¡äžç倧æŠã¯çµãããåããã®ã§ããã1946幎ãé£ååœæé«åžä»€å®ç·åžä»€éš(以äžGHQ)ã®æç€ºã«ããæ¿åºã¯æ²æ³æ¹æ£ãæ€èšãèæ¡ãäœæããããããããã¯å€©ç䞻暩ã®ãŸãŸã§ãã£ããããGHQã¯ãããäžååãšããŠèªãèæ¡ãäœæããããå
ã«æ¿åºã¯æ¹æ£æ¡ãäœæãåžåœè°äŒã§ä¿®æ£ãçµãäžã§å¯æ±ºãæç«ãæ¥æ¬åœæ²æ³ã¯1946幎11æ3æ¥ã«å
¬åžã1947幎5æ3æ¥ã«æœè¡ãããã",
"title": "æ¥æ¬ã§ã®äººæš©ã𿲿³"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æ¥æ¬åœæ²æ³ã¯å€©ç䞻暩ãè»åœäž»çŸ©ãªã©æŠåã®äœå¶ãåŠå®ããåœæ°äž»æš©ãå¹³å䞻矩ãåºæ¬ç人暩ã®å°éãäžæ¬æ±ã«ããŠããã",
"title": "æ¥æ¬ã§ã®äººæš©ã𿲿³"
}
]
| null | == 人暩ãšã¯ ==
ã'''人暩'''ãšã¯ã人ãçãŸããªããã«ããŠæã€ã人éãšããŠã®æš©å©ã®ããšã§ããã
ã人ã¯ã誰ããããããã®ãªãå人ãšããŠå°éããã身äœçã粟ç¥çãçµæžçã«èªç±ã§ãã£ãŠã人ãšããŠã®å°å³ãšæš©å©ãå¹³çã«æã¡ããŸãæ³ã®äžã§å¹³çã§ããã
ã人暩ã¯ã倧ããèªç±æš©ãå¹³çæš©ãç€ŸäŒæš©ã®äžã€ã«åããããã
== äººæš©ã®ææ³å² ==
ãäººæš©ã®ææ³ã¯ãè¿ä»£ã«ãªã£ãŠãã確ç«ããããããã®çºæ³ã¯ãããããåã«é¡ãããšãã§ããã
ãæãæ©ãäººæš©ã®ææ³ãæ³ãšããŠå®ããããã®ã¯ã1215幎ãã€ã®ãªã¹ã®'''ãã°ãã»ã«ã«ã¿ïŒå€§æ²ç« ïŒ'''ã§ãããå
容ã¯ãæ£åœãªè£å€ãŸãã¯åœã®æ³åŸã«ãããªããã°ã身äœã®èªç±ã®æš©å©ã䟵害ãããªããšèšããã®ã ãåœçã®å°å¶æ¿æ²»ã«å察ãã貎æããçã«èªãããããã®ã§ããããã®ããã«ãäººæš©ææ³ã¯å°å¶æ¿æ²»ã«ããæ¯é
ããå®ãããããã«æç«ããã
ããã®åŸã17äžçŽãã18äžçŽã«ãããŠã®è¿ä»£é©åœã«ãããŠãäººæš©ã®ææ³ã¯ç¢ºç«ããããã®ææ³ããã¢ã³ã·ã£ã³ã»ã¬ãžãŒã ïŒé©åœåã®ãã©ã³ã¹ã®èº«åå¶åºŠïŒãã¯ãããšãã身åå¶åºŠãæã¡ç Žãããã®å€§ããªåãšãªã£ãããã§ããã
ããã®æä»£ã®ä»£è¡šçãªææ³å®¶ã¯ãã統治äºè«ãã§å§æ¿ã«å¯Ÿããæµææš©ã蚎ããã€ã®ãªã¹ã®'''ããã¯'''ããæ³ã®ç²Ÿç¥ãã§äžæš©åç«ã蚎ãããã©ã³ã¹ã®'''ã¢ã³ãã¹ãã¥ãŒ'''ãã瀟äŒå¥çŽè«ãã§åœæ°äž»æš©ã蚎ãããã©ã³ã¹ã®'''ã«ãœãŒ'''ã®äžäººãæããããã
ãã€ã®ãªã¹ã§ã¯äºåºŠã®é©åœïŒ'''æž
æåŸé©åœ'''ãš'''åèªé©åœ'''ãäžçå²ãåç
§ã®ããšïŒãçµãŠã1689幎ã«'''æš©å©ç« å
ž'''ãã§ããç«æ²åäž»å¶ïŒè°äŒã®æ¿èªãåŸãäžã§ã®åäž»ã®æ¿æ²»ïŒãšè°äŒæ¿æ²»ã確ç«ããã
ãã¢ã¡ãªã«ã§ã¯ãèªç±æš©ãšå¹³çæš©ãæèšãã'''ã¢ã¡ãªã«ç¬ç«å®£èš'''ãåºãããã人éã¯çå¹³çã«äœãããè²ããªãæš©å©ãæã€ãšãããã
ããã©ã³ã¹ã§ã¯1789幎ã«ãã©ã³ã¹é©åœãèµ·ããå幎'''ãã©ã³ã¹äººæš©å®£èš'''ãåºãããèªç±æš©ãšå¹³çæš©ãæèšãããããŸãããã¹ãŠã®äººéã¯çãŸããªããã«ããŠäººæš©ãæã€ãšæèšãããã
ããã®åŸãè³æ¬äž»çŸ©çµæžã®ããšã§ãè²§å¯ã®æ Œå·®ãæ¡å€§ãåŽåè
ã®ç°å¢ã¯å£æªã ã£ããããã§ãæ®ééžæéåãåŽåéåãèµ·ããããã¹ãŠã®ç·æ§ã«éžææš©ãèªããããããã«ãªããåŽåè
ã®æš©å©ãèªããåããé«ãŸã£ãã
ãç¬¬äžæ¬¡äžç倧æŠã®ããšã®ãã€ãã§ã1919幎ã'''ã¯ã€ããŒã«æ²æ³'''ãå®ããããç€ŸäŒæš©ãã¯ãããŠææåããããç€ŸäŒæš©ãšã¯ã人ã人éãããçæŽ»ããæš©å©ã®ããšã§ããïŒè©³ããã¯åŸã§èšãïŒãç¬¬äºæ¬¡äžç倧æŠã®åŸãåºãååœã®æ²æ³ã§ä¿éãããããã«ãªã£ãã
ããã®åŸã人暩ã¯åœéé£åã®'''äžç人暩宣èš'''ïŒ1948幎ïŒãªã©ã§åœéçã«ä¿éãããããã«ãªã£ãã
== æ¥æ¬ã§ã®äººæš©ã𿲿³ ==
ãææ²»ã«ã¯æ¥æ¬ã«ãäººæš©ã®ææ³ãäŒããããããããã1989幎ã®'''å€§æ¥æ¬åžåœæ²æ³'''ã¯æ¬œå®æ²æ³ïŒåäž»ãæããæ²æ³ïŒã§ããã人暩ã¯äž»æš©è
ã§ãã倩çãè£æ°ã«äžãããè£æ°ã®æš©å©ããšãããããã¯æ³åŸã«ããå¶éããããã®ã§ãã£ãã人暩ã¯äººãçãŸããªããã«æã¡ãæ³ã«ãã£ãŠå¶éããããããå®ããããšããäººæš©ã®ææ³ã®å®æã¯æŠåŸã®æ¥æ¬åœæ²æ³ã®æç«ãŸã§åŸ
ããªããã°ãªããªãã£ãã
ã1945幎8æ14æ¥ã«æ¥æ¬ã¯ãããã 宣èšå諟ãéåãã15æ¥ã«ãããããç鳿Ÿéããè¡ããã9æ2æ¥ã«ããºãŒãªå·èŠäžã«ãŠéäŒææžèª¿å°ãç¬¬äºæ¬¡äžç倧æŠã¯çµãããåããã®ã§ããã1946幎ãé£ååœæé«åžä»€å®ç·åžä»€éšïŒä»¥äžGHQïŒã®æç€ºã«ããæ¿åºã¯æ²æ³æ¹æ£ãæ€èšãèæ¡ãäœæããããããããã¯å€©ç䞻暩ã®ãŸãŸã§ãã£ããããGHQã¯ãããäžååãšããŠèªãèæ¡ãäœæããããå
ã«æ¿åºã¯æ¹æ£æ¡ãäœæãåžåœè°äŒã§ä¿®æ£ãçµãäžã§å¯æ±ºãæç«ã'''æ¥æ¬åœæ²æ³'''ã¯'''1946幎11æ3æ¥'''ã«å
¬åžã'''1947幎5æ3æ¥'''ã«æœè¡ãããã
ãæ¥æ¬åœæ²æ³ã¯å€©ç䞻暩ãè»åœäž»çŸ©ãªã©æŠåã®äœå¶ãåŠå®ãã'''åœæ°äž»æš©'''ã'''å¹³å䞻矩'''ã'''åºæ¬ç人暩ã®å°é'''ãäžæ¬æ±ã«ããŠããã
[[ã«ããŽãª:äžåŠæ ¡å
¬æ°|*]]
[[Category:äžé«äžè²«æè²_瀟äŒ|*]]
[[ã«ããŽãª:人暩]] | 2019-01-04T10:29:09Z | 2023-11-11T01:39:39Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E7%A4%BE%E4%BC%9A_%E5%85%AC%E6%B0%91/%E4%BA%BA%E6%A8%A9%E3%81%AE%E6%AD%B4%E5%8F%B2 |
24,898 | äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·» | ã¡ã€ã³ããŒãž > å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿ > äžé«äžè²«æ ¡ã®åŠç¿ > äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·»
äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
â»ãäžæ¬¡äžçåŒãšé£ç«äžçåŒãã®åå
ã¯äžè¬ã®äžåŠæ ¡ã§ã¯å±¥ä¿®ããŸããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿ > äžé«äžè²«æ ¡ã®åŠç¿ > äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·»",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "â»ãäžæ¬¡äžçåŒãšé£ç«äžçåŒãã®åå
ã¯äžè¬ã®äžåŠæ ¡ã§ã¯å±¥ä¿®ããŸããã",
"title": "äžåŠ2幎ççžåœ"
}
]
| ã¡ã€ã³ããŒãžÂ > å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿Â > äžé«äžè²«æ ¡ã®åŠç¿Â > äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·» äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã | {{Pathnav|ã¡ã€ã³ããŒãž|å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿|äžé«äžè²«æ ¡ã®åŠç¿}}
----
äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
==äžåŠ1幎ççžåœ==
*[[äžåŠæ ¡æ°åŠ/1幎ç/æ°é/æ£è² ã®æ°]]
*[[äžåŠæ ¡æ°åŠ/1幎ç/æ°é/æåãšåŒ]]
*[[äžåŠæ ¡æ°åŠ/1幎ç/æ°é/æ¹çšåŒ]]
*[[äžåŠæ ¡æ°åŠ/1幎ç/æ°é/æ¯äŸãšåæ¯äŸ]]
*[[äžåŠæ ¡æ°åŠ/1幎ç/æ°é/ããŒã¿ã®æŽ»çš]]
==äžåŠ2幎ççžåœ==
*[[äžåŠæ ¡æ°åŠ/2幎ç/æ°é/åŒã®èšç®]]
*[[äžåŠæ ¡æ°åŠ/2幎ç/æ°é/é£ç«æ¹çšåŒ]]
*[[/äžæ¬¡äžçåŒãšé£ç«äžçåŒ|äžæ¬¡äžçåŒãšé£ç«äžçåŒ]]â»
*[[äžåŠæ ¡æ°åŠ/2幎ç/æ°é/1æ¬¡é¢æ°]]
*[[äžåŠæ ¡æ°åŠ/2幎ç/æ°é/確ç]]
*[[äžåŠæ ¡æ°åŠ/2幎ç/æ°é/ååäœç¯å²ãšç®±ã²ãå³]]
â»ãäžæ¬¡äžçåŒãšé£ç«äžçåŒãã®åå
ã¯äžè¬ã®äžåŠæ ¡ã§ã¯å±¥ä¿®ããŸããã
[[Category:äžåŠæ ¡æ°åŠ|ã¡ãããšããããã®ãããã1]]
[[Category:äžé«äžè²«æè²|ãããã1]]
[[Category:äžé«äžè²«æè² æ°åŠ|*]] | null | 2020-05-01T04:29:53Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E4%BB%A3%E6%95%B0%E7%B7%A8/%E4%B8%8A%E5%B7%BB |
24,899 | äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·» | äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)
äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
äžé«äžè²«æ ¡ã§ã¯ãéåžžã¯é«æ ¡æ°åŠã§ãã€ãããããé åãšçµåãããŸã§å±¥ä¿®ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äžé«äžè²«æ ¡ã§ã¯ãéåžžã¯é«æ ¡æ°åŠã§ãã€ãããããé åãšçµåãããŸã§å±¥ä¿®ããŸãã",
"title": ""
}
]
| äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž) äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã äžé«äžè²«æ ¡ã§ã¯ãéåžžã¯é«æ ¡æ°åŠã§ãã€ãããããé åãšçµåãããŸã§å±¥ä¿®ããŸãã | <small>[[äžé«äžè²«æ ¡ã®åŠç¿]] >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž) </small>
----
äžçæè²åæ(äžåŠæ ¡)ã«ããã代æ°(æ°é)åéã«ã€ããŠã®æç§æžã§ããçŸåšã¯æ¢åã®ããŒãžãå©çšããŠããŸãã
äžé«äžè²«æ ¡ã§ã¯ãéåžžã¯é«æ ¡æ°åŠã§ãã€ãããããé åãšçµåãããŸã§å±¥ä¿®ããŸãã
==äžå¹Žççžåœ==
*[[äžåŠæ ¡æ°åŠ/3幎ç/æ°é/åŒã®èšç®]]
*[[äžåŠæ ¡æ°åŠ/3幎ç/æ°é/å¹³æ¹æ ¹]]
*[[äžåŠæ ¡æ°åŠ/3幎ç/æ°é/2次æ¹çšåŒ]]
*[[äžåŠæ ¡æ°åŠ/3幎ç/æ°é/2ä¹ã«æ¯äŸãã颿°]]
*[[äžåŠæ ¡æ°åŠ/3幎ç/æ°é/æšæ¬èª¿æ»]]
==髿 ¡äžå¹Žççžåœ==
*[[/é åãšçµã¿åãã]]
[[Category:äžåŠæ ¡æ°åŠ|ã¡ãããšããããã®ãããã2]]
[[Category:äžé«äžè²«æè² æ°åŠ|*]]
[[Category:äžé«äžè²«æè²|ãããã2]] | null | 2020-04-07T06:00:37Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E4%BB%A3%E6%95%B0%E7%B7%A8/%E4%B8%8B%E5%B7%BB |
24,900 | äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·»/äžæ¬¡äžçåŒãšé£ç«äžçåŒ | äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)> äžæ¬¡äžçåŒãšé£ç«äžçåŒ
åã倧ããã®éãã=ãã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãšããã®æ§è³ªã«ã€ããŠãŸãšããã
ããæ°A,BããããšããAãBãã倧ããããšã A > B {\displaystyle A>B} ãšè¡šããAãBããå°ããããš(AãBæªæº)ã A < B {\displaystyle A<B} ãšè¡šããããã§ãã < {\displaystyle <} ããšã > {\displaystyle >} ãã®ããšãäžçå·ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸããã ⊠, â§ {\displaystyle \leqq ,\geqq } ããšããäžçå·ããããã A ⊠B , A ⊠B {\displaystyle A\leqq B,A\leqq B} ãã¯ããããããAãB以äžããAãB以äžããšããæå³ã§ãã A < B , A > B {\displaystyle A<B,A>B} ãã«ãA=Bãã€ãŸããAãšBãçããå€ã§ããå Žåããµããã ãã®ã§ããããªããåœéçã«ã¯ã †, ⥠{\displaystyle \leq ,\geq } ãã䜿ãããšãããã
x > 7 {\displaystyle x>7} ãšããäžçåŒããããšããxã¯7ãã倧ããæ°ã§ããããŸãã x â§ 7 {\displaystyle x\geqq 7} ã®æã«ã¯ãxã¯7以äžã®æ°ã§ããã
äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã
x > y {\displaystyle x>y} ãæãç«ã€ãšãã«ã¯ã x + 3 > y + 3 {\displaystyle x+3>y+3} ã 4 x > 4 y {\displaystyle 4x>4y} ãæãç«ã€ããŸãã â x < â y {\displaystyle -x<-y} ãæãç«ã€ã
äžçåŒã®æ§è³ªã䜿ã£ãŠ
ã®äž¡èŸºãã3ãåŒããš
ãã£ãŠ
ãšãªãã ãã®ããã«ãäžçåŒã§ãç§»é
ããããšãã§ããã
次ã®äžçåŒãè§£ããªããã
x > 3 , x < 3 , x â§ 3 , x ⊠3 {\displaystyle x>3,x<3,x\geqq 3,x\leqq 3} ã¯ãæ°çŽç·äžã§ã¯å³1,2,3,4ã®ããã«ããããããšãããã
ããã€ãã®äžçåŒãçµã¿åããããã®ãé£ç«äžçåŒãšããããããã®äžçåŒãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒãè§£ããšããã
次ã®é£ç«äžçåŒãè§£ããªããã
(i)
(ii)
(i) x + 2 < 2 x + 4 {\displaystyle x+2<2x+4} ãã â x < 2 {\displaystyle -x<2}
10 â x â§ 3 x â 6 {\displaystyle 10-x\geqq 3x-6} ãã â 4 x â§ â 16 {\displaystyle -4x\geqq -16}
(1),(2)ãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ã¯
å³ã®å³ã®ããã«ã2ã€ã®ç¯å²ãéãªããšãããæ¢ããš
(ii) x â§ 1 â x {\displaystyle x\geqq 1-x} ãã 2 x â§ 1 {\displaystyle 2x\geqq 1}
2 ( x + 1 ) > x â 2 {\displaystyle 2(x+1)>x-2} ãã 2 x + 2 > x â 2 {\displaystyle 2x+2>x-2}
(1),(2)ãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ã¯
A < B < C {\displaystyle A<B<C} ã®åœ¢ã®é£ç«äžçåŒã¯ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)> äžæ¬¡äžçåŒãšé£ç«äžçåŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åã倧ããã®éãã=ãã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãšããã®æ§è³ªã«ã€ããŠãŸãšããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããæ°A,BããããšããAãBãã倧ããããšã A > B {\\displaystyle A>B} ãšè¡šããAãBããå°ããããš(AãBæªæº)ã A < B {\\displaystyle A<B} ãšè¡šããããã§ãã < {\\displaystyle <} ããšã > {\\displaystyle >} ãã®ããšãäžçå·ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸããã ⊠, â§ {\\displaystyle \\leqq ,\\geqq } ããšããäžçå·ããããã A ⊠B , A ⊠B {\\displaystyle A\\leqq B,A\\leqq B} ãã¯ããããããAãB以äžããAãB以äžããšããæå³ã§ãã A < B , A > B {\\displaystyle A<B,A>B} ãã«ãA=Bãã€ãŸããAãšBãçããå€ã§ããå Žåããµããã ãã®ã§ããããªããåœéçã«ã¯ã †, ⥠{\\displaystyle \\leq ,\\geq } ãã䜿ãããšãããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "x > 7 {\\displaystyle x>7} ãšããäžçåŒããããšããxã¯7ãã倧ããæ°ã§ããããŸãã x â§ 7 {\\displaystyle x\\geqq 7} ã®æã«ã¯ãxã¯7以äžã®æ°ã§ããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "x > y {\\displaystyle x>y} ãæãç«ã€ãšãã«ã¯ã x + 3 > y + 3 {\\displaystyle x+3>y+3} ã 4 x > 4 y {\\displaystyle 4x>4y} ãæãç«ã€ããŸãã â x < â y {\\displaystyle -x<-y} ãæãç«ã€ã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžçåŒã®æ§è³ªã䜿ã£ãŠ",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã®äž¡èŸºãã3ãåŒããš",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã£ãŠ",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªãã ãã®ããã«ãäžçåŒã§ãç§»é
ããããšãã§ããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "次ã®äžçåŒãè§£ããªããã",
"title": "1次äžçåŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "x > 3 , x < 3 , x â§ 3 , x ⊠3 {\\displaystyle x>3,x<3,x\\geqq 3,x\\leqq 3} ã¯ãæ°çŽç·äžã§ã¯å³1,2,3,4ã®ããã«ããããããšãããã",
"title": "äžçåŒãšæ°çŽç·"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "",
"title": "äžçåŒãšæ°çŽç·"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ããã€ãã®äžçåŒãçµã¿åããããã®ãé£ç«äžçåŒãšããããããã®äžçåŒãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒãè§£ããšããã",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "次ã®é£ç«äžçåŒãè§£ããªããã",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "(i)",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "(ii)",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "(i) x + 2 < 2 x + 4 {\\displaystyle x+2<2x+4} ãã â x < 2 {\\displaystyle -x<2}",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "10 â x â§ 3 x â 6 {\\displaystyle 10-x\\geqq 3x-6} ãã â 4 x â§ â 16 {\\displaystyle -4x\\geqq -16}",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "(1),(2)ãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ã¯",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "å³ã®å³ã®ããã«ã2ã€ã®ç¯å²ãéãªããšãããæ¢ããš",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "(ii) x â§ 1 â x {\\displaystyle x\\geqq 1-x} ãã 2 x â§ 1 {\\displaystyle 2x\\geqq 1}",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "2 ( x + 1 ) > x â 2 {\\displaystyle 2(x+1)>x-2} ãã 2 x + 2 > x â 2 {\\displaystyle 2x+2>x-2}",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "(1),(2)ãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ã¯",
"title": "é£ç«äžçåŒ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "A < B < C {\\displaystyle A<B<C} ã®åœ¢ã®é£ç«äžçåŒã¯ã",
"title": "é£ç«äžçåŒ"
}
]
| äžé«äžè²«æ ¡ã®åŠç¿ >äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)> äžæ¬¡äžçåŒãšé£ç«äžçåŒ | <small>[[äžé«äžè²«æ ¡ã®åŠç¿]] >[[äžçæè²åæã®æ°åŠã»ä»£æ°ç·š(äž)]]> äžæ¬¡äžçåŒãšé£ç«äžçåŒ</small>
----
==1次äžçåŒ==
åã倧ããã®éãã=ãã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãšããã®æ§è³ªã«ã€ããŠãŸãšããã
ããæ°A,BããããšããAãBãã倧ããããšã<math>A > B</math>ãšè¡šããAãBããå°ããããšïŒAãBæªæºïŒã'''<math>A < B</math>'''ãšè¡šããããã§ãã<math><</math>ããšã<math>></math>ãã®ããšã[[w:äžçå·|äžçå·]]ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸããã<math>\leqq , \geqq</math>ããšããäžçå·ããããã<math>A \leqq B , A \leqq B</math>ãã¯ããããããAãB以äžããAãB以äžããšããæå³ã§ãã<math>A<B , A>B</math>ãã«ãA=Bãã€ãŸããAãšBãçããå€ã§ããå Žåããµããã ãã®ã§ããããªããåœéçã«ã¯ã<math>\le , \ge</math>ãã䜿ãããšãããã
*äŸ
<math>x>7</math>ãšããäžçåŒããããšããxã¯7ãã倧ããæ°ã§ããããŸãã<math>x \geqq 7</math>ã®æã«ã¯ãxã¯7以äžã®æ°ã§ããã
äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã
{| style="border:2px solid greenyellow;width:80%" cellspacing=0
|style="background:greenyellow"|'''äžçåŒã®æ§è³ª'''
|-
|style="padding:5px"|1. <math> a<b </math>ãªãã°ã<math> a+c<b+c </math>ïŒ<math> a-c<b-c </math>
|-
|style="padding:5px"|2. <math> a<b </math>ïŒ<math> c>0 </math>ãªãã°ã<math> ac<bc </math>ïŒ<math> \frac {a} {c} < \frac {b} {c}</math>
|-
|style="padding:5px"|3. <math> a<b </math>ïŒ<math> c<0 </math>ãªãã°ã<math> ac>bc</math>ïŒ<math> \frac {a} {c} > \frac {b} {c}</math>
|}
*äŸ
<math>x > y</math>ãæãç«ã€ãšãã«ã¯ã<math>x+3>y+3</math>ã<math>4x > 4y</math>ãæãç«ã€ããŸãã<math> -x < -y</math>ãæãç«ã€ã
äžçåŒã®æ§è³ªã䜿ã£ãŠ
:<math>
a {\color{red}+3}<b\;
</math>
ã®äž¡èŸºãã3ãåŒããš
:<math>
a+3-3<b-3\;
</math>
ãã£ãŠ
:<math>
a<b {\color{red}-3}\;
</math>
ãšãªãã<br>
ãã®ããã«ã'''äžçåŒã§ãç§»é
ããããšãã§ãã'''ã
*åé¡
次ã®äžçåŒãè§£ããªããã
#<math>3x-1 \leqq 9x-7</math>
#<math>3(x-2)>2(5x-3)</math>
#<math>x+1 < \frac {x-1} {3}</math>
*è§£ç
#<math>\begin{align} \quad
3x-1 & \leqq 9x-7\\
3x-9x & \leqq -7+1\\
-6x & \leqq -6\\
x & \geqq 1
\end{align}
</math>
#<math>\begin{align} \quad
3(x-2) & > 2(5x-3)\\
3x-6 & > 10x-6\\
3x-10x & > -6+6\\
-7x & > 0\\
x & < 0
\end{align}
</math>
#<math>\begin{align} \quad
x+1 & < \frac {x-1} {3}\\
3x+3 & < x-1\\
3x-x & < -1-3\\
2x & < -4\\
x & < -2
\end{align}
</math>
== äžçåŒãšæ°çŽç· ==
<gallery>
xã¯3ãã倧ãã.png|'''å³1'''
xã¯3ããå°ãã.png|'''å³2'''
xã¯3以äž.png|'''å³3'''
xã¯3以äž.png|'''å³4'''
</gallery>
<math>x>3,x<3,x \geqq 3,x\leqq3</math>ã¯ãæ°çŽç·äžã§ã¯å³1,2,3,4ã®ããã«ããããããšãããã
==é£ç«äžçåŒ==
ããã€ãã®äžçåŒãçµã¿åããããã®ã'''é£ç«äžçåŒ'''ãšããããããã®äžçåŒãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒã'''è§£ã'''ãšããã
<br>
<br>
*åé¡äŸ
**åé¡
次ã®é£ç«äžçåŒãè§£ããªããã
(i)
:<math>\left\{ \begin{matrix} x+2<2x+4 \\ 10-x \geqq 3x-6 \end{matrix}\right.</math>
(ii)
:<math>\begin{cases}
x \geqq 1-x\\
2(x+1)>x-2
\end{cases}</math>
**è§£ç
(i)<br>
<math>x+2<2x+4</math>ããã<math>-x<2</math><br>
:<math>x>-2</math>âŠâŠ(1)
<math>10-x \geqq 3x-6</math>ããã<math>-4x \geqq -16</math><br>
:<math>x \leqq 4</math>âŠâŠ(2)
(1),(2)ãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ã¯
[[File:xã¯-2ãã倧ãã4以äž.png|200px|thumb]]
å³ã®å³ã®ããã«ã2ã€ã®ç¯å²ãéãªããšãããæ¢ããš
:<math>-2<x \leqq 4</math>
(ii)<br>
<math>x \geqq 1-x</math>ããã<math>2x \geqq 1</math><br>
:<math>x \geqq \frac {1} {2}</math>âŠâŠ(1)
<math>2(x+1)>x-2</math>ããã<math>2x+2>x-2</math><br>
:<math>x>-4</math>âŠâŠ(2)
(1),(2)ãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ã¯
:<math>x \geqq \frac {1} {2}</math>
=== <math>A<B<C</math>ã®åœ¢ã®é£ç«äžçåŒ ===
<math>A<B<C</math>ã®åœ¢ã®é£ç«äžçåŒã¯ã
::<math>\left\{ \begin{matrix} A<B \\ B<C \end{matrix}\right.</math>
:ã®åœ¢ã«çŽããŠè§£ãã
::<math>\left\{ \begin{matrix} A<B \\ A<C \end{matrix}\right.</math>ãã<math>\left\{ \begin{matrix} A<C \\ B<C \end{matrix}\right.</math>
:ãšã¯ããªãã
[[Category:äžåŠæ ¡æ°åŠ|ãã¡ããµãšããããšãããã€ãµãšããã]]
[[Category:äžé«äžè²«æè² æ°åŠ|ãã¡ããµãšããããšãããã€ãµãšããã]] | null | 2020-05-23T04:27:39Z | []
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E4%BB%A3%E6%95%B0%E7%B7%A8/%E4%B8%8A%E5%B7%BB/%E4%B8%80%E6%AC%A1%E4%B8%8D%E7%AD%89%E5%BC%8F%E3%81%A8%E9%80%A3%E7%AB%8B%E4%B8%8D%E7%AD%89%E5%BC%8F |
24,902 | ã¢ãããºèª/åè© | ã¢ãããºèªã§ã¯åè©ã®åã«å±æ Œæ¥é èŸ(æææ Œæ¥é èŸ)ãä»ããäºã§ææã衚ãäºãã§ããŸãã
äŸãã°ãаб (ãç¶ãã)ã«äžäººç§°åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç§ã®ãç¶ãããäºäººç§°(ç·) åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç·æ§ã«å¯ŸããŠããªãã®ãç¶ãããšããæå³ã«ãªããŸãã ãŸããäºäººç§°è€æ°æ¥é èŸÑÓ-ã¯äž»ã«ãããªããã¡ããšããæ¬æ¥ã®æå³ã¯ãã¡ããã®ããšãäŒè°ããããäžã§è³ªåãæããããæã«äœ¿ããã圢ã§ãã ()å
ã®Ð°/Ñã¯ç¬¬äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãæ(å³ã¡ã屿 Œæ¥é èŸã«ã¢ã¯ã»ã³ããæ¥ãæ)ã«æ¿å
¥ãããæ¯é³ã§ãã
屿 Œã匷調ããããšãã¯ã代åè©ãåã«æã£ãŠããŸãã
äŸãã°ããç§ã®ç¶ããªãã°ãÑаÑа Ñаб, ã圌女ã®ãã©ã³ã±ããããªãã°ãлаÑа лÑ
Ñзаãšãããµãã«è¡šçŸããŸãã
æ¥æ¬èªãããã§ãããåè©ã®åŸã«~ãã~ãã~ãžãšããæ¥å°ŸèŸ(æ¥æ¬èªã§ã¯å©è©)ãã€ããäºã§ææ³çæ©èœã远å ããããšãã§ããŸãããã®ãããªæ¥å°ŸèŸãæšèããããã¯ããŒã«ãŒãšåŒã³ãŸãã åè©ã»åœ¢å®¹è©ã«ã€ãããšã¯ãã¡ãããåè©ã«ããŒã«ãŒãã€ãããšãããããã®å Žåã¯åè©ãšããŠæ±ãäºãã§ããŸããããã§ã¯ããã€ãããŒã«ãŒã玹ä»ããŸãã
äžç¹å®å€æ°ã®éåã¯çŸ€ãã®åäœãäžåäºåãšæ°ãããããè€æ°åœ¢ã®åœ¢ããšããŸããè€æ°åœ¢ã®æ¥å°ŸèŸã¯æåŸã«ã€ããŸãã
â»åè
è€æ°ã®åèªãã€ãªããŠäžã€ã®åèªãšããŠæ±ãäºããããŸãã
æ¥æ¬èªã§ã¯ã~ã§ãããã§çµããæãè±èªã§ã¯beåè©ãçšããæã®è¡šçŸããã¢ãããºèªã§ã¯ã©ãèšããã«ã€ããŠèª¬æããŸãã
ç¶æ
åè©ãååã圢容è©ã®äž»èªã«å¯ŸããŠã¯çµ¶å¯Ÿæ ŒããšããŸãã
çµ¶å¯Ÿæ Œã¯èªåè©ãªãã°äž»èªãä»åè©ãªãã°ç®çæ ŒããšããŸãã(ããã«ã€ããŠã¯åè©ã®é
ç®ã§è©³ããæ±ããŸã) äžäººç§°é人éã®Ðž-ã¯éåžžããã®Ðž-ãæããŠããäž»èªãŸãã¯ç®çæ ŒãçŽåã«æ¥ãŠããå Žåã¯çç¥ããŸãããããã第äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãå Žåã¯æ¿å
¥æ¯é³"Ñ-"ã®ã¿ãæ¿å
¥ããŸãã
ã¢ãããºèªã¯äžè¬çã«åè©ã®æã¯æå¶ã®çš®é¡ãå€ããããŸãããåè©ã»åœ¢å®¹è©ã»ç¶æ
åè©ã®æã¯ååãçŸåšæå¶ãšé廿å¶ã®ã¿ãååšããŸãã
æªæ¥æå¶ãäœãããå Žåã¯åè©ã®èªå¹¹ã«-заа-ãæ¿å
¥ããåäœåè©ã®çŸåšåœ¢æå¶ãä»ãã圢ã§è¡šããŸãã
çµæ¢åœ¢ã¯æã®æåŸã«æ¥ã圢ã§ããéçµæ¢åœ¢ã¯ãã®ããšã«ãŸã æãç¶ã圢ã§ãã
ã¢ãããºèªã«ã¯ã³ãã¥ã©ã«çžåœãããã®ãšããŠã以äžã®ãããªè¡šçŸãååšããŸãã
çŸåšåœ¢è¯å®ä»¥å€ã®åŠå®ãéå»åœ¢ã«ã€ããŠã¯åè©Ð°ÐºÓзааÑаã䜿ããŸãã
ã¢ããæã代åè©ãšããŠã¯äž»ã«ãã®3ã€ã䜿ãããŸãããç¹ã«ÑО/ÑÑÒã«ã€ããŠã¯ã¢ãã«éãã人ãæãäºããããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¢ãããºèªã§ã¯åè©ã®åã«å±æ Œæ¥é èŸ(æææ Œæ¥é èŸ)ãä»ããäºã§ææã衚ãäºãã§ããŸãã",
"title": "屿 Œã»ä»£åè©"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äŸãã°ãаб (ãç¶ãã)ã«äžäººç§°åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç§ã®ãç¶ãããäºäººç§°(ç·) åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç·æ§ã«å¯ŸããŠããªãã®ãç¶ãããšããæå³ã«ãªããŸãã ãŸããäºäººç§°è€æ°æ¥é èŸÑÓ-ã¯äž»ã«ãããªããã¡ããšããæ¬æ¥ã®æå³ã¯ãã¡ããã®ããšãäŒè°ããããäžã§è³ªåãæããããæã«äœ¿ããã圢ã§ãã ()å
ã®Ð°/Ñã¯ç¬¬äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãæ(å³ã¡ã屿 Œæ¥é èŸã«ã¢ã¯ã»ã³ããæ¥ãæ)ã«æ¿å
¥ãããæ¯é³ã§ãã",
"title": "屿 Œã»ä»£åè©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "屿 Œã匷調ããããšãã¯ã代åè©ãåã«æã£ãŠããŸãã",
"title": "屿 Œã»ä»£åè©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äŸãã°ããç§ã®ç¶ããªãã°ãÑаÑа Ñаб, ã圌女ã®ãã©ã³ã±ããããªãã°ãлаÑа лÑ
Ñзаãšãããµãã«è¡šçŸããŸãã",
"title": "屿 Œã»ä»£åè©"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ¥æ¬èªãããã§ãããåè©ã®åŸã«~ãã~ãã~ãžãšããæ¥å°ŸèŸ(æ¥æ¬èªã§ã¯å©è©)ãã€ããäºã§ææ³çæ©èœã远å ããããšãã§ããŸãããã®ãããªæ¥å°ŸèŸãæšèããããã¯ããŒã«ãŒãšåŒã³ãŸãã åè©ã»åœ¢å®¹è©ã«ã€ãããšã¯ãã¡ãããåè©ã«ããŒã«ãŒãã€ãããšãããããã®å Žåã¯åè©ãšããŠæ±ãäºãã§ããŸããããã§ã¯ããã€ãããŒã«ãŒã玹ä»ããŸãã",
"title": "æšè(ããŒã«ãŒ)"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "äžç¹å®å€æ°ã®éåã¯çŸ€ãã®åäœãäžåäºåãšæ°ãããããè€æ°åœ¢ã®åœ¢ããšããŸããè€æ°åœ¢ã®æ¥å°ŸèŸã¯æåŸã«ã€ããŸãã",
"title": "æšè(ããŒã«ãŒ)"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "â»åè",
"title": "æšè(ããŒã«ãŒ)"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "è€æ°ã®åèªãã€ãªããŠäžã€ã®åèªãšããŠæ±ãäºããããŸãã",
"title": "é£èª"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æ¥æ¬èªã§ã¯ã~ã§ãããã§çµããæãè±èªã§ã¯beåè©ãçšããæã®è¡šçŸããã¢ãããºèªã§ã¯ã©ãèšããã«ã€ããŠèª¬æããŸãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ç¶æ
åè©ãååã圢容è©ã®äž»èªã«å¯ŸããŠã¯çµ¶å¯Ÿæ ŒããšããŸãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "çµ¶å¯Ÿæ Œã¯èªåè©ãªãã°äž»èªãä»åè©ãªãã°ç®çæ ŒããšããŸãã(ããã«ã€ããŠã¯åè©ã®é
ç®ã§è©³ããæ±ããŸã) äžäººç§°é人éã®Ðž-ã¯éåžžããã®Ðž-ãæããŠããäž»èªãŸãã¯ç®çæ ŒãçŽåã«æ¥ãŠããå Žåã¯çç¥ããŸãããããã第äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãå Žåã¯æ¿å
¥æ¯é³\"Ñ-\"ã®ã¿ãæ¿å
¥ããŸãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã¢ãããºèªã¯äžè¬çã«åè©ã®æã¯æå¶ã®çš®é¡ãå€ããããŸãããåè©ã»åœ¢å®¹è©ã»ç¶æ
åè©ã®æã¯ååãçŸåšæå¶ãšé廿å¶ã®ã¿ãååšããŸãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "æªæ¥æå¶ãäœãããå Žåã¯åè©ã®èªå¹¹ã«-заа-ãæ¿å
¥ããåäœåè©ã®çŸåšåœ¢æå¶ãä»ãã圢ã§è¡šããŸãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "çµæ¢åœ¢ã¯æã®æåŸã«æ¥ã圢ã§ããéçµæ¢åœ¢ã¯ãã®ããšã«ãŸã æãç¶ã圢ã§ãã",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "",
"title": "ç¶æ
åè©æ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã¢ãããºèªã«ã¯ã³ãã¥ã©ã«çžåœãããã®ãšããŠã以äžã®ãããªè¡šçŸãååšããŸãã",
"title": "ç¹èŸ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "çŸåšåœ¢è¯å®ä»¥å€ã®åŠå®ãéå»åœ¢ã«ã€ããŠã¯åè©Ð°ÐºÓзааÑаã䜿ããŸãã",
"title": "ç¹èŸ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "",
"title": "ç¹èŸ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã¢ããæã代åè©ãšããŠã¯äž»ã«ãã®3ã€ã䜿ãããŸãããç¹ã«ÑО/ÑÑÒã«ã€ããŠã¯ã¢ãã«éãã人ãæãäºããããŸãã",
"title": "ç¹èŸ"
}
]
| null | ==屿 Œã»ä»£åè©==
ã¢ãããºèªã§ã¯åè©ã®åã«å±æ Œæ¥é èŸ(æææ Œæ¥é èŸ)ãä»ããäºã§ææã衚ãäºãã§ããŸãã
{| class="wikitable"
|+ 屿 Œæ¥é èŸ
! !! åæ° !! è€æ°
|-
! äžäººç§°
| Ñ(Ñ)-|| Ò³(а)-
|-
! äºäººç§°(ç·)
| Ñ- || ÑÓ(Ñ)-
|-
! äºäººç§°(女)
| б(Ñ)- || ÑÓ(Ñ)-
|-
! äžäººç§°(ç·)
| О- || Ñ-
|-
! äžäººç§°(女)
| л(Ñ)- || Ñ-
|-
! äžäººç§°(é人é)
| а- || Ñ-
|}
äŸãã°ãаб (ãç¶ãã)ã«äžäººç§°åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç§ã®ãç¶ãããäºäººç§°(ç·) åæ°æ¥é èŸÑ-ãã€ããŠÑабã«ãããšç·æ§ã«å¯ŸããŠããªãã®ãç¶ãããšããæå³ã«ãªããŸãã<br>
ãŸããäºäººç§°è€æ°æ¥é èŸÑÓ-ã¯äž»ã«ãããªããã¡ããšããæ¬æ¥ã®æå³ã¯ãã¡ããã®ããšãäŒè°ããããäžã§è³ªåãæããããæã«äœ¿ããã圢ã§ãã<br>
()å
ã®Ð°/Ñã¯ç¬¬äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãæïŒå³ã¡ã屿 Œæ¥é èŸã«ã¢ã¯ã»ã³ããæ¥ãæïŒã«æ¿å
¥ãããæ¯é³ã§ãã<br>
*'''а'''Ñ
ÑÓ¡ (ãã®)åå â Ñ'''Ñ'''Ñ
ÑÓ¡ ç§ã®åå
*аÑ
'''Ñ'''за (ãã®)ãã©ã³ã±ãã â ÑÑ
'''Ñ'''за ç§ã®ãã©ã³ã±ãã
屿 Œã匷調ããããšãã¯ã代åè©ãåã«æã£ãŠããŸãã
{| class="wikitable"
|+ 代åè©
! !! åæ° !! è€æ°
|-
! äžäººç§°
| ÑаÑа|| ҳаÑа
|-
! äºäººç§°(ç·)
| ÑаÑа || ÑÓаÑа
|-
! äºäººç§°(女)
| баÑа || ÑÓаÑа
|-
! äžäººç§°(ç·)
| ОаÑа || ЎаÑа
|-
! äžäººç§°(女)
| лаÑа || ЎаÑа
|}
äŸãã°ããç§ã®ç¶ããªãã°ã'''ÑаÑа Ñаб''', ã圌女ã®ãã©ã³ã±ããããªãã°ã'''лаÑа лÑ
Ñза'''ãšãããµãã«è¡šçŸããŸãã
==æšè(ããŒã«ãŒ)==
æ¥æ¬èªãããã§ãããåè©ã®åŸã«ïœããïœããïœãžãšããæ¥å°ŸèŸïŒæ¥æ¬èªã§ã¯å©è©ïŒãã€ããäºã§ææ³çæ©èœã远å ããããšãã§ããŸãããã®ãããªæ¥å°ŸèŸãæšèããããã¯ããŒã«ãŒãšåŒã³ãŸãã<br>
åè©ã»åœ¢å®¹è©ã«ã€ãããšã¯ãã¡ãããåè©ã«ããŒã«ãŒãã€ãããšãããããã®å Žåã¯åè©ãšããŠæ±ãäºãã§ããŸããããã§ã¯ããã€ãããŒã«ãŒã玹ä»ããŸãã
*(åè©)-лаãïœã§ãïœãš
**СаÑа а-ÑелеÑкПп-ла а-еҵÓа-ÒÓа з-бе-ОÑ. ç§ (å®å è©)-æé é¡-ã§ (å®å è©)-æ-(é人é/è€æ°åœ¢) ç§-èŠã-(éå»åäœçµæ¢)
***ç§ã¯æãæé é¡ã§èŠãã
*(åè©)-Ñ ïœãšããŠ
**ÐаÑа Ñҵа-Ò©Ñ-Ñ ÐŽÑ-Òа-Ñп 圌 æãã-人-ãšã㊠圌-ãã-(çŸåšç¶æ
çµæ¢)
***åœŒã¯æåž«ã§ã
*(åè©)-О (åè©)-О ïœãšïœ
**СаÑа ÐÒ§ÑÑа бÑзÑÓеО Ðбаза бÑзÑÓеО аҵаÑа ÑаҿÑп.
***ç§ã¯ã¢ãããºèªãšã¢ãã¶èªãåŠãã§ããŸãã
*(圢容è©)-ÐœÑ åœ¢å®¹è©ãå¯è©ã«ããæ¥å°ŸèŸ
**а-бзОа (è¯ãïŒåœ¢å®¹è©) â бзОаМÑïŒè¯ãïŒå¯è©ïŒ
*(åè©)-га ïœããç©
**а-Ñҵа-гаã(å®å è©)-æãã-ç©
***æç§æž
*(åè©)-Ò©Ñ ïœãã人
**а-Ñҵа-Ò©Ñã(å®å è©)-æãã-人
***æåž«
*(å Žæ)-М ïœã«ãŠãïœäžã§
**ÑÑ-Ò©-ÐžÑ Ð°ÐŒÒ©Ð°-М ç§-èµ°ã-éå»åäœçµæ¢ é-ã§ãâ»
***ç§ã¯éã®äžãèµ°ã£ã
*(å Žæ)-ÒÐœÑ ïœã«ãŠãïœã§
*(å Žæ)-Ð°Ò¿Ñ ïœäžã§
**ÐзОала ÑÓÐ°Ð°Ð±ÐµÐžÑ ÐвОкОпеЎОаҿÑ! ãããããŠã£ãããã£ã¢ã®äžãžïŒ
*(åè©)-(Ñ)аа ïœäºº (åè©ã¯å°åãšã¯éããªã)
**ÐÒ§ÑÑаа ã¢ãããºäºº ÐОапПМÑаа æ¥æ¬äºº
*(åè©)-аÑãäžç¹å®å€æ°ã®éå (æ€ç©ãé€ã)
**ÐжÓа åèª ÐжÓ-Ð°Ñ ''äžç¹å®å€æ°ã®åèªã®éå''âèŸæž ÐжÓаÑÒÓа è€æ°ã®èŸæž
**ÐкÓÒ·ÑÑÑ é¶ ÐкÓҷаÑé¶ã®çŸ€ã ÐкÓҷаÑÒÓÐ°è€æ°ã®é¶ã®çŸ€ã
***åèªå
ã«Ñãååšããå Žåã¯Ñ以éãæ¥å°ŸèŸã«çœ®æãã
*(åè©/æ€ç©éå®)-Ñаãäžç¹å®å€æ°ã®éå (-ҵла圢é€ã)
**ÐÒ§Ñаã¢ã ÐÒ§ÑаÑаã¢ãæ€æ
*(åè©/-ҵла(ïœã®æš)ãã€ããåè©éå®)-ÑÒаãäžç¹å®å€æ°ã®éå
**ÐÒµÓаããã ÐÒµÓаҵлаãããã®æš ÐÒµÓаÑÒаãããå
*(åè©)-ÑÓа -ÒÓа è€æ°åœ¢ â[[ã¢ãããºèª/æ°|æ°]]ãåç
§
äžç¹å®å€æ°ã®éåã¯çŸ€ãã®åäœãäžåäºåãšæ°ãããããè€æ°åœ¢ã®åœ¢ããšããŸããè€æ°åœ¢ã®æ¥å°ŸèŸã¯æåŸã«ã€ããŸãã
â»åè
*'''а'''Ò©ÑаãÑ'''Ñ'''Ò©ÑеОÑ; ÑÑ-Ò©-Ñа-ОÑ
**èµ°ã
*аҩÑ'''а'''ãзҩÑ'''е'''ОÑ; (О-)з-Ò©-Ñа-ОÑ
**æžã
==é£èª==
è€æ°ã®åèªãã€ãªããŠäžã€ã®åèªãšããŠæ±ãäºããããŸãã
*а-ÒµÓа(ããã) + а-ҵла(æš) = а-ÒµÓаҵла ãããã®æš
*аОÒÑ(ããè¯ã/åœ¢å®¹è© æ¯èŒçŽ) + а-Ñ
а-Ñа(åã/åè©) = а-ОÒÑÑ
а-Ñа ããè¯ãæ¹ãžåããâæ¹åãã
==ç¶æ
åè©æ==
æ¥æ¬èªã§ã¯ãïœã§ãããã§çµããæãè±èªã§ã¯beåè©ãçšããæã®è¡šçŸããã¢ãããºèªã§ã¯ã©ãèšããã«ã€ããŠèª¬æããŸãã
===çµ¶å¯Ÿæ Œ===
ç¶æ
åè©ãååã圢容è©ã®äž»èªã«å¯ŸããŠã¯çµ¶å¯Ÿæ ŒããšããŸãã<br>
{| class="wikitable"
|+ çµ¶å¯Ÿæ Œæ¥é èŸ
! !! åæ° !! è€æ°
|-
! äžäººç§°
| Ñ(Ñ)-|| Ò³(а)-
|-
! äºäººç§°(ç·)
| Ñ- || ÑÓ(Ñ)-
|-
! äºäººç§°(女)
| б(Ñ)- || ÑÓ(Ñ)-
|-
! äžäººç§°(人é)
| ÐŽ(Ñ)- || Ñ(Ñ)-
|-
! äžäººç§°(é人é)
| (О)- || Ñ(Ñ)-
|}
çµ¶å¯Ÿæ Œã¯èªåè©ãªãã°äž»èªãä»åè©ãªãã°ç®çæ ŒããšããŸããïŒããã«ã€ããŠã¯[[ã¢ãããºèª/åè©|åè©]]ã®é
ç®ã§è©³ããæ±ããŸã)
<br>
äžäººç§°é人éã®Ðž-ã¯éåžžããã®Ðž-ãæããŠããäž»èªãŸãã¯ç®çæ ŒãçŽåã«æ¥ãŠããå Žåã¯çç¥ããŸãããããã第äžé³ç¯ã«ã¢ã¯ã»ã³ããæ¥ãå Žåã¯æ¿å
¥æ¯é³"Ñ-"ã®ã¿ãæ¿å
¥ããŸãã
*ÐÒµÓа ÑÒПÑп. ããããããã
*УажÓÑ Ð°ÑÐ°Ð°Ò Ð°Ð°Ð±Ð° ÑÒПÑп. ä»8æã§ãã
*СаÑа ОÑÑÑ
ÑÓ¡Ñп ÐлÑ
аÑ. ç§ã®ååã¯ã¢ã«ãã¹ã§ãã
**О(çµ¶å¯Ÿæ Œ æããŠããã®ã¯ÐлÑ
аÑ)-ÑÑ(屿 Œ)-Ñ
ÑÓ¡(åå)-Ñп(çŸåšçµæ¢æå¶)
*СаÑа ÐлÑ
Ð°Ñ ÑÑÑ
ÑÓ¡Ñп. ç§ã®ååã¯ã¢ã«ãã¹ã§ãã
**0("åå"ãæããŠããÐлÑ
аÑãçŽåã«æ¥ãŠããã®ã§çç¥)-ÑÑ(屿 Œ)-Ñ
ÑÓ¡(åå)-Ñп(çŸåšçµæ¢æå¶)
*ÐааÑа ОбзОПÑп. (ããã¯)ãšãŠãè¯ãã
**è¿°èªïŒè¯ãïŒãäœãæããŠãããäžæäžã§èªãããŠããªãæïŒãã€äººéãæããŠããªãæïŒã¯å¿
ãçµ¶å¯Ÿæ ŒÐž-ãã€ãã
===æå¶===
ã¢ãããºèªã¯äžè¬çã«åè©ã®æã¯æå¶ã®çš®é¡ãå€ããããŸãããåè©ã»åœ¢å®¹è©ã»ç¶æ
åè©ã®æã¯ååãçŸåšæå¶ãšé廿å¶ã®ã¿ãååšããŸãã
æªæ¥æå¶ãäœãããå Žåã¯åè©ã®èªå¹¹ã«-заа-ãæ¿å
¥ããåäœåè©ã®'''çŸåšåœ¢'''æå¶ãä»ãã圢ã§è¡šããŸãã
çµæ¢åœ¢ã¯æã®æåŸã«æ¥ã圢ã§ããéçµæ¢åœ¢ã¯ãã®ããšã«ãŸã æãç¶ã圢ã§ãã
{| class="wikitable"
|+ ç¶æ
æå¶
! !! è¯å® !! åŠå®
|-
! çŸåšçµæ¢
| -Ñп || -ÐŒ
|-
! éå»çµæ¢
| -М || -ÐŒÑзÑ
|-
! çŸåšéçµæ¢
| -Ñ || -ÐŒ
|-
! éå»éçµæ¢
| -з || -ÐŒÑз
|-
! æªæ¥çµæ¢
| -зааÑÐµÐžÑ || -зааÑаЌ
|-
! æªæ¥éçµæ¢
| -зааÑа || -ÐŒ-(åè©èªå¹¹)-зааÑа
|}
===äŸ===
*СаÑа ÑÑÑҵаҩÑп. ç§ã¯è¬åž«ã§ãã а-ÑҵаҩÑ:è¬åž«
**СÑ(çµ¶å¯Ÿæ Œ)-ÑҵаҩÑ-Ñп.
*Саб ÐŽÑÑҵаҩÑМ. ç§ã®ç¶ã¯è¬åž«ã§ããã
**С-аб ÐŽÑ(çµ¶å¯Ÿæ Œ)-ÑҵаҩÑ-М.
***-Ò©Ñã®Ñãæ¶ããçç±ã¯[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]åç
§
*ÐаÑа ÐŽÑÑҵаҩÑз, аÑ
а ÑажÓÑ Ð°ÑÓа ЎавÑПÑÑп. 圌女ã¯è¬åž«ã§ãããããããä»ã¯äœè©å®¶(аÑÓа(æ) авÑПÑ(èè
/ãã·ã¢èª))ã§ãã
**ÐаÑа (代åè©/圌女) ÐŽÑ-ÑҵаҩÑ-з, аÑ
а(ããã) ÑажÓÑ(ä») аÑÓа ÐŽ(çµ¶å¯Ÿæ Œ)-авÑПÑ-Ñп.
*ÐÑО аҵÓа ЎааÑа ОбзОПÑп.ããã®ãããã¯ãšãŠãè¯ãã§ãã
**ÐÑО аҵÓа(ããã) ЎааÑа(ãšãŠã) О-бзОа(è¯ã)-Ñп.
*Ð°ÐŒÑ Ð±Ð·ÐžÐ°Ð·Ð°Ð°ÑеОÑ.ãæŽããã§ãããã
**Ð°ÐŒÑ Ð±Ð·ÐžÐ° - æŽã
==ç¹èŸ==
ã¢ãããºèªã«ã¯ã³ãã¥ã©ã«çžåœãããã®ãšããŠã以äžã®ãããªè¡šçŸãååšããŸãã
{| class="wikitable"
|+ ã³ãã¥ã©ïŒçŸåšåœ¢è¯å®ïŒ
! !! åæ° !! è€æ°
|-
! äžäººç§°
| ÑПÑп|| ҳаÑп
|-
! äºäººç§°(ç·)
| ÑПÑп || ÑÓПÑп
|-
! äºäººç§°(女)
| бПÑп || ÑÓПÑп
|-
! äžäººç§°(ç·)
| ОПÑп || ÑПÑп
|-
! äžäººç§°(女)
| лПÑп || ÑПÑп
|-
! äžäººç§°(é人é)
| аÑп|| ÑПÑп
|}
===äŸæ===
*ÐÑО ÐлÑ
Ð°Ñ ÐžÐŸÑп.ããã¡ãã¯ã¢ã«ãã¹ã§ãã
**ÐÑО(代åè©) ÐлÑ
Ð°Ñ Ðž-а-Ñп
*УО ÑаÑÑа ÐлÑ
Ð°Ñ ÐžÐŸÑп.ãããã¯ç§ã®å
åŒã®ã¢ã«ãã¹ã§ãã
**УО(代åè©) Ñ(屿 Œ)-аÑÑа ÐлÑ
Ð°Ñ Ðž-а-Ñп.
*ÐМО ÑаÑа ÑÑÒ©ÐœÑ Ð°Ñп. ããã¯ç§ã®å®¶ã§ãã (å®¶:а-ҩМÑ)
**ÐМО (代åè©) ÑаÑа ÑÑ(屿 Œ)-Ò©ÐœÑ Ð°-Ñп.
=== акÓзааÑа ===
çŸåšåœ¢è¯å®ä»¥å€ã®åŠå®ãéå»åœ¢ã«ã€ããŠã¯åè©'''а'''кÓзааÑаã䜿ããŸãã
===äŸæ===
*ÐÑО ÐлÑ
Ð°Ñ ÐžÐ°ÐºÓÑÐŒ.ããã¡ãã¯ã¢ã«ãã¹ã§ã¯ãããŸããã
**ÐÑО(代åè©) ÐлÑ
Ð°Ñ Ðž-акÓÑ-ÐŒ.
*УО ÑаÑÑа ÐлÑ
Ð°Ñ ÐžÐ°ÐºÓÑМ.ãããã¯ç§ã®å
åŒã®ã¢ã«ãã¹ã§ããã
**УО(代åè©) Ñ(屿 Œ)-аÑÑа ÐлÑ
Ð°Ñ Ðž-акÓÑ-М.
*ÐМО ÑаÑа ÑÑÒ©ÐœÑ Ð°ÐºÓÐŒÑзÑ. ããã¯ç§ã®å®¶ã§ã¯ãªãã£ãã (å®¶:а-ҩМÑ)
**ÐМО (代åè©) ÑаÑа ÑÑ(屿 Œ)-Ò©ÐœÑ Ð°ÐºÓ-ÐŒÑзÑ.
===ã¢ããæã代åè©===
ã¢ããæã代åè©ãšããŠã¯äž»ã«ãã®ïŒã€ã䜿ãããŸãããç¹ã«ÑО/ÑÑÒã«ã€ããŠã¯ã¢ãã«éãã人ãæãäºããããŸãã
*а(б)ÑО ãã / а(ба)ÑÒãããã
**èŠçã«ååšããŠè¿ãã«ãããã®ã人ãæãã
*а(б)МО ãã / а(ба)МÒãããã
**èŠçã«ååšããŠé ãã«ãããã®ã人ãæãã
*Ñ(бÑ)О ããã»ãã / Ñ(ба)ÑÒããããã»ããã
**èŠçã«ååšããªããã®ã人ãæãã
[[ã«ããŽãª:ã¢ãããºèª]] | null | 2022-11-22T16:53:14Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%83%96%E3%83%8F%E3%82%BA%E8%AA%9E/%E5%90%8D%E8%A9%9E |
24,904 | ã²ã¹ã¿ã»ããŒããŒããŒã«ã | ã²ã¹ã¿ã»ããŒããŒããŒã«ã (ã©ãã³èª Gesta RÅmÄnÅrum) ã¯ãäžäžãšãŒãããã®ããªã¹ãæç€ŸäŒã«ããã代衚çãªã©ãã³èªã®èª¬è©±éã§ããã
忬ã¯è¥¿æŠ13äžçŽé ã«ç·šãŸãããšèããããŠããããå°å·æ¬ãåè¡ãããããã«ãªã£ãŠãã181話ã宿¬ãšãªããããã«ç·šè
ã«ãã£ãŠåè©±ãæ¹å€ãããããæ°å話ãä»ãå ããããããããããã
ããã§ã¯ãäžäžã©ãã³æåŠãèªãææãšããŠãäžäžã©ãã³èªã§æžãããåæããçã話ãäžå¿ã«æ¡ãäžããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã²ã¹ã¿ã»ããŒããŒããŒã«ã (ã©ãã³èª Gesta RÅmÄnÅrum) ã¯ãäžäžãšãŒãããã®ããªã¹ãæç€ŸäŒã«ããã代衚çãªã©ãã³èªã®èª¬è©±éã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "忬ã¯è¥¿æŠ13äžçŽé ã«ç·šãŸãããšèããããŠããããå°å·æ¬ãåè¡ãããããã«ãªã£ãŠãã181話ã宿¬ãšãªããããã«ç·šè
ã«ãã£ãŠåè©±ãæ¹å€ãããããæ°å話ãä»ãå ããããããããããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ãäžäžã©ãã³æåŠãèªãææãšããŠãäžäžã©ãã³èªã§æžãããåæããçã話ãäžå¿ã«æ¡ãäžããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "åèæç®1"
}
]
|
ã²ã¹ã¿ã»ããŒããŒããŒã«ã ã¯ãäžäžãšãŒãããã®ããªã¹ãæç€ŸäŒã«ããã代衚çãªã©ãã³èªã®èª¬è©±éã§ããã ããã§ã¯ãäžäžã©ãã³æåŠãèªãææãšããŠãäžäžã©ãã³èªã§æžãããåæããçã話ãäžå¿ã«æ¡ãäžããã | [[ç»å:Gesta Romanorum - Donaueschingen 82r.jpg|thumb|ãã²ã¹ã¿ã»ããŒããŒããŒã«ã ãã®åæ¬ã®äžéšã]]
<div style="font-family:Monotype Corsiva;font-style:italic;font-size:50pt;color:#990033;text-align:center;">ð²ðððð ðœðððððððð</div>
'''ã²ã¹ã¿ã»ããŒããŒããŒã«ã ''' ïŒ<small>ã©ãã³èª</small> <span style="font-family:Times New Roman;font-style:normal;font-size:15pt;">[[w:la:Gesta Romanorum|Gesta RÅmÄnÅrum]]</span>ïŒ ã¯ãäžäžãšãŒãããã®ããªã¹ãæç€ŸäŒã«ããã代衚çãªã©ãã³èªã®èª¬è©±éã§ããã
<div style="background-color:#ffc;>æžåã¯ãããŒã人ãã¡ã®äºçžŸããæå³ãããããã²ã¹ã¿ïŒGestaïŒãã¯äžäžçã«ã¯ãç©èªããšããæå³ã«ãªãããããŒã人ãã¡ã®ç©èªããšè§£éããããæžåã®éããå€ä»£ããŒãã®äŒæ¿ãªã©ãäžæ·ãã«ããŠãããšèããããããæ¬æžãæ±ã£ãŠããç¯å²ã¯å€ä»£ã®ãªã·ã¢ã»ããŒãããäžäžãšãŒããããããã«ã¯ååè»ãããããããšæãããæ±æ¹ã®èª¬è©±ã«ãåãã§ããã顿ã¯ããŸããŸãªãžã£ã³ã«ã«ãããããã«ããªãã¯ã®èè·è
ã説æã®éã«è©±ã®ãã¿ãšããŠå©çšã§ããããã«ãå話ã®ãæ¬ç·šãã®åŸã«ãèšæãïŒMÅrÄlisaciÅïŒãšããŠããªã¹ãæçãªè§£éç·šãä»ãããŠããã
忬ã¯è¥¿æŠ13äžçŽé ã«ç·šãŸãããšèããããŠããããå°å·æ¬ãåè¡ãããããã«ãªã£ãŠãã181話ã宿¬ãšãªããããã«ç·šè
ã«ãã£ãŠåè©±ãæ¹å€ãããããæ°å話ãä»ãå ããããããããããã
</div>
ããã§ã¯ãäžäžã©ãã³æåŠãèªãææãšããŠãäžäžã©ãã³èªã§æžãããåæããçã話ãäžå¿ã«æ¡ãäžããã
__notoc__
== ã¯ããã ==
*[[/å
容玹ä»]]ããã{{鲿|00%|2019-01-30}}
== åæãšæ³šè§£ ==
{{é²æç¶æ³}}
*宿¬å€ ïŒ50åèªïŒ '''[[/De philomela et buphone]]'''ããã{{鲿|50%|2019-06-16}}
*第52話 ïŒ72åèªïŒã'''[[/De Fabio, qui captivos redimerat]]'''ããã{{鲿|50%|2019-01-17}}
== åæåºå
ž ==
*[[s:la:Gesta Romanorum (Oesterley)]] ïŒWikisource ã©ãã³èªçïŒ
:ãã€ãèªåŠè
ã»åžæžã®ãã«ãã³ã»ãšãŒã¹ã¿ã©ã€ïŒHermann OesterleyïŒ1834â1891ïŒç·šã宿¬181話ãåé²ã
== åèæç®1 ==
== åèæç®2 ==
*{{Cite book |åæž |author=[[w:åœååä¹å©|åååä¹å©]] |title=æ°ç äžäžã©ãã³èªå
¥é|publisher=[[w:å€§åŠæžæ|å€§åŠæžæ]] |date=2007-1|isbn=978-4-475-01878-4|ref=åå 1975,2007}}
*:(çµ¶çã«ãªã£ãŠãããååèãäžäžã©ãã³èªå
¥éãã[[w:åæ±å |åæ±å ]]ã1975幎ãã®æ°ç)
== é¢é£èšäº ==
{{commons|Category:Gesta Romanorum|Gesta Romanorumã®ã«ããŽãª}}
*[[s:la:Gesta Romanorum (Oesterley)]]
*[[s:en:Gesta Romanorum]]
**[[s:en:Gesta Romanorum (1871)]]
**[[s:en:Gesta Romanorum (1905)]]
*[[w:la:Gesta Romanorum]]
*[[w:en:Gesta Romanorum]]
*[[w:fr:Gesta Romanorum]]
== èæ³š ==
<references />
== å€éšãªã³ã¯ ==
=== Hermann Oesterley é¢é£ ===
*[http://www.worldcat.org/identities/lccn-n87-128470/ Oesterley, Hermann 1834-1891 WorldCat Identities]
*:[https://www.worldcat.org/title/gesta-romanorum/oclc/2146479 Gesta Romanorum, (æžç±, 1872) [WorldCat.org]]
*[https://www.wikidata.org/wiki/Q15722354 Hermann Oesterley - Wikidata]
**[[s:de:Hermann Oesterley]](1833-1891)
**[[s:en:Author:Hermann Oesterley]]
[[Category:ã²ã¹ã¿ã»ããŒããŒããŒã«ã |*]]
[[Category:äžäžã©ãã³èª|ããã]]
[[Category:ã©ãã³æåŠ|ããã]] | 2019-01-10T12:24:30Z | 2023-10-05T13:37:31Z | [
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:Cite book",
"ãã³ãã¬ãŒã:Commons"
]
| https://ja.wikibooks.org/wiki/%E3%82%B2%E3%82%B9%E3%82%BF%E3%83%BB%E3%83%AD%E3%83%BC%E3%83%9E%E3%83%BC%E3%83%8E%E3%83%BC%E3%83%AB%E3%83%A0 |
24,906 | ã²ã¹ã¿ã»ããŒããŒããŒã«ã /De Fabio, qui captivos redimerat | (s:la:Gesta Romanorum (Oesterley)/52 ãå
ã«ãã¬ã¯ã©ã æåº«çãªã©ãåèã«ããŠãè¥å¹²ã®ä¿®æŽãæœããã)
Refert Valerius, quod Fabius redemerat captivos Romanorum promissa pecunia, quam cum senatus dare nollet, ipse fundum unicum habens vendidit et promissum premium solvit, volens se pocius patrimonio privare, quam propria fide inopem esse.
Moralisacio : Carissimi, Fabius iste est dominus noster Ihesus Christus, qui ob captivos, scilicet totum genus humanum a diabolo captum, non pecuniam, sed proprium sanguinem dedit in precium, volens se pocius patrimonio, scilicet vita propria, privare, quam genus humanum dimittere.
Refert Valerius, quod Fabius redÄmerat captÄ«vÅs RÅmÄnÅrum prÅmissÄ pecÅ«niÄ, quam cum senÄtus dare nÅllet, ipse fundum Å«nicum habÄns vÄndidit et prÅmissum premium solvit, volÄns sÄ pocius pÄtrimÅniÅ prÄ«vÄre, quam propriÄ fidÄ inopem esse.
MÅrÄlisaciÅ : CÄrissimÄ«, Fabius iste est dominus noster IhÄsus Christus, quÄ« ob captÄ«vÅs, scÄ«licet tÅtum genus hÅ«mÄnum Ä diabolÅ captum, nÅn pecÅ«niam, sed proprium sanguinem dedit in precium, volÄns sÄ pocius pÄtrimÅniÅ, scÄ«licet vÄ«tÄ propriÄ, prÄ«vÄre, quam genus hÅ«mÄnum dÄ«mittere.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "(s:la:Gesta Romanorum (Oesterley)/52 ãå
ã«ãã¬ã¯ã©ã æåº«çãªã©ãåèã«ããŠãè¥å¹²ã®ä¿®æŽãæœããã)",
"title": "ã©ãã³èªåæ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Refert Valerius, quod Fabius redemerat captivos Romanorum promissa pecunia, quam cum senatus dare nollet, ipse fundum unicum habens vendidit et promissum premium solvit, volens se pocius patrimonio privare, quam propria fide inopem esse.",
"title": "ã©ãã³èªåæ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Moralisacio : Carissimi, Fabius iste est dominus noster Ihesus Christus, qui ob captivos, scilicet totum genus humanum a diabolo captum, non pecuniam, sed proprium sanguinem dedit in precium, volens se pocius patrimonio, scilicet vita propria, privare, quam genus humanum dimittere.",
"title": "ã©ãã³èªåæ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "ã©ãã³èªåæ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Refert Valerius, quod Fabius redÄmerat captÄ«vÅs RÅmÄnÅrum prÅmissÄ pecÅ«niÄ, quam cum senÄtus dare nÅllet, ipse fundum Å«nicum habÄns vÄndidit et prÅmissum premium solvit, volÄns sÄ pocius pÄtrimÅniÅ prÄ«vÄre, quam propriÄ fidÄ inopem esse.",
"title": "泚解ä»ãããã¹ã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "MÅrÄlisaciÅ : CÄrissimÄ«, Fabius iste est dominus noster IhÄsus Christus, quÄ« ob captÄ«vÅs, scÄ«licet tÅtum genus hÅ«mÄnum Ä diabolÅ captum, nÅn pecÅ«niam, sed proprium sanguinem dedit in precium, volÄns sÄ pocius pÄtrimÅniÅ, scÄ«licet vÄ«tÄ propriÄ, prÄ«vÄre, quam genus hÅ«mÄnum dÄ«mittere.",
"title": "泚解ä»ãããã¹ã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": "æ¥æ¬èªèš³ã®äŸ"
}
]
| null | <div style="font-family:Monotype Corsiva;font-style:italic;font-size:40pt;color:#990033;text-align:center;">De Fabio, qui captivos redimerat</div>
== ã©ãã³èªåæ ==
ïŒ[[s:la:Gesta Romanorum (Oesterley)/52]] ãå
ã«ãã¬ã¯ã©ã æåº«çãªã©ãåèã«ããŠãè¥å¹²ã®ä¿®æŽãæœãããïŒ
<div style="font-family:Times New Roman;font-style:normal;font-size:15pt;color:#333;text-align:left;">
Refert Valerius, quod Fabius redemerat captivos Romanorum promissa pecunia, quam cum senatus dare nollet, ipse fundum unicum habens vendidit et promissum premium solvit, volens se pocius patrimonio privare, quam propria fide inopem esse.
'''''Moralisacio''''' : Carissimi, Fabius iste est dominus noster Ihesus Christus, qui ob captivos, scilicet totum genus humanum a diabolo captum, non pecuniam, sed proprium sanguinem dedit in precium, volens se pocius patrimonio, scilicet vita propria, privare, quam genus humanum dimittere.
</div>
== 泚解ä»ãããã¹ã ==
<div style="font-family:Times New Roman;font-style:normal;font-size:15pt;color:#333;text-align:left;">
Refert<ref>[[wikt:en:refert|refert]] ã¯ãäžèŠååè©[[wikt:en:refero|referÅ]]ã®äžäººç§°ã»åæ°ã»çŸåšã»èœåã»çŽæ¥æ³ ã圌ã¯èªã£ãŠããã
</ref> Valerius<ref>[[wikt:en:Valerius#Latin|Valerius]]ã¯ã第äºå€åã»ç·æ§ã»åºæåè©ã®åæ°ã»äž»æ Œã§ãããŒãã®æ°æåããŠã¡ã¬ãªãŠã¹ïŒãïŒã</ref>, quod<ref>[[wikt:en:quod#Conjunction|quod]]ã¯ãæ¥ç¶è©ãïœããšïŒãïŒã</ref> Fabius<ref>[[wikt:en:Fabius#Latin|Fabius]]ã¯ã第äºå€åã»ç·æ§ã»åºæåè©ã®åæ°ã»äž»æ Œã§ãããŒãã®æ°æåããã¡ããŠã¹ïŒãïŒã</ref> redÄmerat<ref>[[wikt:en:redemerat|redÄmerat]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:redimo#Latin|redimÅ]] ãè²·ãæ»ãã身è«ããããæåºãããã®äžäººç§°ã»åæ°ã»<u>éå»å®äº</u>ã»èœåã»çŽæ¥æ³ãã身è«ãããŠããã</ref> captÄ«vÅs<ref>[[wikt:en:captivos|captÄ«vÅs]]ã¯ã第äºå€åã»ç·æ§åè©[[wikt:en:captivus|captÄ«vus]]ãæèãã®è€æ°ã»å¯Ÿæ Œ ãæèãã¡ãã</ref> RÅmÄnÅrum<ref>[[wikt:en:Romanorum|RÅmÄnÅrum]]ã¯ã圢容è©[[wikt:en:Romanus|RÅmÄnus]]ãããŒã人ã®ãã®ç·æ§ã»è€æ°ã»å±æ ŒãcaptÄ«vÅsã修食ããæ§ã»æ°ã»æ ŒãäžèŽãããŠããã</ref> prÅmissÄ<ref>[[wikt:en:promissa|prÅmissÄ]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:promitto|prÅmittÅ]]ãçŽæãããä¿èšŒãããã®å®äºåååè©[[wikt:en:promissus|prÅmissus]]ã®å¥³æ§ã»åæ°ã»å¥ªæ ŒãpecÅ«niÄã«æ§ã»æ°ã»æ ŒãäžèŽãããŠããã</ref> pecÅ«niÄ<ref>[[wikt:en:pecunia|pecÅ«niÄ]]ã¯ã第äžå€åã»å¥³æ§åè©[[wikt:en:pecunia|pecÅ«nia]]ãééãã®åæ°ã»å¥ªæ Œ</ref>, <ref>cum ïœ nollet ïŒ cum ïŒæ¥ç¶æ³ã§ãçç±ãã衚ããç¯ãé¢ä¿ä»£åè©quamãcumããå
ãããã</ref>quam<ref>[[wikt:en:quam#Etymology_2|quam]]ã¯ãé¢ä¿ä»£åè©[[wikt:en:qui#Etymology_1|quÄ«, quae, quod]]ã®å¥³æ§ã»åæ°ã»å¯Ÿæ ŒããããããpecÅ«niÄãåããŠããã</ref> cum<ref>[[wikt:en:cum#Etymology_2_2|cum]]ã¯ãæ¥ç¶è©ã§ãæ¥ç¶æ³ã®åè©ã䌎ã£ãŠçç±ã衚ããã</ref> senÄtus<ref>[[wikt:en:senatus#Latin|senÄtus]]ã¯ã第åå€åã»ç·æ§åè©ãå
èé¢ãã®åæ°ã»äž»æ Œãå
èé¢ããã</ref> dare<ref>[[wikt:en:dare#Latin|dare]]ã¯ãç¬¬äžæŽ»çšã»äžèŠååè©[[wikt:en:do#Latin|dÅ]]ãäžãããæ¯æããã®çŸåšã»èœåã»äžå®æ³ãäžããããšãæ¯æãããšãã</ref> nÅllet<ref>[[wikt:en:nollet|nÅllet]]ã¯ãäžèŠååè©[[wikt:en:nolo#Latin|nÅlÅ]]ãæ¬²ããªããæçµ¶ãããã®äžäººç§°ã»åæ°ã»<u>æªå®äºéå»</u>ã»èœåã»<u>æ¥ç¶æ³</u>
</ref>, ipse<ref>[[wikt:en:ipse#Latin|ipse]]ã¯ã人称代åè©ipse, ipsa, ipsumãèªèº«ãã®ç·æ§ã»åæ°ã»äž»æ Œãèªèº«ãã</ref> fundum<ref>[[wikt:en:fundum#Latin|fundum]]ã¯ã第äºå€åã»ç·æ§åè©[[wikt:en:fundus#Latin|fundus]]ãå°æãèå°ãã®åæ°ã»å¯Ÿæ Œãå°æããèå°ãã</ref> Å«nicum<ref>[[wikt:en:unicum#Latin|Å«nicum]]ã¯ã圢容è©[[wikt:en:unicus#Latin|Å«nicus, Å«nica, Å«nicum]]ãå¯äžã®ãã®ç·æ§ã»åæ°ã»å¯Ÿæ Œãfundumã修食ããæ§ã»æ°ã»æ ŒãäžèŽãããŠããã</ref> habÄns<ref>[[wikt:en:habens|habÄns]]ã¯ãç¬¬äºæŽ»çšåè©[[wikt:en:habeo#Latin|habeÅ]]ãæã€ãææãããã®çŸåšèœååè©ãæã£ãŠãããã</ref> vÄndidit<ref>[[wikt:en:vendidit|vÄndidit]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:vendo#Latin|vÄndÅ]]ã売ããã®äžäººç§°ã»åæ°ã»<u>å®äº</u>ã»èœåã»çŽèª¬æ³ã売ã£ããã</ref> et<ref>[[wikt:en:et#Latin|et]]ã¯ãæ¥ç¶è©ããšãããã³ããããŠã</ref> prÅmissum<ref>prÅmissumã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:promitto|prÅmittÅ]]ãçŽæãããä¿èšŒãããã®å®äºåååè©[[wikt:en:promissus|prÅmissus]]ã®äžæ§ã»åæ°ã»å¯Ÿæ Œãpremiumã«æ§ã»æ°ã»æ ŒãäžèŽãããŠããã</ref> premium<ref>premiumã¯ãäžäžã©ãã³èªã®ç¬¬äºå€åã»äžæ§åè©ãå ±é
¬ãåããã®åæ°ã»å¯Ÿæ Œãå€å
žã©ãã³èªã®[[wikt:en:praemium|praemium]]ã®äºéæ¯é³aeãeã«å€åãã圢ã</ref> solvit<ref>[[wikt:en:solvit|solvit]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:solvo#Latin|solvÅ]]ãè§£ãããããã¯ãæ¯æããåŒæžãããã®äžäººç§°ã»åæ°ã»<u>å®äº</u>ã»èœåã»çŽèª¬æ³</ref>, volÄns<ref>[[wikt:en:volens|volÄns]]ã¯ãäžèŠååè©[[wikt:en:volo#Etymology_1|volÅ]]ãæ¬²ãããæããã®çŸåšèœååè©ã欲ããŠãããã</ref> sÄ<ref>[[wikt:en:se#Latin|sÄ]]ã¯ãäžäººç§°å垰代åè©ã®å¥ªæ Œãèªåãããã</ref> pocius<ref>pociusã¯ãäžäžã©ãã³èªã®å¯è©ã§ pocius ïœ quam  ãã»ã»ã»ãããããïœããå€å
žã©ãã³èªã®[[wikt:en:potius#Adverb|potius]]ã®tiãciã«å€åãã圢ã</ref> pÄtrimÅniÅ<ref>[[wikt:en:patrimonio#Latin|pÄtrimÅniÅ]]ã¯ã第äºå€åã»äžæ§åè©[[wikt:en:patrimonium|patrimÅnium]]ãäžè¥²è²¡ç£ãçžç¶è²¡ç£ãã®åæ°ã»å¥ªæ Œã</ref> prÄ«vÄre<ref>[[wikt:en:privare#Latin|prÄ«vÄre]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:privo#Latin|prÄ«vÅ]]ãïŒå¯Ÿæ ŒïŒããïŒå¥ªæ ŒïŒã奪ããåãäžãããã®çŸåšã»èœåã»äžå®æ³</ref>, quam<ref>[[wikt:en:quam#Etymology_1|quam]]ã¯ãæ¥ç¶è©ã§ãããããã</ref> propriÄ<ref>[[wikt:en:propria#Adjective_2|propriÄ]]ã¯ã圢容è©[[wikt:en:proprius#Latin|proprius, -a, -um]]ãèªåã®ãåºæã®ãå人ã®ãã®å¥³æ§ã»åæ°ã»å¥ªæ Œã</ref> fidÄ<ref>[[wikt:en:fide#Etymology_1|fidÄ]]ã¯ã第äºå€åã»å¥³æ§åè©[[wikt:en:fides#Latin|fidÄs]]ã信矩ãä¿¡é Œãã®åæ°ã»å¥ªæ Œã</ref> inopem<ref>[[wikt:en:inopem|inopem]]ã¯ã圢容è©[[wikt:en:inops#Latin|inops]]ãïŒå¥ªæ ŒïŒã«æ¬ ä¹ããŠãããã®ç·æ§ã»åæ°ã»å¯Ÿæ Œã</ref> esse<ref>[[wikt:en:esse#Etymology_1_2|esse]]ã¯ãäžèŠååè©[[wikt:en:sum#Latin|sum]]ã®çŸåšã»äžå®æ³ã</ref>.
'''''MÅrÄlisaciÅ'''''<ref>MÅrÄlisaciÅ ã¯ãäžäžã©ãã³èªã®èªåœã§ããé埳çæèšãèšæããªã©ãšèš³ãããŠããïŒ[[ã²ã¹ã¿ã»ããŒããŒããŒã«ã #åå 1975,2007|#åå 1975,2007]]ã®p.209ãåç
§ïŒã</ref> : CÄrissimÄ«<ref>[[wikt:en:carissimi#Latin|cÄrissimÄ«]]ã¯ã圢容è©[[wikt:en:carus#Latin|cÄrus, cÄra, cÄrum]]ã芪æãªãã®æäžçŽ[[wikt:en:carissimus|cÄrissimus]]ã®ç·æ§ã»è€æ°ã»åŒæ Œã芪æãªãè
ãã¡ããã</ref>, Fabius iste<ref>[[wikt:en:iste#Latin|iste]]ã¯ãæç€ºåœ¢å®¹è©ã®ç·æ§ã»åæ°ã»äž»æ Œãå€å
žã©ãã³èªã§ã¯äºäººç§°çã«çšããããããšãå€ãããäžäžã©ãã³èªã§ã¯ãã°ãã°äžäººç§°çã«çšããããã</ref> est<ref>[[wikt:en:est#Etymology_1_3|est]]ã¯ãäžèŠååè©[[wikt:en:sum#Latin|sum]]ã®äžäººç§°ã»åæ°ã»çŸåšã»èœåã»çŽèª¬æ³ãïœã§ãããã</ref> dominus<ref>[[wikt:en:dominus#Latin|dominus]]ã¯ã第äºå€åã»ç·æ§åè©ã䞻人ãã®åæ°ã»äž»æ Œ</ref> noster<ref>[[wikt:en:noster|noster]]ã¯ãææåœ¢å®¹è©ãæã
ã®ãã®ç·æ§ã»åæ°ã»äž»æ Œ</ref> IhÄsus<ref>IhÄsusã¯ã第åå€åã»ç·æ§ã»åºæåè©ãã€ããŒã¹ã¹ãã®åæ°ã»äž»æ Œã§ã[[wikt:en:Iesus#Latin|IÄsus]]ãã€ãšãŒã¹ã¹ãã®å¥åœ¢ã</ref> Christus<ref>[[wikt:en:Christus#Latin|Christus]]ã¯ã第äºå€åã»ç·æ§åè©ãã¯ãªã¹ãã¥ã¹ïŒããªã¹ãïŒãã®åæ°ã»äž»æ Œã</ref>, quÄ«<ref>[[wikt:en:qui#Etymology_1|quÄ«]]ã¯ãé¢ä¿ä»£åè©quÄ«, quae, quodã®ç·æ§ã»åæ°ïŒãŸãã¯è€æ°ïŒã»äž»æ Œã</ref> ob<ref>[[wikt:en:ob#Latin|ob]]ã¯ãå眮è©ãïŒå¯Ÿæ ŒïŒã®ããã«ãã</ref> captÄ«vÅs, scÄ«licet<ref>[[wikt:en:scilicet#Latin|scÄ«licet]]ã¯ãå¯è©ãããªãã¡ãã</ref> tÅtum<ref>[[wikt:la:totum|tÅtum]]ã¯ã第äºå€åã»äžæ§åè©ãå
šäœãã®åæ°ã»å¯Ÿæ Œã</ref> genus<ref>[[wikt:en:genus#Etymology_1|genus]]ã¯ã第äžå€åã»äžæ§åè©ãçš®æãã®åæ°ã»å¯Ÿæ Œã</ref> hÅ«mÄnum<ref>[[wikt:en:humanum|hÅ«mÄnum]]ã¯ã圢容è©[[wikt:en:humanus#Latin|hÅ«mÄnus, -a, -um]]ã人éã®ãã®äžæ§ã»åæ°ã»å¯Ÿæ Œã</ref> Ä<ref>[[wikt:en:a#Etymology_3_10|Ä]]ã¯ãå眮è©ãïŒå¥ªæ ŒïŒã«ãã£ãŠãã</ref> diabolÅ<ref>[[wikt:en:diabolo#Latin|diabolÅ]]ã¯ã第äºå€åã»ç·æ§åè©[[wikt:en:diabolus#Latin|diabolus]]ãæªéãã®åæ°ã»å¥ªæ Œã</ref> captum<ref>[[wikt:en:captum#Participle|captum]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:capio#Etymology_1|capiÅ]]ãæããããã®å®äºåååè©[[wikt:en:captus#Participle|captus]]ã®äžæ§ã»åæ°ã»å¯Ÿæ Œã</ref>, nÅn<ref>[[wikt:en:non#Latin|nÅn]]ã¯ãåŠå®èŸãïœã§ãªããã</ref> pecÅ«niam<ref>[[wikt:en:pecuniam|pecÅ«niam]]ã¯ã第äžå€åã»å¥³æ§åè©[[wikt:en:pecunia|pecÅ«nia]]ãééãã®åæ°ã»å¯Ÿæ Œã</ref>, sed<ref>[[wikt:en:sed#Latin|sed]]ã¯ãæ¥ç¶è©ããããããnÅn ïœ sed  ãïœã§ãªããã</ref> proprium<ref>[[wikt:en:proprium#Latin|proprium]]ã¯ã圢容è©[[wikt:en:proprius#Latin|proprius, -a, -um]]ãèªåã®ãåºæã®ãå人ã®ãã®ç·æ§ã»åæ°ã»å¯Ÿæ Œãsanguinemã修食ããæ§ã»æ°ã»æ ŒãäžèŽãããŠããã</ref> sanguinem<ref>[[wikt:en:sanguinem|sanguinem]]ã¯ã第äžå€åã»ç·æ§åè©[[wikt:en:sanguis#Latin|sanguis]]ãè¡ãã®åæ°ã»å¯Ÿæ Œã</ref> dedit<ref>[[wikt:en:dedit|dedit]]ã¯ãç¬¬äžæŽ»çšã»äžèŠååè©[[wikt:en:do#Latin|dÅ]]ãäžãããæ§ãããã®äžäººç§°ã»åæ°ã»<u>å®äº</u>ã»èœåã»çŽèª¬æ³ãæ§ãããã</ref> in<ref>inã¯ãå¥ªæ Œæ¯é
ãŸãã¯å¯Ÿæ Œæ¯é
ã®å眮è©ãïœïŒå¯Ÿæ ŒïŒã«ãããŠã</ref> precium<ref>preciumã¯ãäžäžã©ãã³èªã®ç¬¬äºå€åã»äžæ§åè©ã䟡å€ã代䟡ã代åãã®åæ°ã»å¯Ÿæ Œãå€å
žã©ãã³èªã®[[wikt:en:pretium|pretium]]ã®tiãciã«å€åãã圢ã</ref>, volÄns sÄ pocius pÄtrimÅniÅ, scÄ«licet vÄ«tÄ<ref>vÄ«tÄã¯ã第äžå€åã»å¥³æ§åè©[[wikt:en:vita#Latin|vÄ«ta]]ãçåœãã®åæ°ã»å¥ªæ Œã</ref> propriÄ, prÄ«vÄre, quam genus hÅ«mÄnum dÄ«mittere<ref>[[wikt:en:dimittere|dÄ«mittere]]ã¯ãç¬¬äžæŽ»çšåè©[[wikt:en:dimitto#Latin|dÄ«mittÅ]]ãæŸæ£ãããã®çŸåšã»èœåã»äžå®æ³ã</ref>.
</div>
=== èªé ===
<references />
=== ç¯ã»å¥ããšã®èš³ ===
;æ¬ç·š
*Refert Valerius, quod ïœ
**ãŠã¡ã¬ãªãŠã¹ã¯ä»¥äžã®ããšãè¿°ã¹ãŠããã
**:<span style="background-color:#ccffcc;">ïŒå€å
žã©ãã³èªã§ã¯äžå®æ³å¥ãçšããŠèªãããå
容ã衚ããããäžäžã©ãã³èªã§ã¯æ¥ç¶è©quodãçšããŠå¯æãšããããšãå€ããïŒ</span>
*Fabius redÄmerat captÄ«vÅs RÅmÄnÅrum prÅmissÄ pecÅ«niÄ,
**ãã¡ããŠã¹ã¯ééãçŽæããããšã§ããŒãäººã®æèãã¡ã身è«ãããŠãã <sub>(éå»å®äº)</sub> ãã
**:<span style="background-color:#ccffcc;">ïŒprÅmissÄ pecÅ«niÄ ïŒ ããæ¹ã衚ããå¥ªæ ŒãçŽæãããééã§ãã£ãŠãããŸãã¯çµ¶å¯Ÿå¥ªæ Œçã«ãééãçŽæããããšã«ãã£ãŠãïŒ</span>
*quam cum senÄtus dare nÅllet,
**å
èé¢ããããæ¯æãããšãæçµ¶ããŠãã <sub>(æªå®äºéå»)</sub> ã®ã§ã
**:<span style="background-color:#ccffcc;">ïŒæ¥ç¶æ³ã®åè©ã䌎ã£ãŠçç±ã衚ããcumã®ç¯ã§ãé¢ä¿ä»£åè©quamãå
ã«åºããïŒ</span>
*ipse fundum Å«nicum habÄns vÄndidit
**ïŒãã¡ããŠã¹ïŒèªèº«ãæã£ãŠããå¯äžã®å°æã売ãæã£ãŠ <sub>(å®äº)</sub> ã
*et prÅmissum premium solvit,
**çŽæãããŠããè³ åéãæ¯æã£ã <sub>(å®äº)</sub> ã
*volÄns sÄ pocius pÄtrimÅniÅ prÄ«vÄre, quam propriÄ fidÄ inopem esse.
**èªåã®ä¿¡çŸ©ãæ¬ ãããšãããããããå·±ããçžç¶è²¡ç£ã奪ãããšã欲ããŠããã®ã ã
**:<span style="background-color:#ccffcc;">ïŒçŸåšåè©å¥ã§ãäžèšã®è¡çºã®ç¶æ³ã説æããŠãããïŒ</span>
;èšæç·š
*MÅrÄlisaciÅ :
**èšæ
*CÄrissimÄ«,
**芪æãªãè
ãã¡ãã
**:<span style="background-color:#ccffcc;">ïŒèª¬æãèŽããŠããããªã¹ãæä¿¡è
ãã¡ãžã®åŒã³ããïŒ</span>
*Fabius iste est dominus noster IhÄsus Christus,
**ãã®ãã¡ããŠã¹ã¯ãæããäž»ã€ããŒã¹ã¹ã»ã¯ãªã¹ãã¥ã¹ <sub>ïŒã€ãšã¹ã»ããªã¹ãïŒ</sub> ã§ããã
*quÄ« ob captÄ«vÅs, scÄ«licet tÅtum genus hÅ«mÄnum Ä diabolÅ captum,
**æèãã¡ ââããªãã¡ãæªéã«ãã£ãŠãšããã«ããã人é¡å
šäœââ ã®ããã«ã
*nÅn pecÅ«niam, sed proprium sanguinem dedit in precium,
**ééã§ã¯ãªããèªåã®è¡ã代åã«æ§ããã®ã ã
*volÄns sÄ pocius pÄtrimÅniÅ, scÄ«licet vÄ«tÄ propriÄ, prÄ«vÄre, quam genus hÅ«mÄnum dÄ«mittere.
**人é¡ãèŠæ£ãŠãããšãããããããçžç¶è²¡ç£ ââããªãã¡èªåã®çåœââ ãå·±ãã奪ãããšã欲ããŠããã®ã ã
== ç©èªã®è§£èª¬ ==
== æ¥æ¬èªèš³ã®äŸ ==
== åè ==
== èæ³š ==
{{Reflist|group="泚"}}
[[Category:ã²ã¹ã¿ã»ããŒããŒããŒã«ã |052]] | null | 2019-06-02T11:19:53Z | [
"ãã³ãã¬ãŒã:Reflist"
]
| https://ja.wikibooks.org/wiki/%E3%82%B2%E3%82%B9%E3%82%BF%E3%83%BB%E3%83%AD%E3%83%BC%E3%83%9E%E3%83%BC%E3%83%8E%E3%83%BC%E3%83%AB%E3%83%A0/De_Fabio,_qui_captivos_redimerat |
24,909 | ç¥æžåŒ | ç¥æžåŒ(ããã¹ã¹ã)ã¯ãè¿ç¿æ¹èšã®äžçš®ã§ãå
µåº«çãäžå¿ã«è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ãããã¢ã¯ã»ã³ãã¯äº¬éªåŒã¢ã¯ã»ã³ãã䜿çšãããŠããã
ã¢ã¯ã»ã³ãã衚ãã®ã«ä»®åäžé³ããšã«ãé«ããšãäœãã衚ãH(è±èªã®highã®é æå)ãšL(è±èªã®lowã®é æå)ãçšããŠè¡šèšããã
å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããã
ç¥æžåŒã®ç¹åŸŽãšããŠã次ã®ãããªããšã倧ããåãäžããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¥æžåŒ(ããã¹ã¹ã)ã¯ãè¿ç¿æ¹èšã®äžçš®ã§ãå
µåº«çãäžå¿ã«è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ãããã¢ã¯ã»ã³ãã¯äº¬éªåŒã¢ã¯ã»ã³ãã䜿çšãããŠããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢ã¯ã»ã³ãã衚ãã®ã«ä»®åäžé³ããšã«ãé«ããšãäœãã衚ãH(è±èªã®highã®é æå)ãšL(è±èªã®lowã®é æå)ãçšããŠè¡šèšããã",
"title": "ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããã",
"title": "解説ã«ã€ããŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ç¥æžåŒã®ç¹åŸŽãšããŠã次ã®ãããªããšã倧ããåãäžããããã",
"title": "ç¥æžåŒã®ç¹åŸŽ"
}
]
| ç¥æžåŒïŒããã¹ã¹ãïŒã¯ãè¿ç¿æ¹èšã®äžçš®ã§ãå
µåº«çãäžå¿ã«è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ãããã¢ã¯ã»ã³ãã¯äº¬éªåŒã¢ã¯ã»ã³ãã䜿çšãããŠããã | '''ç¥æžåŒ'''ïŒããã¹ã¹ãïŒã¯ã[[w:è¿ç¿æ¹èš(é¢è¥¿åŒ)|è¿ç¿æ¹èš]]ã®äžçš®ã§ã[[w:å
µåº«ç|å
µåº«ç]]ãäžå¿ã«è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ãããã¢ã¯ã»ã³ãã¯[[w:京éªåŒã¢ã¯ã»ã³ã|京éªåŒã¢ã¯ã»ã³ã]]ã䜿çšãããŠããã
==ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ==
ã¢ã¯ã»ã³ãã衚ãã®ã«ä»®åäžé³ããšã«ãé«ããšãäœãã衚ãHïŒè±èªã®highã®é æåïŒãšLïŒè±èªã®lowã®é æåïŒãçšããŠè¡šèšããã
*äŸãã°å
±éèªã®ãè¹ããªãã°ããµããé«ããããã§äžããã®ã§HL ãç¥æžåŒã®ãéãããªãã°ããããé«ãããããäœãããããäœãã®ã§HLLãšãªãã
==解説ã«ã€ããŠ==
å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããã
:ãŸããç¥æžåŒã®æãç«ã¡äžã[[倧éªåŒ]]ãšå
±éããéšåãå€ãããããã¡ããåèã«ãããšããã
==ç¥æžåŒã®ç¹åŸŽ==
ç¥æžåŒã®ç¹åŸŽãšããŠã次ã®ãããªããšã倧ããåãäžããããã
*é²è¡ãç¶ç¶ã衚ãã®ã«ãïœãããããïœãšãããçšããã
**è¥å¹Žå±€ãäžå¿ã«[[w:é¢è¥¿å
±éèª|é¢è¥¿å
±éèª]]ã®åœ±é¿ã§ããïœãããã®äœ¿çšé »åºŠã¯äžããããïœãšãããåªå¢ãšãªã£ãŠããã
*éå»ã®åŠå®ã«ããããçšããã
:ãã®ä»ã®çšæ³ã¯[[w:ç¥æžåŒ|ç¥æžåŒ]]ãåç
§ã
==ç®æ¬¡==
*[[/èªåœ|èªåœ]]
*[[/æå®|æå®]]
*[[/éå»|éå»]]
*[[/åŠå®|åŠå®]]
*[[/é²è¡ã»ç¶ç¶|é²è¡ã»ç¶ç¶]]
*[[/åœä»€|åœä»€]]
*[[/çŠæ¢|çŠæ¢]]
*[[/ïœããã|ïœããã]]
*[[/ïœã¯ã|ïœã¯ã]]
*[[/䜿圹|䜿圹]]
*[[/å§èª|å§èª]]
*[[/äžå¯èœ|äžå¯èœ]]
*[[/ïœãã®ããŠïœ|ïœãã®ããŠïœ]]
*[[/å©è©ã®çç¥|å©è©ã®çç¥]]
[[ã«ããŽãª:æ¥æ¬èªã®æ¹èš|ç¥æžåŒ]]
{{stub}} | null | 2022-12-04T01:26:05Z | [
"ãã³ãã¬ãŒã:Stub"
]
| https://ja.wikibooks.org/wiki/%E7%A5%9E%E6%88%B8%E5%BC%81 |
24,910 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第2ååé¡3å1/è§£ç解説 | â»ä»¥äžãåé¡æã®æç€ºã«åŸã£ãŠèª²çšå£²äžå²åã60.0%ãšããã
âŽèª²çšå£²äžå²å<95%ãããä»å
¥çšé¡ãæåèšç®ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "â»ä»¥äžãåé¡æã®æç€ºã«åŸã£ãŠèª²çšå£²äžå²åã60.0%ãšããã",
"title": "èšç®"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "âŽèª²çšå£²äžå²å<95%ãããä»å
¥çšé¡ãæåèšç®ãã",
"title": "èšç®"
}
]
| null | : [[../../第2ååé¡2|âåã®åé¡]]
: [[../../第2ååé¡3å2|次ã®åé¡â]]
== 売äžé« ==
{| class="wikitable"
|+課çšå£²äžé«
!è³æ
!é
ç®
!çšèŸŒéé¡
!çšæéé¡
|-
|2.
|Xååœå
売äžé«
|2,592,000,000
|2,400,000,000
|-
|3.
|Yå宿ååœå
売äžé«
|950,400,000
|880,000,000
|-
|6.
|ã¹ã¯ã©ãã売åŽã®éåå
¥
|25,920,000
|24,000,000
|-
|
|å°èš
|3,568,320,000
|3,304,000,000
|-
|
|課çšå£²äžã«ä¿ã察䟡ã®è¿éç
|0
|0
|-
|
|åèš
|3,568,320,000
|3,304,000,000
|}
{| class="wikitable"
|+å
çšå£²äžé«
!è³æ
!é
ç®
!çšæéé¡
|-
|3.
|Yåéšå茞åºå£²äžé«
|200,000,000
|-
|3.
|äœ¿çšæå£²äžé«ïŒBåœã®Bç€ŸãžæäŸïŒ
|176,000,000
|-
|
|èš
|376,000,000
|}
{| class="wikitable"
|+é課çšå£²äžé«
!è³æ
!é
ç®
!çšæéé¡
|-
|4.
|Zååœå
売äžé«
|1,198,000,000
|-
|4.
|Zå茞åºå£²äžé«â»é課çšè³ç£ã®èŒžåº
|120,000,000
|-
|5.
|åäžç€Ÿå®
ã«ä¿ãåŸæ¥å¡æ¬äººåŸŽåè² æ
é¡
|1,880,000
|-
|6.
|åå婿¯
|120,000
|-
|
|èšïŒé課çšè³ç£ã®èŒžåºãå«ãŸãªãïŒ
|1,200,000,000
|}
{| class="wikitable"
|+äžèª²çšå£²äžé«
!è³æ
!é
ç®
!åè
|-
|3.
|ä¿å®ç®¡ç売äžé«
|åœå
ååŒã§ãªã
|-
|6.
|ååé
åœé
|è³ç£ã®è²æž¡çã«äŒŽããã®ã§ãªã
|-
|6.
|婿é
|è³ç£ã®è²æž¡çã«äŒŽããã®ã§ãªã
|}
== ä»å
¥ ==
{| class="wikitable"
|+
課çšè³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®
!è³æ
!é
ç®
!çšèŸŒéé¡
!çšé¡ (çšæÃ6.3%)
|-
|3.
|Yåéšåä»å
¥é«
|648,000,000
|37,800,000
|-
|3.
|YååŽåè²»ã»è£œé çµè²»
|135,000,000
|7,875,000
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ãé倿åœ
|9,600,000
|560,000
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®èŒžåºååŒéšéã«ä¿ãé倿åœ
â»é課çšè³ç£ã®èŒžåºçã«å¯Ÿå¿ãã課çšä»å
¥ãçã¯ã課ã®ã¿ãã«åé¡
|1,800,000
|105,000
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ãæ
費亀éè²»
|29,600,000
|1,726,666.666...
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®èŒžåºååŒéšéã«ä¿ãæ
費亀éè²»
|3,200,000
|186,666.666...
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ãè³åæ
|92,000,000
|5,366,666.666...
|-
|5.
|å»ççšæ©åšäºæ¥éšã®èŒžåºååŒéšéã«ä¿ãè³åæ
|3,000,000
|175,000
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ãåºå宣äŒè²»ïŒãªããŒã¹ãã£ãŒãžãé€ãïŒ
|33,600,000
|1,960,000
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ããã®ä»ã®çµè²»
|16,200,000
|945,000
|-
|
|å°èš
|972,000,000
|56,700,000
|-
|2.
|Xå茞å
¥ä»å
¥é«
|
|126,000,000ïŒå顿ããïŒ
|-
|5.
|å»ççšæ©åšäºæ¥éšã«ä¿ãåºå宣äŒè²»ïŒãªããŒã¹ãã£ãŒãžïŒ
|6,000,000ïŒçšæïŒ
|378,000
|-
|
|èš
|ïŒ
|183,078,000
|}
{| class="wikitable"
|+é課çšè³ç£ã®è³ç£ã®è²æž¡çã«ã®ã¿èŠãããã®
!è³æ
!é
ç®
!çšèŸŒéé¡
!çšé¡ (çšæÃ6.3%)
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®åœå
ååŒéšéã«ä¿ãé倿åœ
|6,000,000
|350,000
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®åœå
ååŒéšéã«ä¿ãæ
費亀éè²»
|15,120,000
|882,000
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®åœå
ååŒéšéã«ä¿ãè³åæ
|18,000,000
|1,050,000
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®åœå
ååŒéšéã«ä¿ãåºå宣äŒè²»
|21,600,000
|1,260,000
|-
|5.
|çŠç¥çšå
·äºæ¥éšã®åœå
ååŒéšéã«ä¿ããã®ä»ã®çµè²»
|8,400,000
|490,000
|-
|
|èš
|69,120,000
|4,032,000
|}
{| class="wikitable"
|+課çšè³ç£ã®è²æž¡çãšé課çšè³ç£ã®è²æž¡çã«å
±éããŠèŠãããã®
!è³æ
!é
ç®
!çšèŸŒéé¡
!çšé¡ (çšæÃ6.3%)
|-
|5.
|æ¬ç€Ÿç®¡çéšã«ä¿ãé倿åœ
|2,800,000
|163,333.333...
|-
|5.
|æ¬ç€Ÿç®¡çéšã«ä¿ãæ
費亀éè²»
|14,720,000
|858,666.666...
|-
|5.
|æ¬ç€Ÿç®¡çéšã«ä¿ãè³åæ
|16,200,000
|945,000
|-
|5.
|æ¬ç€Ÿç®¡çéšã«ä¿ãåºå宣äŒè²»
|17,280,000
|1,008,000
|-
|5.
|æ¬ç€Ÿç®¡çéšã«ä¿ããã®ä»ã®çµè²»
|35,400,000
|2,065,000
|-
|
|èš
|86,400,000
|5,040,000
|}
{| class="wikitable"
|+課çšä»å
¥ãã§ãªã
!è³æ
!é
ç®
|-
|3.
|åŽåè²»ã»è£œé çµè²»ïŒèª²çšä»å
¥ããšãªããã®ä»¥å€ïŒ
|-
|4.
|Zååœå
ä»å
¥é«
|-
|5.
|圹å¡å ±é
¬
|-
|5.
|éææåœä»¥å€ã®çµŠäžæåœ
|-
|5.
|Båœæ¯åºåé倿åœ
|-
|5.
|åœå€äº€éè²»
|-
|5.
|Båœæ¯åºåè³åæ
|-
|5.
|åäžç€Ÿå®
å®¶è³
|-
|6.
|æ¯æå©æ¯
|}
== èšç® ==
=== èª²çšæšæº ===
; 課çšå£²äžã
: äžè¡šãã3,304,000,000
; ç¹å®èª²çšä»å
¥ã
: 6,000,000
; èš
: 3,310,000,000
=== 課çšå£²äžå²å ===
; (1) 課çšå£²äžé«
: äžè¡šãã3,304,000,000
; (2) å
çšå£²äžé«
: äžè¡šãã376,000,000
; (3) é課çšè³ç£ã®èŒžåºç
: 120,000,000
; (4) é課çšå£²äžé«
: 1,200,000,000
; 課çšå£²äžå²å
: ïŒ(1)ïœ(3)ïŒÃ·ïŒ(1)ïœ(4)ïŒïŒ3,800,000,000ïŒ5,000,000,000
â»ä»¥äžãåé¡æã®æç€ºã«åŸã£ãŠèª²çšå£²äžå²åã60.0%ãšããã
âŽèª²çšå£²äžå²åïŒ95%ãããä»å
¥çšé¡ãæåèšç®ãã
=== æ§é€å¯Ÿè±¡ä»å
¥çšé¡ ===
; 課ã®ã¿
: 183,078,000
; éã®ã¿
: 4,032,000
; å
±é
: 5,040,000
; åå¥å¯Ÿå¿æ¹åŒ
: 課ã®ã¿183,078,000ïŒå
±é5,040,000Ã課çšå£²äžå²å60%ïŒ186,102,000
; äžæ¬æ¯äŸé
åæ¹åŒ
: ïŒèª²ã®ã¿183,078,000ïŒéã®ã¿4,032,000ïŒå
±é5,040,000ïŒÃ課çšå£²äžå²å60%ïŒ115,290,000
: [[../../第2ååé¡2|âåã®åé¡]]
: [[../../第2ååé¡3å2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:40:13Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC2%E5%95%8F%E5%95%8F%E9%A1%8C3%E5%95%8F1/%E8%A7%A3%E7%AD%94%E8%A7%A3%E8%AA%AC |
24,911 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第1ååé¡1 | 次ã®äºæ¡ã«ã€ããŠ,以äžã®å 1 ãå 4 ã«çããªããããªã,åæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸã,ç§çšç¹å¥æªçœ®æ³åã³ç§çšæ¡çŽã¯èæ
®ããªããã®ãšããã
A瀟ã¯,è£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€Ÿ(æ®éæ³äºº)ã§ãã, 4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯,å¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããã
Pã¯,A瀟ã®å¶æ¥éšé·ã§ãã,䜿çšäººãšããŠã®è·åãæãã圹å¡ã§ããããŸã,B瀟ã¯,Xåœã«æ¬åºãæåšããå€åœæ³äººã§ãã,A瀟ã¯,B瀟ã®çºè¡æžæ ªåŒã®30 %ãä¿æããŠããã
å¹³æ29 幎4 æ30 æ¥,A瀟ã¯,åç€Ÿã®æ¬åºã®æåšããYåžã«å¯ŸããŠ,å
¬åæŽåã®ããã®è³éãšããŠçŸé300 äžåãå¯éãã(äºå®1)ã
å¹³æ29 幎6 æ3 æ¥,A瀟ã¯,B瀟ãã5,000 äžåã®é
åœãåãåã,B瀟ã¯,Xåœã®æ³ä»€ã«åºã¥ãåœè©²æ¯æé
åœé¡ã®å
šé¡ãæéã«ç®å
¥ãã(äºå®2)ã
å¹³æ29 幎9 æ4 æ¥,A瀟ã¯,åœå
ã«ããç²åå°ãéå±
äœè
Qãã賌å
¥ããã賌å
¥å¯ŸäŸ¡ã¯,åœæã®æäŸ¡çžåœé¡ã§ãã2 ååã§ãã,åœå
ã«ãããŠQã«æ¯æããã(äºå®3)ã
å¹³æ29 äºæ¥å¹ŽåºŠã«,A瀟ãPã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯,ä»ã®äœ¿çšäººã«å¯Ÿãã絊äžã®æ¯çµŠç¶æ³ã«ç
§ãããŠäžçžåœã«é«é¡ã§ãã£ã(äºå®4)ã
å1 äºå®1ã«é¢ããŠ,ãã®å¯éã¯,A瀟ã«ãããŠæ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
å2 äºå®2ã«é¢ããŠ,A瀟ã®åãåã£ãé
åœã¯,æ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
å3 äºå®3ã«é¢ããŠ,A瀟ã«ã¯,課çšäžã©ã®ãããªçŸ©åã課ããããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
å4 äºå®4ã«é¢ããŠ,A瀟ãPã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯,æ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
æ³äººçšæ³22æ¡3é
2å·,37æ¡3é
1å·,37æ¡7é
æ³äººçšæ³22æ¡2é
,23æ¡ã®2第2é
1å·
æåŸçšæ³161æ¡1é
5å·,212æ¡1é
æ³äººçšæ³22æ¡3é
2å·,34æ¡2é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "次ã®äºæ¡ã«ã€ããŠ,以äžã®å 1 ãå 4 ã«çããªããããªã,åæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸã,ç§çšç¹å¥æªçœ®æ³åã³ç§çšæ¡çŽã¯èæ
®ããªããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "A瀟ã¯,è£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€Ÿ(æ®éæ³äºº)ã§ãã, 4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯,å¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Pã¯,A瀟ã®å¶æ¥éšé·ã§ãã,䜿çšäººãšããŠã®è·åãæãã圹å¡ã§ããããŸã,B瀟ã¯,Xåœã«æ¬åºãæåšããå€åœæ³äººã§ãã,A瀟ã¯,B瀟ã®çºè¡æžæ ªåŒã®30 %ãä¿æããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å¹³æ29 幎4 æ30 æ¥,A瀟ã¯,åç€Ÿã®æ¬åºã®æåšããYåžã«å¯ŸããŠ,å
¬åæŽåã®ããã®è³éãšããŠçŸé300 äžåãå¯éãã(äºå®1)ã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å¹³æ29 幎6 æ3 æ¥,A瀟ã¯,B瀟ãã5,000 äžåã®é
åœãåãåã,B瀟ã¯,Xåœã®æ³ä»€ã«åºã¥ãåœè©²æ¯æé
åœé¡ã®å
šé¡ãæéã«ç®å
¥ãã(äºå®2)ã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å¹³æ29 幎9 æ4 æ¥,A瀟ã¯,åœå
ã«ããç²åå°ãéå±
äœè
Qãã賌å
¥ããã賌å
¥å¯ŸäŸ¡ã¯,åœæã®æäŸ¡çžåœé¡ã§ãã2 ååã§ãã,åœå
ã«ãããŠQã«æ¯æããã(äºå®3)ã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å¹³æ29 äºæ¥å¹ŽåºŠã«,A瀟ãPã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯,ä»ã®äœ¿çšäººã«å¯Ÿãã絊äžã®æ¯çµŠç¶æ³ã«ç
§ãããŠäžçžåœã«é«é¡ã§ãã£ã(äºå®4)ã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å1 äºå®1ã«é¢ããŠ,ãã®å¯éã¯,A瀟ã«ãããŠæ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å2 äºå®2ã«é¢ããŠ,A瀟ã®åãåã£ãé
åœã¯,æ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å3 äºå®3ã«é¢ããŠ,A瀟ã«ã¯,課çšäžã©ã®ãããªçŸ©åã課ããããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å4 äºå®4ã«é¢ããŠ,A瀟ãPã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯,æ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "æ³äººçšæ³22æ¡3é
2å·,37æ¡3é
1å·,37æ¡7é
",
"title": "解説"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "æ³äººçšæ³22æ¡2é
,23æ¡ã®2第2é
1å·",
"title": "解説"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æåŸçšæ³161æ¡1é
5å·,212æ¡1é
",
"title": "解説"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æ³äººçšæ³22æ¡3é
2å·,34æ¡2é
",
"title": "解説"
}
]
| null | : [[../第1ååé¡1|âåã®åé¡]]
: [[../第1ååé¡2|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®äºæ¡ã«ã€ããŠïŒä»¥äžã®<span style="border:1px solid #000">å 1</span> ã<span style="border:1px solid #000">å 4</span> ã«çããªããããªãïŒåæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸãïŒç§çšç¹å¥æªçœ®æ³åã³ç§çšæ¡çŽã¯èæ
®ããªããã®ãšããã
ã瀟ã¯ïŒè£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€ŸïŒæ®éæ³äººïŒã§ããïŒ 4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯ïŒå¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããã
ãã¯ïŒïŒ¡ç€Ÿã®å¶æ¥éšé·ã§ããïŒäœ¿çšäººãšããŠã®è·åãæãã圹å¡ã§ããããŸãïŒïŒ¢ç€Ÿã¯ïŒïŒžåœã«æ¬åºãæåšããå€åœæ³äººã§ããïŒïŒ¡ç€Ÿã¯ïŒïŒ¢ç€Ÿã®çºè¡æžæ ªåŒã®30 ïŒ
ãä¿æããŠããã
ãå¹³æ29 幎4 æ30 æ¥ïŒïŒ¡ç€Ÿã¯ïŒåç€Ÿã®æ¬åºã®æåšããåžã«å¯ŸããŠïŒå
¬åæŽåã®ããã®è³éãšããŠçŸé300 äžåãå¯éããïŒäºå®â ïŒã
ãå¹³æ29 幎6 æ3 æ¥ïŒïŒ¡ç€Ÿã¯ïŒïŒ¢ç€Ÿãã5,000 äžåã®é
åœãåãåãïŒïŒ¢ç€Ÿã¯ïŒïŒžåœã®æ³ä»€ã«åºã¥ãåœè©²æ¯æé
åœé¡ã®å
šé¡ãæéã«ç®å
¥ããïŒäºå®â¡ïŒã
ãå¹³æ29 幎9 æ4 æ¥ïŒïŒ¡ç€Ÿã¯ïŒåœå
ã«ããç²åå°ãéå±
äœè
ãã賌å
¥ããã賌å
¥å¯ŸäŸ¡ã¯ïŒåœæã®æäŸ¡çžåœé¡ã§ãã2 ååã§ããïŒåœå
ã«ãããŠïŒ±ã«æ¯æãããïŒäºå®â¢ïŒã
ãå¹³æ29 äºæ¥å¹ŽåºŠã«ïŒïŒ¡ç€Ÿãã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯ïŒä»ã®äœ¿çšäººã«å¯Ÿãã絊äžã®æ¯çµŠç¶æ³ã«ç
§ãããŠäžçžåœã«é«é¡ã§ãã£ãïŒäºå®â£ïŒã
<div style="text-indent:-2em;margin-left:2em">
<span style="border:1px solid #000">å1</span>ãäºå®â ã«é¢ããŠïŒãã®å¯éã¯ïŒïŒ¡ç€Ÿã«ãããŠæ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
<span style="border:1px solid #000">å2</span>ãäºå®â¡ã«é¢ããŠïŒïŒ¡ç€Ÿã®åãåã£ãé
åœã¯ïŒæ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
<span style="border:1px solid #000">å3</span>ãäºå®â¢ã«é¢ããŠïŒïŒ¡ç€Ÿã«ã¯ïŒèª²çšäžã©ã®ãããªçŸ©åã課ããããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
<span style="border:1px solid #000">å4</span>ãäºå®â£ã«é¢ããŠïŒïŒ¡ç€Ÿãã«å¯ŸããŠæ¯çµŠãã䜿çšäººãšããŠã®è·åã«å¯Ÿãã絊äžã®é¡ã¯ïŒæ³äººçšæ³äžã©ã®ããã«æ±ãããããæ ¹æ æ¡æã瀺ãã€ã€è¿°ã¹ãªããã
</div>
== 解説 ==
=== å1 ===
æ³äººçšæ³22æ¡3é
2å·ïŒ37æ¡3é
1å·ïŒ37æ¡7é
=== å2 ===
æ³äººçšæ³22æ¡2é
ïŒ23æ¡ã®2第2é
1å·
=== å3 ===
æåŸçšæ³161æ¡1é
5å·ïŒ212æ¡1é
=== å4 ===
æ³äººçšæ³22æ¡3é
2å·ïŒ34æ¡2é
: [[../第1ååé¡1|âåã®åé¡]]
: [[../第1ååé¡2|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:39:46Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC1%E5%95%8F%E5%95%8F%E9%A1%8C1 |
24,912 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/ç§çšæ³/第1ååé¡2 | 次ã®äºæ¡ã«ã€ããŠ,以äžã®åãã«çããªããã
A瀟,B瀟,C瀟åã³D瀟ã¯,ããããè£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€Ÿ(æ®éæ³äºº)ã§ãããA瀟ã«ã¯,çºè¡æžæ ªåŒã®50 %ãè¶
ããæåãä¿æããæ ªäž»ã¯ååšããªããA瀟ã¯,B瀟ã®çºè¡æžæ ªåŒã®å
šãŠãä¿æããŠãããC瀟ã¯,A瀟ã®çºè¡æžæ ªåŒã®0.1 %ãä¿æããæ³äººæ ªäž»ã§ãã,Rã¯,åãã0.01 %ãä¿æããåäººæ ªäž»ã§ããããŸã,Rã¯,å人ã§é£å販売æ¥ãå¶ãã§ãããD瀟ã®è³æ¬éã®é¡ã¯1,000 äžåã§ãã,D瀟ã¯,èšç«ä»¥æ¥,æ¿èªãåããŠéè²ç³åæžãæåºããŠããã
A瀟,B瀟,C瀟åã³D瀟ã¯,ãããã4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯,å¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããããŸã,ãããã®æ³äººã®æ¶è²»çšã®èª²çšæéã«ã€ããŠã¯,äºæ¥å¹ŽåºŠãšåããã®ãšããã
å¹³æ29 幎6 æ3 æ¥,A瀟ã¯,ååŒå
ã«å¯ŸããŠä¹åå°ã®è²æž¡ãè¡ã£ãããã®åå°ã®A瀟ã«ãããååŸäŸ¡é¡ã¯8,000 äžå,è²æž¡æã«ãããæäŸ¡ã¯1 å5,000 äžå,è²æž¡å¯ŸäŸ¡ã¯1 ååã§ãã£ãã
å¹³æ29 幎7 æ3 æ¥,A瀟ã¯,ä¿æããå
šãŠã®Bç€Ÿã®æ ªåŒãAç€Ÿã®æ ªäž»ã«å¯ŸããŠ,ãã®ææ ªæ°ã«å¿ããŠåé
ãããC瀟åã³Rã,ãã®æ ªåŒã®åé
ãåããã
å¹³æ29 幎8 æ3 æ¥,Rã¯,ããªåžè³ç£ã§ããé£åã®äžéšã,èªå·±ã®å€é£çšã®é£æãšããŠäœ¿çšããã
A瀟ã¯,å°æ¹ãžã®äºæ¥æ¡å€§ãäŒå³ããŠ,å¹³æ26 åã³27 äºæ¥å¹ŽåºŠã«ãããŠäŒæ¥ç¶æ
ã§ãã£ãD瀟ã®çºè¡æžæ ªåŒã®å
šãŠã,å¹³æ28 幎4 æ1 æ¥ã«è³Œå
¥ãããD瀟ã¯,忥ä»ã§äºæ¥ãåéãããD瀟ã®å¹³æ28 幎4 æ1 æ¥ãã9 æ30 æ¥ãŸã§ã®èª²çšå£²äžé«ã¯1,200 äžåã§ãã£ãã,å¹³æ28 äºæ¥å¹ŽåºŠã«ã¯300 äžåã®æ¬ æéé¡ãçããããŸã,D瀟ã«ã¯,äŒæ¥çŽåã®å¹³æ25 äºæ¥å¹ŽåºŠã«ãããŠæ¬ æéé¡600 äžåããã£ãã
D瀟ã¯,å¹³æ29 äºæ¥å¹ŽåºŠã«ããããé»åãšãªã,æ¬ æéé¡ãèæ
®ããåã®åäºæ¥å¹ŽåºŠã®æåŸã®éé¡ã¯2,000 äžåã§ãã£ãã
åã æ¬¡ã®çšååŠçã«é¢ãã1ã5ã®èšè¿°ã®ãã¡,æ£ãããã®ã«ã¯âã,誀ã£ãŠãããã®ã«ã¯Ãã,çæ¡çšçŽã®ãâÃæ¬ãã«èšå
¥ããªããããŸã,æ£ãããã®ã«ã¯ãã®æ ¹æ æ¡æã,誀ã£ãŠãããã®ã«ã¯æ£ããçšååŠçåã³ãã®æ ¹æ æ¡æã,çæ¡çšçŽã®ãèšè¿°æ¬ãã«èšå
¥ããªããããªã,åæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®åã³çµç¹åç·šæã«ä¿ãè¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸã,ç§çšç¹å¥æªçœ®æ³ã¯èæ
®ããªããã®ãšããã
Ãæ³äººçšæ³22æ¡2é
âæ³äººçšæ³23æ¡1é
1å·,24æ¡1é
3å·
ÃæåŸçšæ³27æ¡1é
,39æ¡
Ãæ³äººçšæ³57æ¡1é
,57æ¡ã®2第1é
1å·
âæ¶è²»çšæ³5æ¡1é
,9æ¡1é
,9æ¡ã®2第1é
4é
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "次ã®äºæ¡ã«ã€ããŠ,以äžã®åãã«çããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "A瀟,B瀟,C瀟åã³D瀟ã¯,ããããè£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€Ÿ(æ®éæ³äºº)ã§ãããA瀟ã«ã¯,çºè¡æžæ ªåŒã®50 %ãè¶
ããæåãä¿æããæ ªäž»ã¯ååšããªããA瀟ã¯,B瀟ã®çºè¡æžæ ªåŒã®å
šãŠãä¿æããŠãããC瀟ã¯,A瀟ã®çºè¡æžæ ªåŒã®0.1 %ãä¿æããæ³äººæ ªäž»ã§ãã,Rã¯,åãã0.01 %ãä¿æããåäººæ ªäž»ã§ããããŸã,Rã¯,å人ã§é£å販売æ¥ãå¶ãã§ãããD瀟ã®è³æ¬éã®é¡ã¯1,000 äžåã§ãã,D瀟ã¯,èšç«ä»¥æ¥,æ¿èªãåããŠéè²ç³åæžãæåºããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "A瀟,B瀟,C瀟åã³D瀟ã¯,ãããã4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯,å¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããããŸã,ãããã®æ³äººã®æ¶è²»çšã®èª²çšæéã«ã€ããŠã¯,äºæ¥å¹ŽåºŠãšåããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å¹³æ29 幎6 æ3 æ¥,A瀟ã¯,ååŒå
ã«å¯ŸããŠä¹åå°ã®è²æž¡ãè¡ã£ãããã®åå°ã®A瀟ã«ãããååŸäŸ¡é¡ã¯8,000 äžå,è²æž¡æã«ãããæäŸ¡ã¯1 å5,000 äžå,è²æž¡å¯ŸäŸ¡ã¯1 ååã§ãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å¹³æ29 幎7 æ3 æ¥,A瀟ã¯,ä¿æããå
šãŠã®Bç€Ÿã®æ ªåŒãAç€Ÿã®æ ªäž»ã«å¯ŸããŠ,ãã®ææ ªæ°ã«å¿ããŠåé
ãããC瀟åã³Rã,ãã®æ ªåŒã®åé
ãåããã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å¹³æ29 幎8 æ3 æ¥,Rã¯,ããªåžè³ç£ã§ããé£åã®äžéšã,èªå·±ã®å€é£çšã®é£æãšããŠäœ¿çšããã",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "A瀟ã¯,å°æ¹ãžã®äºæ¥æ¡å€§ãäŒå³ããŠ,å¹³æ26 åã³27 äºæ¥å¹ŽåºŠã«ãããŠäŒæ¥ç¶æ
ã§ãã£ãD瀟ã®çºè¡æžæ ªåŒã®å
šãŠã,å¹³æ28 幎4 æ1 æ¥ã«è³Œå
¥ãããD瀟ã¯,忥ä»ã§äºæ¥ãåéãããD瀟ã®å¹³æ28 幎4 æ1 æ¥ãã9 æ30 æ¥ãŸã§ã®èª²çšå£²äžé«ã¯1,200 äžåã§ãã£ãã,å¹³æ28 äºæ¥å¹ŽåºŠã«ã¯300 äžåã®æ¬ æéé¡ãçããããŸã,D瀟ã«ã¯,äŒæ¥çŽåã®å¹³æ25 äºæ¥å¹ŽåºŠã«ãããŠæ¬ æéé¡600 äžåããã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "D瀟ã¯,å¹³æ29 äºæ¥å¹ŽåºŠã«ããããé»åãšãªã,æ¬ æéé¡ãèæ
®ããåã®åäºæ¥å¹ŽåºŠã®æåŸã®éé¡ã¯2,000 äžåã§ãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "åã æ¬¡ã®çšååŠçã«é¢ãã1ã5ã®èšè¿°ã®ãã¡,æ£ãããã®ã«ã¯âã,誀ã£ãŠãããã®ã«ã¯Ãã,çæ¡çšçŽã®ãâÃæ¬ãã«èšå
¥ããªããããŸã,æ£ãããã®ã«ã¯ãã®æ ¹æ æ¡æã,誀ã£ãŠãããã®ã«ã¯æ£ããçšååŠçåã³ãã®æ ¹æ æ¡æã,çæ¡çšçŽã®ãèšè¿°æ¬ãã«èšå
¥ããªããããªã,åæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®åã³çµç¹åç·šæã«ä¿ãè¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸã,ç§çšç¹å¥æªçœ®æ³ã¯èæ
®ããªããã®ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "Ãæ³äººçšæ³22æ¡2é
",
"title": "è§£ç解説"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "âæ³äººçšæ³23æ¡1é
1å·,24æ¡1é
3å·",
"title": "è§£ç解説"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ÃæåŸçšæ³27æ¡1é
,39æ¡",
"title": "è§£ç解説"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "Ãæ³äººçšæ³57æ¡1é
,57æ¡ã®2第1é
1å·",
"title": "è§£ç解説"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "âæ¶è²»çšæ³5æ¡1é
,9æ¡1é
,9æ¡ã®2第1é
4é
",
"title": "è§£ç解説"
}
]
| null | : [[../第1ååé¡1|âåã®åé¡]]
: [[../第2ååé¡1å1|次ã®åé¡â]]
== åé¡ ==
ãæ¬¡ã®äºæ¡ã«ã€ããŠïŒä»¥äžã®<span style="border:1px solid #000">åã</span>ã«çããªããã
ã瀟ïŒïŒ¢ç€ŸïŒïŒ£ç€Ÿåã³ïŒ€ç€Ÿã¯ïŒããããè£œé æ¥ãå¶ãå
åœæ³äººããæ ªåŒäŒç€ŸïŒæ®éæ³äººïŒã§ããã瀟ã«ã¯ïŒçºè¡æžæ ªåŒã®50 ïŒ
ãè¶
ããæåãä¿æããæ ªäž»ã¯ååšããªãã瀟ã¯ïŒïŒ¢ç€Ÿã®çºè¡æžæ ªåŒã®å
šãŠãä¿æããŠããã瀟ã¯ïŒïŒ¡ç€Ÿã®çºè¡æžæ ªåŒã®0.1 ïŒ
ãä¿æããæ³äººæ ªäž»ã§ããïŒïŒ²ã¯ïŒåãã0.01 ïŒ
ãä¿æããåäººæ ªäž»ã§ããããŸãïŒïŒ²ã¯ïŒå人ã§é£å販売æ¥ãå¶ãã§ããã瀟ã®è³æ¬éã®é¡ã¯1,000 äžåã§ããïŒïŒ€ç€Ÿã¯ïŒèšç«ä»¥æ¥ïŒæ¿èªãåããŠéè²ç³åæžãæåºããŠããã
ã瀟ïŒïŒ¢ç€ŸïŒïŒ£ç€Ÿåã³ïŒ€ç€Ÿã¯ïŒãããã4 æ1 æ¥ããç¿å¹Ž3 æ31 æ¥ãŸã§ã®æéãäºæ¥å¹ŽåºŠãšããŠããã以äžã§ã¯ïŒå¹³æ29 幎4 æ1 æ¥ã«éå§ãããã®ãå¹³æ29 äºæ¥å¹ŽåºŠãšããããã«è¡šèšããããŸãïŒãããã®æ³äººã®æ¶è²»çšã®èª²çšæéã«ã€ããŠã¯ïŒäºæ¥å¹ŽåºŠãšåããã®ãšããã
ãå¹³æ29 幎6 æ3 æ¥ïŒïŒ¡ç€Ÿã¯ïŒååŒå
ã«å¯ŸããŠä¹åå°ã®è²æž¡ãè¡ã£ãããã®åå°ã®ïŒ¡ç€Ÿã«ãããååŸäŸ¡é¡ã¯8,000 äžåïŒè²æž¡æã«ãããæäŸ¡ã¯1 å5,000 äžåïŒè²æž¡å¯ŸäŸ¡ã¯1 ååã§ãã£ãã
ãå¹³æ29 幎7 æ3 æ¥ïŒïŒ¡ç€Ÿã¯ïŒä¿æããå
šãŠã®ïŒ¢ç€Ÿã®æ ªåŒãïŒ¡ç€Ÿã®æ ªäž»ã«å¯ŸããŠïŒãã®ææ ªæ°ã«å¿ããŠåé
ããã瀟åã³ïŒ²ãïŒãã®æ ªåŒã®åé
ãåããã
ãå¹³æ29 幎8 æ3 æ¥ïŒïŒ²ã¯ïŒããªåžè³ç£ã§ããé£åã®äžéšãïŒèªå·±ã®å€é£çšã®é£æãšããŠäœ¿çšããã
ã瀟ã¯ïŒå°æ¹ãžã®äºæ¥æ¡å€§ãäŒå³ããŠïŒå¹³æ26 åã³27 äºæ¥å¹ŽåºŠã«ãããŠäŒæ¥ç¶æ
ã§ãã£ã瀟ã®çºè¡æžæ ªåŒã®å
šãŠãïŒå¹³æ28 幎4 æ1 æ¥ã«è³Œå
¥ããã瀟ã¯ïŒåæ¥ä»ã§äºæ¥ãåéããã瀟ã®å¹³æ28 幎4 æ1 æ¥ãã9 æ30 æ¥ãŸã§ã®èª²çšå£²äžé«ã¯1,200 äžåã§ãã£ããïŒå¹³æ28 äºæ¥å¹ŽåºŠã«ã¯300 äžåã®æ¬ æéé¡ãçããããŸãïŒïŒ€ç€Ÿã«ã¯ïŒäŒæ¥çŽåã®å¹³æ25 äºæ¥å¹ŽåºŠã«ãããŠæ¬ æéé¡600 äžåããã£ãã
ã瀟ã¯ïŒå¹³æ29 äºæ¥å¹ŽåºŠã«ããããé»åãšãªãïŒæ¬ æéé¡ãèæ
®ããåã®åäºæ¥å¹ŽåºŠã®æåŸã®éé¡ã¯2,000 äžåã§ãã£ãã
<div style="text-indent:-1.6em;margin-left:1.6em">
<span style="border:1px solid #000">åã</span> 次ã®çšååŠçã«é¢ããâ ãâ€ã®èšè¿°ã®ãã¡ïŒæ£ãããã®ã«ã¯âãïŒèª€ã£ãŠãããã®ã«ã¯ÃãïŒçæ¡çšçŽã®ãâÃæ¬ãã«èšå
¥ããªããããŸãïŒæ£ãããã®ã«ã¯ãã®æ ¹æ æ¡æãïŒèª€ã£ãŠãããã®ã«ã¯æ£ããçšååŠçåã³ãã®æ ¹æ æ¡æãïŒçæ¡çšçŽã®ãèšè¿°æ¬ãã«èšå
¥ããªããããªãïŒåæäŒç€Ÿçã®è¡çºèšç®åŠèªèŠå®åã³çµç¹åç·šæã«ä¿ãè¡çºèšç®åŠèªèŠå®ã®é©çšã¯ãªããã®ãšããããŸãïŒç§çšç¹å¥æªçœ®æ³ã¯èæ
®ããªããã®ãšããã
</div>
:â ã瀟ã«ããä¹åå°ã®è²æž¡ã¯ïŒæåã«ããè³ç£ã®è²æž¡ã«è©²åœããã®ã§ïŒçéã®é¡ã«ç®å
¥ãã¹ãåçã®é¡ã¯ïŒè²æž¡å¯ŸäŸ¡ã®1 ååã§ããã
:â¡ã瀟ã«ããæ ªåŒåé
ã驿 Œæ ªåŒåé
ã«è©²åœããå ŽåïŒïŒ£ç€Ÿãåãåã£ãïŒ¢ç€Ÿã®æ ªåŒã¯ïŒå°äœéã®é
åœããé€å€ãããã ãã§ãªãïŒé
åœçãšã¿ãªãããŠèª²çšãããããšããªãã
:â¢ããèªå·±ã®å€é£çšã®é£æãšããŠäœ¿çšããé£åã®æäŸ¡çžåœé¡ã¯ïŒïŒ²ã®äºæ¥æåŸã®éé¡ã®èšç®äžïŒç·åå
¥éé¡ã«ç®å
¥ãããªãã
:â£ã瀟ã¯ïŒå¹³æ29 äºæ¥å¹ŽåºŠã®æ³äººçšé¡ã®ç®å®äžïŒåäºæ¥å¹ŽåºŠãŸã§ã«æéç®å
¥çãããæªåŠçã§ãã£ãæ¬ æéé¡900 äžåãæéã®é¡ã«ç®å
¥ã§ããã
:â€ã瀟ã¯ïŒå¹³æ29 äºæ¥å¹ŽåºŠã«ã€ããŠïŒæ¶è²»çšãçŽãã矩åãå
é€ãããªãã
== è§£ç解説 ==
=== â ===
Ãæ³äººçšæ³22æ¡2é
=== â¡ ===
âæ³äººçšæ³23æ¡1é
1å·ïŒ24æ¡1é
3å·
=== ⢠===
ÃæåŸçšæ³27æ¡1é
ïŒ39æ¡
=== ⣠===
Ãæ³äººçšæ³57æ¡1é
ïŒ57æ¡ã®2第1é
1å·
=== †===
âæ¶è²»çšæ³5æ¡1é
ïŒ9æ¡1é
ïŒ9æ¡ã®2第1é
4é
: [[../第1ååé¡1|âåã®åé¡]]
: [[../第2ååé¡1å1|次ã®åé¡â]]
[[ã«ããŽãª:ç§çš]] | null | 2022-11-29T04:39:49Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E7%A7%9F%E7%A8%8E%E6%B3%95/%E7%AC%AC1%E5%95%8F%E5%95%8F%E9%A1%8C2 |
24,913 | ç¥æžåŒ/é²è¡ã»ç¶ç¶ | åäœãé²è¡ããŠããç¶æ
(å
±éèªã®ã~ããŠããã)ã衚ããšããåè©ã®é£çšåœ¢ã«ã~ããããããã¯ã~ããŒããã€ããããã ãè¥å¹Žå±€ã§ã¯é¢è¥¿åŒå
±éèªã®åœ±é¿ãåããã~ãšãããã~ãšãŒããšã®æ··åãé²ãã§ããããã®æã®åè©ã®æŽ»çšã¯ãéå»åœ¢ãšåæ§ã§ããã
ãªããããšãããããšãŒããçšãããšãã¯ç¶ç¶ãšåãã§ããã
ãªãã䟮èã®è¡šçŸã®ã~ããããšå圢ã§ããããã¢ã¯ã»ã³ãã®éããããã
éå»ã®ããšã«ã€ããŠè¿°ã¹ãå Žåãã~ããã(ã~ããŒã)âã~ãã£ããã(ã~ãšãã(ã~ãšãŒã)âã~ãšã£ãã)ãšããã
åŠå®ã®é²è¡åœ¢ãäœãå Žåãã~ããã(ã~ããŒã)âã~ããããã(ã~ãšãã(ã~ãšãŒã)âã~ãšããã)ãšããã
é²è¡åœ¢ã®éå»ã®åŠå®ã¯ãé²è¡åœ¢ã®åŠå®ã®åœ¢ã«ã~ãã£ãããã€ãããé«éœ¢è
ã§ã¯ã~ãªãã ããçšããã
ããç¶æ
ã®ç¶ç¶(ã~ããŠããã)ã¯ãåè©+ã~ãšãã(ã~ãšãŒã)(掻çšã¯éå»ãé²è¡ãšåæ§ã§ãæ¥é³äŸ¿ã®ãšãã¯ã~ãšããâã~ãã©ãã)ã§è¡šãã
ã~ãšãã(ã~ãšãŒã)âã~ãšã£ãããšãããããã¯ã幎代ãåããããçšããããã
ã~ãšãã(ã~ãšãŒã)âããšããã
åŠå®ã®åœ¢ã«ããã£ãããã€ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åäœãé²è¡ããŠããç¶æ
(å
±éèªã®ã~ããŠããã)ã衚ããšããåè©ã®é£çšåœ¢ã«ã~ããããããã¯ã~ããŒããã€ããããã ãè¥å¹Žå±€ã§ã¯é¢è¥¿åŒå
±éèªã®åœ±é¿ãåããã~ãšãããã~ãšãŒããšã®æ··åãé²ãã§ããããã®æã®åè©ã®æŽ»çšã¯ãéå»åœ¢ãšåæ§ã§ããã",
"title": "é²è¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãªããããšãããããšãŒããçšãããšãã¯ç¶ç¶ãšåãã§ããã",
"title": "é²è¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãªãã䟮èã®è¡šçŸã®ã~ããããšå圢ã§ããããã¢ã¯ã»ã³ãã®éããããã",
"title": "é²è¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "éå»ã®ããšã«ã€ããŠè¿°ã¹ãå Žåãã~ããã(ã~ããŒã)âã~ãã£ããã(ã~ãšãã(ã~ãšãŒã)âã~ãšã£ãã)ãšããã",
"title": "é²è¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åŠå®ã®é²è¡åœ¢ãäœãå Žåãã~ããã(ã~ããŒã)âã~ããããã(ã~ãšãã(ã~ãšãŒã)âã~ãšããã)ãšããã",
"title": "é²è¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "é²è¡åœ¢ã®éå»ã®åŠå®ã¯ãé²è¡åœ¢ã®åŠå®ã®åœ¢ã«ã~ãã£ãããã€ãããé«éœ¢è
ã§ã¯ã~ãªãã ããçšããã",
"title": "é²è¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããç¶æ
ã®ç¶ç¶(ã~ããŠããã)ã¯ãåè©+ã~ãšãã(ã~ãšãŒã)(掻çšã¯éå»ãé²è¡ãšåæ§ã§ãæ¥é³äŸ¿ã®ãšãã¯ã~ãšããâã~ãã©ãã)ã§è¡šãã",
"title": "ç¶ç¶"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã~ãšãã(ã~ãšãŒã)âã~ãšã£ãããšãããããã¯ã幎代ãåããããçšããããã",
"title": "ç¶ç¶"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã~ãšãã(ã~ãšãŒã)âããšããã",
"title": "ç¶ç¶"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "åŠå®ã®åœ¢ã«ããã£ãããã€ãã",
"title": "ç¶ç¶"
}
]
| null | ==é²è¡==
åäœãé²è¡ããŠããç¶æ
ïŒå
±éèªã®ãïœããŠãããïŒã衚ããšããåè©ã®é£çšåœ¢ã«'''ãïœããããããã¯ãïœããŒã'''ãã€ããããã ãè¥å¹Žå±€ã§ã¯é¢è¥¿åŒå
±éèªã®åœ±é¿ãåãããïœãšããããïœãšãŒããšã®æ··åãé²ãã§ããããã®æã®åè©ã®æŽ»çšã¯ã[[ç¥æžåŒ/éå»|éå»åœ¢ãšåæ§]]ã§ããã
:ç
é¢ã«æ¯æ¥<ruby><rb>é</rb><rp>ïŒ</rp><rt>ãã</rt><rp>ïŒ</rp></ruby>ãããããHHHHH LLHL HHHHL
::ç
é¢ã«æ¯æ¥éã£ãŠããã
:鳿¥œãèŽãããŒã§ãHLLLL HHHLL
::鳿¥œãèŽããŠãããã
ãªããããšãããããšãŒããçšãããšãã¯[[ç¥æžåŒ/é²è¡ã»ç¶ç¶#ç¶ç¶|ç¶ç¶]]ãšåãã§ããã
:æ¬ãèªãã©ãããããã¯æ¬ãèªãã©ãŒããHLL LHHL
::æ¬ãèªãã§ããã
ãªãã䟮èã®è¡šçŸã®ãïœããããšå圢ã§ããããã¢ã¯ã»ã³ãã®éããããã
:è»ã«åœããããïŒè»ã«åœãããšããã§ããïŒãHHHH HHHHH âç¶ç¶
:è»ã«åœããããïŒè»ã«åœãããããïŒãHHHH HHHHL â䟮è
===éå»===
éå»ã®ããšã«ã€ããŠè¿°ã¹ãå ŽåããïœãããïŒãïœããŒãïŒâ'''ãïœãã£ãã'''ãïŒãïœãšããïŒãïœãšãŒãïŒâ'''ãïœãšã£ãã'''ïŒãšããã
:å»å¹ŽãŸã§ã¢ã¡ããããããã£ããããããã¯å»å¹ŽãŸã§ã¢ã¡ããããã£ãšã£ããããããã¯ããšã£ãããããããHLLLL LLLLH HHHLLL
::å»å¹ŽãŸã§ã¢ã¡ãããããŠãããã
:ååã®ææ¥ã¯äŒãã©ã£ãŠãããHLLLL HLLL HHHHLL
::ååã®ææ¥ã¯äŒãã§ããã ã
===åŠå®===
åŠå®ã®é²è¡åœ¢ãäœãå ŽåããïœãããïŒãïœããŒãïŒâ'''ãïœãããã'''ãïŒãïœãšããïŒãïœãšãŒãïŒâ'''ãïœãšããã'''ïŒãšããã
:ãã®æ<ruby><rb>æŽ</rb><rp>ïŒ</rp><rt>ãã</rt><rp>ïŒ</rp></ruby>ãšããã®ãããããã¯ãã®æã¯æŽã£ãšããã®ãããHHHL HHHHHHLL
::ãã®æã¯æŽã£ãŠãªããã ã
:ä»ã¯åããšããããããã¯ä»ã¯åããããããLHL HHHHHHL
::ä»ã¯åããŠããªãã
===éå»ã®åŠå®===
é²è¡åœ¢ã®éå»ã®åŠå®ã¯ãé²è¡åœ¢ã®åŠå®ã®åœ¢ã«'''ãïœãã£ãã'''ãã€ãããé«éœ¢è
ã§ã¯'''ãïœãªãã ã'''ãçšããã
:ãŸã èšãããããã£ããªããããã¯ãŸã èšããšãããã£ããªããããã¯ãŸã èšããããªãã ãªããLH HHHHHLLL
::ãŸã èšã£ãŠãªãã£ããã
==ç¶ç¶==
ããç¶æ
ã®ç¶ç¶ïŒãïœããŠãããïŒã¯ãåè©+'''ãïœãšããïŒãïœãšãŒãïŒ'''ïŒæŽ»çšã¯éå»ãé²è¡ãšåæ§ã§ãæ¥é³äŸ¿ã®ãšãã¯ãïœãšããâ'''ãïœãã©ãã'''ïŒã§è¡šãã
:ãã¢ãéããšãããHLL HHHL
::ãã¢ãéããŠããã
:ãããªãšãã«ãã£ãªåããšãŒã§ããHHH HLL LH HHHLL
::ãããªæã«èªè»¢è»ãåããŠãããã
===éå»===
ãïœãšããïŒãïœãšãŒãïŒâ'''ãïœãšã£ãã'''ãšãããããã¯ã幎代ãåããããçšããããã
:æšæ¥ãããçŽã«æžããšã£ãã§ããHLL HLL HLL LLHHLL
::æšæ¥ããã£ãçŽã«æžããŠãã£ããã
===åŠå®===
ãïœãšããïŒãïœãšãŒãïŒâ'''ããšããã'''
:ã¡ãããšéãŸã£ãšããã§ããLHL HHHHLLL
::ã¡ãããšéãŸã£ãŠãªããã
===éå»ã®åŠå®===
åŠå®ã®åœ¢ã«'''ããã£ãã'''ãã€ãã
:çŽã«å
ãã©ãããã£ããããHLL HHHHLL LLL
::çŽã«å
ãŸããŠãªãã£ããã
[[ã«ããŽãª:æ¥æ¬èªã®æ¹èš|ç¥æžåŒ]] | null | 2022-12-04T01:26:05Z | []
| https://ja.wikibooks.org/wiki/%E7%A5%9E%E6%88%B8%E5%BC%81/%E9%80%B2%E8%A1%8C%E3%83%BB%E7%B6%99%E7%B6%9A |
24,916 | èæžããã©ã€èªå
¥é/å眮è©(2)/åèª | 11.2 åèª | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.2 åèª",
"title": ""
}
]
| 11.2 åèª | 11.2 åèª
{|
|-
|style="text-align:left" |×¢Ö·×ÖŽ×
|style="text-align:left" |ç®ïŒæ®éãåæ°åœ¢ã® ‏ ×¢Öµ×× Ö·×ÖŽ× ‎ ã§çšããããïŒåæ°åœ¢ã«ã€ããŠã¯æ¬¡èª²åç
§ïŒ
|-
|style="text-align:left" |×€ÖŽÖŒ×
|style="text-align:left" |(‏ ×€Ö¶ÖŒ× ‎ã®é£èªåœ¢ïŒå£
|-
|style="text-align:left" |×Ö°ÖŒ×ֵך
|style="text-align:left" |äºæžïŒæ³
|-
|style="text-align:left" |×Ö°ÖŒ××֌ת
|style="text-align:left" |èŠããã®äžã§ã®åœ¢
|-
|style="text-align:left" |×֎֌סֵ֌×
|style="text-align:left" |æ€
åãç座
|-
|style="text-align:left" |×¢×××Öž×
|style="text-align:left" |(éå»ãŸãã¯æªæ¥ã®ïŒé¥ããªæããæ°žé ã
|-
|style="text-align:left" |×ַךְ×֞֌ע֎××
|style="text-align:left" |(‏×ַךְ×ַ֌ע ‎ãåãã®è€æ°åœ¢ïŒåå
|-
|style="text-align:left" |ש֞×× Öž×
|style="text-align:left" |幎
|-
|style="text-align:left" |×ֵש×
|style="text-align:left" |ååš
|-
|style="text-align:left" |×Ö·×֎ש֎֌×××
|style="text-align:left" |(‏×Öž×ֵש×‎ãäºãã®è€æ°åœ¢ïŒäºå
|-
|style="text-align:left" |×Ö·×ÖŽ×
|style="text-align:left" |åïŒèœåïŒè²¡ç£ïŒ
|-
|style="text-align:left" |×Ö°ÖŒ× Öµ×ÖŸ×Ö·×ÖŽ×
|style="text-align:left" |åã®æ¯åéâåã®æäž» [[èæžããã©ã€èªå
¥é/èªç«äººç§°ä»£åè©/説æ/æ
£çšå¥|(8.3.3)]]
|-
|style="text-align:left" |×Öµ××
|style="text-align:left" |ïŒ‏×Ö·×ÖŽ×‎ã®é£èªåœ¢ïŒéååš
|-
|style="text-align:left" |×ÖŒ××
|style="text-align:left" |ïŒé£èªåœ¢ ‏×ÖžÖŒ×‎ïŒ(ç¬ç«åœ¢ã§ïŒãã¹ãŠãïŒåã»äžå®åè©ã®åã§ïŒåã
ãïŒè€ã»äžå®åè©ã®åã§ïŒãã¹ãŠã®ãïŒå®åè©ã®åã§ïŒå
šïŒ
|-
|style="text-align:left" |×Öž×֞ש×
|style="text-align:left" |æ°ããïŒããšããã®ïŒ
|-
|style="text-align:left" |שֶ×Ö«×ֶש×
|style="text-align:left" |倪éœ
|-
|style="text-align:left" |×Öž×Öž×§
|style="text-align:left" |å
ããæ¿ããã匷ã
|-
|style="text-align:left" |×€Ö°ÖŒ×֎שְ×ת֎֌×
|style="text-align:left" |ïŒè€æ°åœ¢ ‏×€Ö°ÖŒ×֎שְ×ת֎֌××‎)ããªã·ã人
|-
|style="text-align:left" |ש֞××ÖŒ×
|style="text-align:left" |ãµãŠã«
|-
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:26Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E5%8D%98%E8%AA%9E |
24,917 | ç·å代æ°åŠ/è¡åãšè¡ååŒ/第äžé¡/çŽç·ã»å¹³é¢ | ãŸã,ãã¯ãã«ã«ãã£ãŠå¹³é¢äžã®çŽç·ãè¡šãæ¹æ³ã確èªãã.
å®çŸ©3 çŽç·ã®æ¹çšåŒ(ãã©ã¡ãŒã¿è¡šç€º)
å¹³é¢äžã®ç¹ A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéã, u â {\displaystyle {\vec {u}}} ã«å¹³è¡ãªçŽç·ã l {\displaystyle l} ãšãã. ãã® l {\displaystyle l} äžã®ç¹ã P {\displaystyle \mathrm {P} } ãšã, O P â = x â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}}} ãšãã. ãããš A P â = t u â {\displaystyle {\vec {\mathrm {AP} }}=t{\vec {u}}} ãæºãã宿° t {\displaystyle t} ããã£ãŠ,
x â = a â + t u â {\displaystyle {\vec {x}}={\vec {a}}+t{\vec {u}}}
( O P â = O A â + A P â ) {\displaystyle ({\vec {\mathrm {OP} }}={\vec {\mathrm {OA} }}+{\vec {\mathrm {AP} }})}
ãšè¡šããã.
ãããçŽç· l {\displaystyle l} ã®ãã¯ãã«æ¹çšåŒãšãã.
t {\displaystyle t} ã¯åªä»å€æ°,ãŸã㯠ãã©ã¡ãŒã¿ ãšåŒã°ãã.
ããã¯å¹³é¢äžã®çŽç·ã衚ããŠããã,空éå
ã®çŽç·ã衚ãå Žåã§ãåãèŠé ã§ããããããšãã§ãã. äžã§ãå¹³é¢äžã®ããã空éå
ã®ãã«èªã¿æ¿ããã°æžãããã§ãã.
æŒç¿2. {\displaystyle \quad }
座æšå¹³é¢äžã®ç¹ A ( â 4 , 5 ) {\displaystyle \mathrm {A} (-4,5)} ãéã, u â = ( â 1 , 3 ) {\displaystyle {\vec {u}}=(-1,3)} ã«å¹³è¡ãªçŽç· l {\displaystyle l} ãã a x + b y + c = 0 {\displaystyle ax+by+c=0} ã®åœ¢ã§è¡šã.
è§£çäŸ1
l {\displaystyle l} äžã®ç¹ P {\displaystyle \mathrm {P} } ã«ã€ããŠ,ãã宿° t {\displaystyle t} ããã£ãŠ,
P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y ) {\displaystyle (x,y)} ãšããã°, x = â t â 4 , y = 3 t + 5 {\displaystyle x=-t-4,y=3t+5} . ãããã t ãæ¶å»ãã. 3 x + y {\displaystyle 3x+y} ãèãããš t {\displaystyle t} ãæ¶ããããšã容æã«äºæ³ãããã®ã§,ãã®ãŸãŸ 3 x + y {\displaystyle 3x+y} ãèšç®ãããš,
ããªãã¡
⌠{\displaystyle \blacksquare }
è§£çäŸ2
ãã©ã¡ãŒã¿ t {\displaystyle t} ãçšããªãæ¹æ³ã瀺ã. åé¡ã®çŽç· l {\displaystyle l} 㯠u â = ( â 1 3 ) {\displaystyle {\vec {u}}=\left({\begin{array}{c}-1\\3\end{array}}\right)} ã«å¹³è¡ã§ãã£ãã,ããã«åçŽãªãã¯ãã« h â = ( 3 1 ) {\displaystyle {\vec {h}}=\left({\begin{array}{c}3\\1\end{array}}\right)} (æåãéãã«ããŠçæ¹ã«ãã€ãã¹ãã€ãã.ãããš u â â
h â = 0 {\displaystyle {\vec {u}}\cdot {\vec {h}}=0} .) ãçšããã°æ¬¡ã®ããã«è¡šçŸã§ãã.
l {\displaystyle l} 㯠A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéã h {\displaystyle h} ã«åçŽã ãã,ãã® l {\displaystyle l} äžã« P {\displaystyle \mathrm {P} } ããšã, O P â = x â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}}} ãšãããš, P {\displaystyle \mathrm {P} } ã l {\displaystyle l} äžã«ãã.
â A P â ⥠h â {\displaystyle \Leftrightarrow {\vec {\mathrm {AP} }}\bot {\vec {h}}}
â ( x â â a â ) â
h â = 0 {\displaystyle \Leftrightarrow ({\vec {x}}-{\vec {a}})\cdot {\vec {h}}=0} ...1
P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y ) {\displaystyle (x,y)} ãšããã°, x â = ( x y ) , a â = ( â 4 5 ) , h â = ( 3 1 ) {\displaystyle {\vec {x}}=\left({\begin{array}{c}x\\y\end{array}}\right),{\vec {a}}=\left({\begin{array}{c}-4\\5\end{array}}\right),{\vec {h}}=\left({\begin{array}{c}3\\1\end{array}}\right)} ãªã®ã§,1ãã
⎠( x + 4 y â 5 ) â
( 3 1 ) = 0 {\displaystyle \therefore \left({\begin{array}{c}x+4\\y-5\end{array}}\right)\cdot \left({\begin{array}{c}3\\1\end{array}}\right)=0}
⎠3 ( x + 4 ) + y â 5 = 0 {\displaystyle \therefore 3(x+4)+y-5=0}
⎠3 x + y + 7 = 0 {\displaystyle \therefore 3x+y+7=0}
ãšãªã,åãçŽç·ã®åŒãåŸããã.
⌠{\displaystyle \blacksquare }
1ã®ããã«ãå¹³é¢äžã®çŽç·ããã¯ãã«ã§è¡šãæ¹æ³ã«ã¯ãã©ã¡ãŒã¿ãçšããªãæ¹æ³ããã.
å®çŸ©4 çŽç·ã®æ¹çšåŒ( a x + b y + c = 0 {\displaystyle ax+by+c=0} )
å¹³é¢äžã®ç¹ A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéã, h â {\displaystyle {\vec {h}}} ã«åçŽãªçŽç·ã l {\displaystyle l} ãšãã. ãã® l {\displaystyle l} äžã«ç¹ P {\displaystyle \mathrm {P} } ããšã, O P â = x â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}}} ãšãããš, x â {\displaystyle {\vec {x}}} ã¯
( x â â a â ) â
h â = 0 {\displaystyle ({\vec {x}}-{\vec {a}})\cdot {\vec {h}}=0}
ãæºãã. P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y ) {\displaystyle (x,y)} ãšããŠæåãèšç®ãããš.
a x + b y + c = 0 {\displaystyle ax+by+c=0}
ã®åœ¢ãããŠãã.
次ã«,åé¡ãè§£ããªãã空éå
ã®å¹³é¢ã®è¡šãæ¹ã解説ããŠãã.
æŒç¿3. {\displaystyle \quad }
座æšç©ºéã®ç¹ A ( 0 , 2 , 1 ) {\displaystyle \mathrm {A} (0,2,1)} ãéã, ( 1 â 2 1 ) {\displaystyle \left({\begin{array}{c}1\\-2\\1\end{array}}\right)} , ( 2 â 1 3 ) {\displaystyle \left({\begin{array}{c}2\\-1\\3\end{array}}\right)} ã«å¹³è¡ãªå¹³é¢ã Ï {\displaystyle \pi } ãšãã. Ï {\displaystyle \pi } äžã®ç¹ P {\displaystyle \mathrm {P} } ã«ã€ããŠ, O P â {\displaystyle {\vec {\mathrm {OP} }}} ããã©ã¡ãŒã¿ s , t {\displaystyle s,t} ãçšããŠè¡šã. ãŸã, P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y , z ) {\displaystyle (x,y,z)} ããããšã, x , y , z {\displaystyle x,y,z} ãæºããçåŒãæ±ãã.
è§£ç
u â = ( 1 â 2 1 ) , v â = ( 2 â 1 3 ) {\displaystyle {\vec {u}}=\left({\begin{array}{c}1\\-2\\1\end{array}}\right),{\vec {v}}=\left({\begin{array}{c}2\\-1\\3\end{array}}\right)} ãšãã. A P â {\displaystyle {\vec {\mathrm {AP} }}} ã¯ Ï {\displaystyle \pi } ã«å«ãŸãããã¯ãã«ã ãã,ãã宿° s , t {\displaystyle s,t} ãçšã㊠A P â = s u â + t v â {\displaystyle {\vec {\mathrm {AP} }}=s{\vec {u}}+t{\vec {v}}} ãšè¡šãããšãã§ãã.
O P â = O A â + A P â {\displaystyle {\vec {\mathrm {OP} }}={\vec {\mathrm {OA} }}+{\vec {\mathrm {AP} }}}
ããªãã¡ P ( x , y , z ) {\displaystyle \mathrm {P} (x,y,z)} ãšããŠ
{ x = s + 2 t y = 2 â 2 s â t z = 1 + s + 3 t {\displaystyle {\begin{cases}x=s+2t\\y=2-2s-t\\z=1+s+3t\end{cases}}}
ããããããã©ã¡ãŒã¿ s , t {\displaystyle s,t} ãæ¶å»ãã.
x + 2 y = s + 2 t + 2 ( 2 â 2 s â t ) = â 3 s + 4 {\displaystyle x+2y=s+2t+2(2-2s-t)=-3s+4} ⎠s = 4 â x â 2 y 3 {\displaystyle \therefore s={\frac {4-x-2y}{3}}} 2 x + y = s ( s + 2 t ) + 2 â 2 s â t = 3 t + 2 {\displaystyle 2x+y=s(s+2t)+2-2s-t=3t+2} ⎠t = 2 x + y â 2 3 {\displaystyle \therefore t={\frac {2x+y-2}{3}}} ããã z = 1 + s + 3 t {\displaystyle z=1+s+3t} ã«ä»£å
¥ã㊠z = 1 + 4 â x â 2 y 3 + 3 â
2 x + y â 2 3 {\displaystyle z=1+{\frac {4-x-2y}{3}}+3\cdot {\frac {2x+y-2}{3}}} 3 z = 3 + 4 â x â 2 y + 3 ( 2 x + y â 2 ) {\displaystyle 3z=3+4-x-2y+3(2x+y-2)} ⎠5 x + y â 3 z = â 1 {\displaystyle \therefore 5x+y-3z=-1}
æ¬¡ã« Ï {\displaystyle \pi } ã«åçŽãªãã¯ãã«(æ³ç·ãã¯ãã«ãšãã)ãçšããŠ,é¢ä¿åŒãæ±ãã.
Ï {\displaystyle \pi } ã«åçŽãªãã¯ãã« h â {\displaystyle {\vec {h}}} 㯠u â , v â {\displaystyle {\vec {u}},{\vec {v}}} ã®ããããã«åçŽã ãã, h â {\displaystyle {\vec {h}}} 㯠u â à v â {\displaystyle {\vec {u}}\times {\vec {v}}} ã«å¹³è¡ã§ãã. ã ãã,
h â = u â Ã v â = ( 1 â 2 1 ) Ã ( 2 â 1 3 ) = ( â 5 â 1 3 ) {\displaystyle {\vec {h}}={\vec {u}}\times {\vec {v}}=\left({\begin{array}{c}1\\-2\\1\end{array}}\right)\times \left({\begin{array}{c}2\\-1\\3\end{array}}\right)=\left({\begin{array}{c}-5\\-1\\3\end{array}}\right)} ãšããããšãã§ãã.
O P â = x â , O A â = a â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}},{\vec {\mathrm {OA} }}={\vec {a}}} ãšãã.ãããš,
P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y , z ) {\displaystyle (x,y,z)} ãšããã°, x â = ( x y z ) , a â = ( 0 2 1 ) {\displaystyle {\vec {x}}=\left({\begin{array}{c}x\\y\\z\end{array}}\right),{\vec {a}}=\left({\begin{array}{c}0\\2\\1\end{array}}\right)} ,
( x â 0 y â 2 z â 1 ) ( â 5 â 1 3 ) = â 5 x â ( y â 2 ) + 3 ( z â 1 ) = 0 {\displaystyle \left({\begin{array}{c}x-0\\y-2\\z-1\end{array}}\right)\left({\begin{array}{c}-5\\-1\\3\end{array}}\right)=-5x-(y-2)+3(z-1)=0}
⎠5 x + y â 3 z = â 1 {\displaystyle \therefore 5x+y-3z=-1}
ãããå¹³é¢ Ï {\displaystyle \pi } ã®æ¹çšåŒã§ãã.å¹³é¢ã®æ¹çšåŒã®ä¿æ° ( 5 , 1 , â 3 ) {\displaystyle (5,1,-3)} ã䞊ã¹ããšå¹³é¢ã®æ³ç·ãã¯ãã«ã«ãªã£ãŠãã.
äžè¬ã®åœ¢ã§ãŸãšããŠãã.
å®çŸ©5 å¹³é¢ã®æ¹çšåŒ(ãã©ã¡ãŒã¿è¡šç€º)
空éå
ã®ç¹ A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéã, u â , v â {\displaystyle {\vec {u}},{\vec {v}}} ã«å¹³è¡ãªå¹³é¢ã Ï {\displaystyle \pi } ãšãã. ãã® Ï {\displaystyle \pi } äžã®ç¹ã P {\displaystyle \mathrm {P} } ãšã, O P â = x â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}}} ãšãããš, A P â = s u â + t u â {\displaystyle {\vec {\mathrm {AP} }}=s{\vec {u}}+t{\vec {u}}} ãæºãã宿° s , t {\displaystyle s,t} ããã£ãŠ, x â {\displaystyle {\vec {x}}} ã¯,
ãšè¡šããã.
å®çŸ©6 å¹³é¢ã®æ¹çšåŒ( a x + b y + c z + d = 0 {\displaystyle ax+by+cz+d=0} )
空éäžã®ç¹ A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéã, h â {\displaystyle {\vec {h}}} ã«åçŽãªå¹³é¢ã Ï {\displaystyle \pi } ãšãã. ãã® Ï {\displaystyle \pi } äžã«ç¹ P {\displaystyle \mathrm {P} } ããšã, O P â = x â {\displaystyle {\vec {\mathrm {OP} }}={\vec {x}}} ãšãã. x â {\displaystyle {\vec {x}}} ã¯,
ãæºãã. P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y , z ) {\displaystyle (x,y,z)} ãšããŠ,æåãèšç®ãããš
ã®åœ¢ã«ãªã,ãã¯ãã« ( a , b , c ) {\displaystyle (a,b,c)} 㯠h â {\displaystyle {\vec {h}}} ã«å¹³è¡ã§ãã.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãŸã,ãã¯ãã«ã«ãã£ãŠå¹³é¢äžã®çŽç·ãè¡šãæ¹æ³ã確èªãã.",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å®çŸ©3 çŽç·ã®æ¹çšåŒ(ãã©ã¡ãŒã¿è¡šç€º)",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å¹³é¢äžã®ç¹ A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéã, u â {\\displaystyle {\\vec {u}}} ã«å¹³è¡ãªçŽç·ã l {\\displaystyle l} ãšãã. ãã® l {\\displaystyle l} äžã®ç¹ã P {\\displaystyle \\mathrm {P} } ãšã, O P â = x â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}}} ãšãã. ãããš A P â = t u â {\\displaystyle {\\vec {\\mathrm {AP} }}=t{\\vec {u}}} ãæºãã宿° t {\\displaystyle t} ããã£ãŠ,",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "x â = a â + t u â {\\displaystyle {\\vec {x}}={\\vec {a}}+t{\\vec {u}}}",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "( O P â = O A â + A P â ) {\\displaystyle ({\\vec {\\mathrm {OP} }}={\\vec {\\mathrm {OA} }}+{\\vec {\\mathrm {AP} }})}",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšè¡šããã.",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããçŽç· l {\\displaystyle l} ã®ãã¯ãã«æ¹çšåŒãšãã.",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "t {\\displaystyle t} ã¯åªä»å€æ°,ãŸã㯠ãã©ã¡ãŒã¿ ãšåŒã°ãã.",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã¯å¹³é¢äžã®çŽç·ã衚ããŠããã,空éå
ã®çŽç·ã衚ãå Žåã§ãåãèŠé ã§ããããããšãã§ãã. äžã§ãå¹³é¢äžã®ããã空éå
ã®ãã«èªã¿æ¿ããã°æžãããã§ãã.",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æŒç¿2. {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "座æšå¹³é¢äžã®ç¹ A ( â 4 , 5 ) {\\displaystyle \\mathrm {A} (-4,5)} ãéã, u â = ( â 1 , 3 ) {\\displaystyle {\\vec {u}}=(-1,3)} ã«å¹³è¡ãªçŽç· l {\\displaystyle l} ãã a x + b y + c = 0 {\\displaystyle ax+by+c=0} ã®åœ¢ã§è¡šã.",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "è§£çäŸ1",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "l {\\displaystyle l} äžã®ç¹ P {\\displaystyle \\mathrm {P} } ã«ã€ããŠ,ãã宿° t {\\displaystyle t} ããã£ãŠ,",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y ) {\\displaystyle (x,y)} ãšããã°, x = â t â 4 , y = 3 t + 5 {\\displaystyle x=-t-4,y=3t+5} . ãããã t ãæ¶å»ãã. 3 x + y {\\displaystyle 3x+y} ãèãããš t {\\displaystyle t} ãæ¶ããããšã容æã«äºæ³ãããã®ã§,ãã®ãŸãŸ 3 x + y {\\displaystyle 3x+y} ãèšç®ãããš,",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããªãã¡",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "⌠{\\displaystyle \\blacksquare }",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "è§£çäŸ2",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã©ã¡ãŒã¿ t {\\displaystyle t} ãçšããªãæ¹æ³ã瀺ã. åé¡ã®çŽç· l {\\displaystyle l} 㯠u â = ( â 1 3 ) {\\displaystyle {\\vec {u}}=\\left({\\begin{array}{c}-1\\\\3\\end{array}}\\right)} ã«å¹³è¡ã§ãã£ãã,ããã«åçŽãªãã¯ãã« h â = ( 3 1 ) {\\displaystyle {\\vec {h}}=\\left({\\begin{array}{c}3\\\\1\\end{array}}\\right)} (æåãéãã«ããŠçæ¹ã«ãã€ãã¹ãã€ãã.ãããš u â â
h â = 0 {\\displaystyle {\\vec {u}}\\cdot {\\vec {h}}=0} .) ãçšããã°æ¬¡ã®ããã«è¡šçŸã§ãã.",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "l {\\displaystyle l} 㯠A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéã h {\\displaystyle h} ã«åçŽã ãã,ãã® l {\\displaystyle l} äžã« P {\\displaystyle \\mathrm {P} } ããšã, O P â = x â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}}} ãšãããš, P {\\displaystyle \\mathrm {P} } ã l {\\displaystyle l} äžã«ãã.",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "â A P â ⥠h â {\\displaystyle \\Leftrightarrow {\\vec {\\mathrm {AP} }}\\bot {\\vec {h}}}",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "â ( x â â a â ) â
h â = 0 {\\displaystyle \\Leftrightarrow ({\\vec {x}}-{\\vec {a}})\\cdot {\\vec {h}}=0} ...1",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y ) {\\displaystyle (x,y)} ãšããã°, x â = ( x y ) , a â = ( â 4 5 ) , h â = ( 3 1 ) {\\displaystyle {\\vec {x}}=\\left({\\begin{array}{c}x\\\\y\\end{array}}\\right),{\\vec {a}}=\\left({\\begin{array}{c}-4\\\\5\\end{array}}\\right),{\\vec {h}}=\\left({\\begin{array}{c}3\\\\1\\end{array}}\\right)} ãªã®ã§,1ãã",
"title": ""
},
{
"paragraph_id": 24,
"tag": "p",
"text": "⎠( x + 4 y â 5 ) â
( 3 1 ) = 0 {\\displaystyle \\therefore \\left({\\begin{array}{c}x+4\\\\y-5\\end{array}}\\right)\\cdot \\left({\\begin{array}{c}3\\\\1\\end{array}}\\right)=0}",
"title": ""
},
{
"paragraph_id": 25,
"tag": "p",
"text": "⎠3 ( x + 4 ) + y â 5 = 0 {\\displaystyle \\therefore 3(x+4)+y-5=0}",
"title": ""
},
{
"paragraph_id": 26,
"tag": "p",
"text": "⎠3 x + y + 7 = 0 {\\displaystyle \\therefore 3x+y+7=0}",
"title": ""
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªã,åãçŽç·ã®åŒãåŸããã.",
"title": ""
},
{
"paragraph_id": 28,
"tag": "p",
"text": "⌠{\\displaystyle \\blacksquare }",
"title": ""
},
{
"paragraph_id": 29,
"tag": "p",
"text": "1ã®ããã«ãå¹³é¢äžã®çŽç·ããã¯ãã«ã§è¡šãæ¹æ³ã«ã¯ãã©ã¡ãŒã¿ãçšããªãæ¹æ³ããã.",
"title": ""
},
{
"paragraph_id": 30,
"tag": "p",
"text": "å®çŸ©4 çŽç·ã®æ¹çšåŒ( a x + b y + c = 0 {\\displaystyle ax+by+c=0} )",
"title": ""
},
{
"paragraph_id": 31,
"tag": "p",
"text": "å¹³é¢äžã®ç¹ A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéã, h â {\\displaystyle {\\vec {h}}} ã«åçŽãªçŽç·ã l {\\displaystyle l} ãšãã. ãã® l {\\displaystyle l} äžã«ç¹ P {\\displaystyle \\mathrm {P} } ããšã, O P â = x â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}}} ãšãããš, x â {\\displaystyle {\\vec {x}}} ã¯",
"title": ""
},
{
"paragraph_id": 32,
"tag": "p",
"text": "( x â â a â ) â
h â = 0 {\\displaystyle ({\\vec {x}}-{\\vec {a}})\\cdot {\\vec {h}}=0}",
"title": ""
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãæºãã. P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y ) {\\displaystyle (x,y)} ãšããŠæåãèšç®ãããš.",
"title": ""
},
{
"paragraph_id": 34,
"tag": "p",
"text": "a x + b y + c = 0 {\\displaystyle ax+by+c=0}",
"title": ""
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ã®åœ¢ãããŠãã.",
"title": ""
},
{
"paragraph_id": 36,
"tag": "p",
"text": "次ã«,åé¡ãè§£ããªãã空éå
ã®å¹³é¢ã®è¡šãæ¹ã解説ããŠãã.",
"title": ""
},
{
"paragraph_id": 37,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 38,
"tag": "p",
"text": "æŒç¿3. {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 39,
"tag": "p",
"text": "座æšç©ºéã®ç¹ A ( 0 , 2 , 1 ) {\\displaystyle \\mathrm {A} (0,2,1)} ãéã, ( 1 â 2 1 ) {\\displaystyle \\left({\\begin{array}{c}1\\\\-2\\\\1\\end{array}}\\right)} , ( 2 â 1 3 ) {\\displaystyle \\left({\\begin{array}{c}2\\\\-1\\\\3\\end{array}}\\right)} ã«å¹³è¡ãªå¹³é¢ã Ï {\\displaystyle \\pi } ãšãã. Ï {\\displaystyle \\pi } äžã®ç¹ P {\\displaystyle \\mathrm {P} } ã«ã€ããŠ, O P â {\\displaystyle {\\vec {\\mathrm {OP} }}} ããã©ã¡ãŒã¿ s , t {\\displaystyle s,t} ãçšããŠè¡šã. ãŸã, P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y , z ) {\\displaystyle (x,y,z)} ããããšã, x , y , z {\\displaystyle x,y,z} ãæºããçåŒãæ±ãã.",
"title": ""
},
{
"paragraph_id": 40,
"tag": "p",
"text": "è§£ç",
"title": ""
},
{
"paragraph_id": 41,
"tag": "p",
"text": "u â = ( 1 â 2 1 ) , v â = ( 2 â 1 3 ) {\\displaystyle {\\vec {u}}=\\left({\\begin{array}{c}1\\\\-2\\\\1\\end{array}}\\right),{\\vec {v}}=\\left({\\begin{array}{c}2\\\\-1\\\\3\\end{array}}\\right)} ãšãã. A P â {\\displaystyle {\\vec {\\mathrm {AP} }}} ã¯ Ï {\\displaystyle \\pi } ã«å«ãŸãããã¯ãã«ã ãã,ãã宿° s , t {\\displaystyle s,t} ãçšã㊠A P â = s u â + t v â {\\displaystyle {\\vec {\\mathrm {AP} }}=s{\\vec {u}}+t{\\vec {v}}} ãšè¡šãããšãã§ãã.",
"title": ""
},
{
"paragraph_id": 42,
"tag": "p",
"text": "O P â = O A â + A P â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {\\mathrm {OA} }}+{\\vec {\\mathrm {AP} }}}",
"title": ""
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ããªãã¡ P ( x , y , z ) {\\displaystyle \\mathrm {P} (x,y,z)} ãšããŠ",
"title": ""
},
{
"paragraph_id": 44,
"tag": "p",
"text": "{ x = s + 2 t y = 2 â 2 s â t z = 1 + s + 3 t {\\displaystyle {\\begin{cases}x=s+2t\\\\y=2-2s-t\\\\z=1+s+3t\\end{cases}}}",
"title": ""
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ããããããã©ã¡ãŒã¿ s , t {\\displaystyle s,t} ãæ¶å»ãã.",
"title": ""
},
{
"paragraph_id": 46,
"tag": "p",
"text": "x + 2 y = s + 2 t + 2 ( 2 â 2 s â t ) = â 3 s + 4 {\\displaystyle x+2y=s+2t+2(2-2s-t)=-3s+4} ⎠s = 4 â x â 2 y 3 {\\displaystyle \\therefore s={\\frac {4-x-2y}{3}}} 2 x + y = s ( s + 2 t ) + 2 â 2 s â t = 3 t + 2 {\\displaystyle 2x+y=s(s+2t)+2-2s-t=3t+2} ⎠t = 2 x + y â 2 3 {\\displaystyle \\therefore t={\\frac {2x+y-2}{3}}} ããã z = 1 + s + 3 t {\\displaystyle z=1+s+3t} ã«ä»£å
¥ã㊠z = 1 + 4 â x â 2 y 3 + 3 â
2 x + y â 2 3 {\\displaystyle z=1+{\\frac {4-x-2y}{3}}+3\\cdot {\\frac {2x+y-2}{3}}} 3 z = 3 + 4 â x â 2 y + 3 ( 2 x + y â 2 ) {\\displaystyle 3z=3+4-x-2y+3(2x+y-2)} ⎠5 x + y â 3 z = â 1 {\\displaystyle \\therefore 5x+y-3z=-1}",
"title": ""
},
{
"paragraph_id": 47,
"tag": "p",
"text": "æ¬¡ã« Ï {\\displaystyle \\pi } ã«åçŽãªãã¯ãã«(æ³ç·ãã¯ãã«ãšãã)ãçšããŠ,é¢ä¿åŒãæ±ãã.",
"title": ""
},
{
"paragraph_id": 48,
"tag": "p",
"text": "Ï {\\displaystyle \\pi } ã«åçŽãªãã¯ãã« h â {\\displaystyle {\\vec {h}}} 㯠u â , v â {\\displaystyle {\\vec {u}},{\\vec {v}}} ã®ããããã«åçŽã ãã, h â {\\displaystyle {\\vec {h}}} 㯠u â à v â {\\displaystyle {\\vec {u}}\\times {\\vec {v}}} ã«å¹³è¡ã§ãã. ã ãã,",
"title": ""
},
{
"paragraph_id": 49,
"tag": "p",
"text": "h â = u â Ã v â = ( 1 â 2 1 ) Ã ( 2 â 1 3 ) = ( â 5 â 1 3 ) {\\displaystyle {\\vec {h}}={\\vec {u}}\\times {\\vec {v}}=\\left({\\begin{array}{c}1\\\\-2\\\\1\\end{array}}\\right)\\times \\left({\\begin{array}{c}2\\\\-1\\\\3\\end{array}}\\right)=\\left({\\begin{array}{c}-5\\\\-1\\\\3\\end{array}}\\right)} ãšããããšãã§ãã.",
"title": ""
},
{
"paragraph_id": 50,
"tag": "p",
"text": "O P â = x â , O A â = a â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}},{\\vec {\\mathrm {OA} }}={\\vec {a}}} ãšãã.ãããš,",
"title": ""
},
{
"paragraph_id": 51,
"tag": "p",
"text": "P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y , z ) {\\displaystyle (x,y,z)} ãšããã°, x â = ( x y z ) , a â = ( 0 2 1 ) {\\displaystyle {\\vec {x}}=\\left({\\begin{array}{c}x\\\\y\\\\z\\end{array}}\\right),{\\vec {a}}=\\left({\\begin{array}{c}0\\\\2\\\\1\\end{array}}\\right)} ,",
"title": ""
},
{
"paragraph_id": 52,
"tag": "p",
"text": "( x â 0 y â 2 z â 1 ) ( â 5 â 1 3 ) = â 5 x â ( y â 2 ) + 3 ( z â 1 ) = 0 {\\displaystyle \\left({\\begin{array}{c}x-0\\\\y-2\\\\z-1\\end{array}}\\right)\\left({\\begin{array}{c}-5\\\\-1\\\\3\\end{array}}\\right)=-5x-(y-2)+3(z-1)=0}",
"title": ""
},
{
"paragraph_id": 53,
"tag": "p",
"text": "⎠5 x + y â 3 z = â 1 {\\displaystyle \\therefore 5x+y-3z=-1}",
"title": ""
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãããå¹³é¢ Ï {\\displaystyle \\pi } ã®æ¹çšåŒã§ãã.å¹³é¢ã®æ¹çšåŒã®ä¿æ° ( 5 , 1 , â 3 ) {\\displaystyle (5,1,-3)} ã䞊ã¹ããšå¹³é¢ã®æ³ç·ãã¯ãã«ã«ãªã£ãŠãã.",
"title": ""
},
{
"paragraph_id": 55,
"tag": "p",
"text": "äžè¬ã®åœ¢ã§ãŸãšããŠãã.",
"title": ""
},
{
"paragraph_id": 56,
"tag": "p",
"text": "å®çŸ©5 å¹³é¢ã®æ¹çšåŒ(ãã©ã¡ãŒã¿è¡šç€º)",
"title": ""
},
{
"paragraph_id": 57,
"tag": "p",
"text": "空éå
ã®ç¹ A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéã, u â , v â {\\displaystyle {\\vec {u}},{\\vec {v}}} ã«å¹³è¡ãªå¹³é¢ã Ï {\\displaystyle \\pi } ãšãã. ãã® Ï {\\displaystyle \\pi } äžã®ç¹ã P {\\displaystyle \\mathrm {P} } ãšã, O P â = x â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}}} ãšãããš, A P â = s u â + t u â {\\displaystyle {\\vec {\\mathrm {AP} }}=s{\\vec {u}}+t{\\vec {u}}} ãæºãã宿° s , t {\\displaystyle s,t} ããã£ãŠ, x â {\\displaystyle {\\vec {x}}} ã¯,",
"title": ""
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãšè¡šããã.",
"title": ""
},
{
"paragraph_id": 59,
"tag": "p",
"text": "å®çŸ©6 å¹³é¢ã®æ¹çšåŒ( a x + b y + c z + d = 0 {\\displaystyle ax+by+cz+d=0} )",
"title": ""
},
{
"paragraph_id": 60,
"tag": "p",
"text": "空éäžã®ç¹ A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéã, h â {\\displaystyle {\\vec {h}}} ã«åçŽãªå¹³é¢ã Ï {\\displaystyle \\pi } ãšãã. ãã® Ï {\\displaystyle \\pi } äžã«ç¹ P {\\displaystyle \\mathrm {P} } ããšã, O P â = x â {\\displaystyle {\\vec {\\mathrm {OP} }}={\\vec {x}}} ãšãã. x â {\\displaystyle {\\vec {x}}} ã¯,",
"title": ""
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãæºãã. P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y , z ) {\\displaystyle (x,y,z)} ãšããŠ,æåãèšç®ãããš",
"title": ""
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã®åœ¢ã«ãªã,ãã¯ãã« ( a , b , c ) {\\displaystyle (a,b,c)} 㯠h â {\\displaystyle {\\vec {h}}} ã«å¹³è¡ã§ãã.",
"title": ""
},
{
"paragraph_id": 63,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 64,
"tag": "p",
"text": "",
"title": ""
}
]
| ãŸãïŒãã¯ãã«ã«ãã£ãŠå¹³é¢äžã®çŽç·ãè¡šãæ¹æ³ã確èªããïŒ å®çŸ©3
çŽç·ã®æ¹çšåŒïŒãã©ã¡ãŒã¿è¡šç€ºïŒ å¹³é¢äžã®ç¹ A ãéãïŒ u â ã«å¹³è¡ãªçŽç·ã l ãšããïŒ
ãã® l äžã®ç¹ã P ãšãïŒ O P â = x â ãšããïŒ
ãããš A P â = t u â ãæºãã宿° t ããã£ãŠïŒ x â = a â + t u â ãšè¡šãããïŒ ãããçŽç· l ã®ãã¯ãã«æ¹çšåŒãšããïŒ t ã¯åªä»å€æ°ïŒãŸã㯠ãã©ã¡ãŒã¿ ãšåŒã°ããïŒ ããã¯å¹³é¢äžã®çŽç·ã衚ããŠãããïŒç©ºéå
ã®çŽç·ã衚ãå Žåã§ãåãèŠé ã§ããããããšãã§ããïŒ
äžã§ãå¹³é¢äžã®ããã空éå
ã®ãã«èªã¿æ¿ããã°æžãããã§ããïŒ | ãŸãïŒãã¯ãã«ã«ãã£ãŠå¹³é¢äžã®çŽç·ãè¡šãæ¹æ³ã確èªããïŒ
<!-- def:003:start -->
<strong>å®çŸ©3</strong>
<strong>çŽç·ã®æ¹çšåŒïŒãã©ã¡ãŒã¿è¡šç€ºïŒ</strong>
å¹³é¢äžã®ç¹ <math>\mathrm{A}(\vec{a})</math> ãéãïŒ<math>\vec{u}</math> ã«å¹³è¡ãªçŽç·ã <math>l</math> ãšããïŒ
ãã® <math>l</math> äžã®ç¹ã <math>\mathrm{P}</math> ãšãïŒ<math>\vec{\mathrm{OP}} = \vec{x}</math> ãšããïŒ
ãããš <math>\vec{\mathrm{AP}} = t\vec{u}</math> ãæºãã宿° <math>t</math> ããã£ãŠïŒ
<math>\vec{x} = \vec{a} + t \vec{u}</math>
<math>(\vec{\mathrm{OP}} = \vec{\mathrm{OA}} + \vec{\mathrm{AP}})</math>
ãšè¡šãããïŒ
ãããçŽç· <math>l</math> ã®<strong>ãã¯ãã«æ¹çšåŒ</strong>ãšããïŒ
<!-- def:003:end -->
<math>t</math> ã¯åªä»å€æ°ïŒãŸã㯠<strong>ãã©ã¡ãŒã¿</strong> ãšåŒã°ããïŒ
ããã¯å¹³é¢äžã®çŽç·ã衚ããŠãããïŒç©ºéå
ã®çŽç·ã衚ãå Žåã§ãåãèŠé ã§ããããããšãã§ããïŒ
äžã§ãå¹³é¢äžã®ããã空éå
ã®ãã«èªã¿æ¿ããã°æžãããã§ããïŒ
<!-- ex:002:start-->
<div id="ex:2">
<strong>æŒç¿2.</strong><math>\quad</math>
座æšå¹³é¢äžã®ç¹ <math>\mathrm{A}(-4, 5)</math> ãéãïŒ<math>\vec{u} = (-1, 3)</math> ã«å¹³è¡ãªçŽç· <math>l</math> ãã
<math>ax + by + c = 0</math> ã®åœ¢ã§è¡šãïŒ
<strong>è§£çäŸ1</strong>
<math>l</math> äžã®ç¹ <math>\mathrm{P}</math> ã«ã€ããŠïŒãã宿° <math>t</math> ããã£ãŠïŒ
:<math>\vec{\mathrm{OP}} = \vec{\mathrm{OA}} + \vec{\mathrm{AP}} =
\left(
\begin{array}{c}
-4 \\
5
\end{array}
\right)
+ t
\left(
\begin{array}{c}
-1 \\
3
\end{array}
\right)
=
\left(
\begin{array}{c}
-t - 3 \\
3t + 5
\end{array}
\right)
</math>
<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y)</math> ãšããã°ïŒ
<math>x = -t -4, y = 3t + 5</math>ïŒ
ãããã t ãæ¶å»ããïŒ<math>3x + y</math> ãèãããš <math>t</math> ãæ¶ããããšã容æã«äºæ³ãããã®ã§ïŒãã®ãŸãŸ <math>3x + y</math> ãèšç®ãããšïŒ
:<math>3x + y = 3(-t -4) + (3t + 5)</math>
:<math>= -3t - 12 + 3t + 5</math>
:<math> = -7</math>
ããªãã¡
:<math>3x + y + 7 = 0</math>
<math>\blacksquare</math>
<!-- ex:002-1:end-->
<strong>è§£çäŸ2</strong>
ãã©ã¡ãŒã¿ <math>t</math> ãçšããªãæ¹æ³ã瀺ãïŒ
åé¡ã®çŽç· <math>l</math> 㯠<math>\vec{u} =
\left(
\begin{array}{c}
-1\\
3
\end{array}
\right)
</math>
ã«å¹³è¡ã§ãã£ããïŒããã«åçŽãªãã¯ãã« <math>\vec{h} =
\left(
\begin{array}{c}
3\\
1
\end{array}
\right)
</math>
ïŒæåãéãã«ããŠçæ¹ã«ãã€ãã¹ãã€ããïŒãããš <math>\vec{u}\cdot\vec{h} = 0</math><ref>
ãã¯ãã« <math>\vec{a} =
\left(
\begin{array}{c}
x\\
y
\end{array}
\right)
</math>
ã«å¯ŸããŠãã¯ãã« <math>\vec{b}</math> ãïŒ<math>\vec{b} =
\left(
\begin{array}{c}
y\\
-x
\end{array}
\right)
</math>
ãšãããš <math>\vec{a}\cdot \vec{b} =
\cdot
\left(
\begin{array}{c}
x\\
y
\end{array}
\right)
\cdot
\left(
\begin{array}{c}
y\\
-x
\end{array}
\right)
= xy + y(-x) = 0</math>ïŒ
ãããã¯
<math>\vec{b} =
\left(
\begin{array}{c}
-y\\
x
\end{array}
\right)
</math>
ãšããŠã
<math>\vec{a}\cdot \vec{b} =
\cdot
\left(
\begin{array}{c}
x\\
y
\end{array}
\right)
\cdot
\left(
\begin{array}{c}
-y\\
x
\end{array}
\right)
= x(-y) + yx = 0</math>ã§åæ§ãšãªãïŒ
</ref>ïŒïŒ
ãçšããã°æ¬¡ã®ããã«è¡šçŸã§ããïŒ
<math>l</math> 㯠<math>\mathrm{A}(\vec{a})</math> ãéã <math>h</math> ã«åçŽã ããïŒãã® <math>l</math> äžã« <math>\mathrm{P}</math> ããšãïŒ
<math>\vec{\mathrm{OP}} = \vec{x}</math> ãšãããšïŒ<math>\mathrm{P}</math> ã <math>l</math> äžã«ããïŒ
<math>\Leftrightarrow \vec{\mathrm{AP}} \bot \vec{h}</math>
<math>\Leftrightarrow (\vec{x} - \vec{a})\cdot \vec{h} = 0</math> âŠâ
<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y)</math> ãšããã°ïŒ<math>\vec{x} =
\left(
\begin{array}{c}
x\\
y
\end{array}
\right)
, \vec{a} =
\left(
\begin{array}{c}
-4\\
5
\end{array}
\right)
, \vec{h} =
\left(
\begin{array}{c}
3\\
1
\end{array}
\right)
</math>
ãªã®ã§ïŒâ ãã
:<math>\left \{
\left(
\begin{array}{c}
x\\
y
\end{array}
\right)
-
\left(
\begin{array}{c}
-4\\
5
\end{array}
\right)
\right \}
\cdot
\left(
\begin{array}{c}
3\\
1
\end{array}
\right)
= 0</math>
<math>\therefore
\left(
\begin{array}{c}
x + 4\\
y - 5
\end{array}
\right)
\cdot
\left(
\begin{array}{c}
3\\
1
\end{array}
\right)
= 0</math>
<math>\therefore
3(x + 4) + y - 5 = 0
</math>
<math>
\therefore
3x + y + 7 = 0
</math>
ãšãªãïŒåãçŽç·ã®åŒãåŸãããïŒ
<math>\blacksquare</math>
<!-- ex:002-2:end-->
â ã®ããã«ãå¹³é¢äžã®çŽç·ããã¯ãã«ã§è¡šãæ¹æ³ã«ã¯ãã©ã¡ãŒã¿ãçšããªãæ¹æ³ãããïŒ
<!-- def:004:start -->
<strong>å®çŸ©4</strong>
<strong>çŽç·ã®æ¹çšåŒïŒ<math>ax + by + c = 0</math>ïŒ</strong>
å¹³é¢äžã®ç¹ <math>\mathrm{A}(\vec{a})</math> ãéãïŒ<math>\vec{h}</math> ã«åçŽãªçŽç·ã <math>l</math> ãšããïŒ
ãã® <math>l</math> äžã«ç¹ <math>\mathrm{P}</math> ããšãïŒ<math>\vec{\mathrm{OP}} = \vec{x}</math> ãšãããšïŒ
<math>\vec{x}</math> ã¯
<math>(\vec{x} - \vec{a}) \cdot\vec{h} = 0</math>
ãæºããïŒ<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y)</math> ãšããŠæåãèšç®ãããšïŒ
<math>ax + by + c = 0</math>
ã®åœ¢ãããŠããïŒ
<!-- th:004:end -->
次ã«ïŒåé¡ãè§£ããªãã空éå
ã®å¹³é¢ã®è¡šãæ¹ã解説ããŠããïŒ
<!-- ex:003:start-->
<div id="ex:3">
<strong>æŒç¿3.</strong><math>\quad</math>
座æšç©ºéã®ç¹ <math>\mathrm{A}(0, 2, 1)</math> ãéãïŒ
<math>
\left(
\begin{array}{c}
1\\
-2\\
1
\end{array}
\right)
</math>ïŒ<math>
\left(
\begin{array}{c}
2\\
-1\\
3
\end{array}
\right)
</math>
ã«å¹³è¡ãªå¹³é¢ã <math>\pi</math> ãšããïŒ
<math>\pi</math> äžã®ç¹ <math>\mathrm{P}</math> ã«ã€ããŠïŒ
<math>\vec{\mathrm{OP}}</math> ããã©ã¡ãŒã¿ <math>s, t</math> ãçšããŠè¡šãïŒ
ãŸãïŒ<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y, z)</math> ããããšãïŒ
<math>x, y, z</math> ãæºããçåŒãæ±ããïŒ
<strong>è§£ç</strong>
<math>\vec{u} =
\left(
\begin{array}{c}
1\\
-2\\
1
\end{array}
\right)
, \vec{v} =
\left(
\begin{array}{c}
2\\
-1\\
3
\end{array}
\right)
</math> ãšããïŒ<math>\vec{\mathrm{AP}}</math> 㯠<math>\pi</math> ã«å«ãŸãããã¯ãã«ã ããïŒãã宿° <math>s, t</math> ãçšã㊠<math>\vec{\mathrm{AP}} = s\vec{u} + t\vec{v}</math> ãšè¡šãããšãã§ãã<ref>ãã ã <math>\vec{u}, \vec{v}</math> ãç·åœ¢ç¬ç«ã§ããå¿
èŠãããïŒããã§ã¯ <math>\vec{u}, \vec{v}</math> ã®åãã¯å¹³è¡ã§ã¯ãªãïŒãããæºãã</ref>ïŒ
<math>\vec{\mathrm{OP}} = \vec{\mathrm{OA}} + \vec{\mathrm{AP}}</math>
:<math> = \vec{\mathrm{OA}} + s\vec{u} + t\vec{v}</math>
:<math> =
\left(
\begin{array}{c}
0\\
2\\
1
\end{array}
\right)
+s
\left(
\begin{array}{c}
1\\
-2\\
1
\end{array}
\right)
+t
\left(
\begin{array}{c}
2\\
-1\\
3
\end{array}
\right)
</math>
ããªãã¡ <math>\mathrm{P} (x, y, z)</math> ãšããŠ
<math>
\begin{cases}
x = s + 2t \\
y = 2 -2s -t \\
z = 1 + s + 3t
\end{cases}
</math>
ããããããã©ã¡ãŒã¿ <math>s, t</math> ãæ¶å»ããïŒ
<math>x+2y = s+2t+2(2-2s-t)= -3s+4</math><br />
<math>\therefore s = \frac{4-x-2y}{3}</math><br />
<math>2x+y=s(s + 2t) + 2-2s-t = 3t + 2</math><br />
<math>\therefore t = \frac{2x+y-2}{3}</math><br />
ããã <math>z = 1 + s + 3t</math> ã«ä»£å
¥ããŠ<br />
<math>z = 1 + \frac{4-x-2y}{3} + 3\cdot \frac{2x+y-2}{3}</math><br />
<math>3z=3+4-x-2y + 3(2x+y-2)</math><br />
<math>\therefore 5x+y-3z = -1</math>
次㫠<math>\pi</math> ã«åçŽãªãã¯ãã«ïŒæ³ç·ãã¯ãã«ãšããïŒãçšããŠïŒé¢ä¿åŒãæ±ããïŒ
<math>\pi</math> ã«åçŽãªãã¯ãã« <math>\vec{h}</math> 㯠<math>\vec{u}, \vec{v}</math> ã®ããããã«åçŽã ããïŒ<math>\vec{h}</math> 㯠<math>\vec{u} \times \vec{v}</math> ã«å¹³è¡ã§ãã<ref>
[[ç·å代æ°åŠ/è¡åãšè¡ååŒ/第äžé¡/å€ç©#th:005|å®ç5 ]](1) <math>\vec {a} \times \vec {b}</math> ã¯ïŒ <math>\vec {a}</math>ïŒ<math>\vec {b}</math> ã®äž¡æ¹ãšçŽäº€ããïŒ
</ref>ïŒ
ã ããïŒ
<math>\vec{h} = \vec{u} \times \vec{v} =
\left(
\begin{array}{c}
1\\
-2\\
1
\end{array}
\right)
\times
\left(
\begin{array}{c}
2\\
-1\\
3
\end{array}
\right)
=
\left(
\begin{array}{c}
-5\\
-1\\
3
\end{array}
\right)
</math>
ãšããããšãã§ããïŒ
<math>\vec{\mathrm{OP}} = \vec{x}, \vec{\mathrm{OA}} = \vec{a}</math> ãšããïŒãããšïŒ
:<math>\mathrm{P}</math> ã <math>\pi</math> äžã«ãã
:<math>\iff \vec{\mathrm{AP}} \bot \vec{h}</math>
:<math>\iff (\vec{x} - \vec{a})\cdot \vec{h} = 0</math>
<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y, z)</math> ãšããã°ïŒ
<math>\vec{x} =
\left(
\begin{array}{c}
x\\
y\\
z
\end{array}
\right)
, \vec{a} =
\left(
\begin{array}{c}
0\\
2\\
1
\end{array}
\right)
</math>ïŒ
<math>
\left(
\begin{array}{c}
x - 0\\
y - 2\\
z - 1
\end{array}
\right)
\left(
\begin{array}{c}
-5\\
-1\\
3
\end{array}
\right)
= -5x -(y - 2) + 3(z - 1) = 0</math>
<math>\therefore 5x + y -3z = -1</math>
ãããå¹³é¢ <math>\pi</math> ã®æ¹çšåŒã§ããïŒå¹³é¢ã®æ¹çšåŒã®ä¿æ° <math>(5, 1, -3)</math> ã䞊ã¹ããšå¹³é¢ã®æ³ç·ãã¯ãã«ã«ãªã£ãŠããïŒ
<!-- ex:003:end-->
äžè¬ã®åœ¢ã§ãŸãšããŠããïŒ
<!-- def:005:start -->
<strong>å®çŸ©5</strong>
<strong>å¹³é¢ã®æ¹çšåŒïŒãã©ã¡ãŒã¿è¡šç€ºïŒ</strong>
空éå
ã®ç¹ <math>\mathrm{A}(\vec{a})</math> ãéãïŒ<math>\vec{u}, \vec{v}</math> ã«å¹³è¡ãªå¹³é¢ã <math>\pi</math> ãšããïŒ
ãã® <math>\pi</math> äžã®ç¹ã <math>\mathrm{P}</math> ãšãïŒ<math>\vec{\mathrm{OP}}=\vec{x}</math> ãšãããšïŒ
<math>\vec{\mathrm{AP}} = s\vec{u}+t\vec{u}</math> ãæºãã宿° <math>s, t</math> ããã£ãŠïŒ
<math>\vec{x}</math> ã¯ïŒ
:<math>\vec{x} = \vec{a} + s\vec{u} + t\vec{v} \quad (\vec{\mathrm{OP}} = \vec{\mathrm{OA}} + \vec{\mathrm{AP}})</math>
ãšè¡šãããïŒ
<!-- def:005:end -->
<!-- def:006:start -->
<strong>å®çŸ©6</strong>
<strong>å¹³é¢ã®æ¹çšåŒïŒ<math>ax+by+cz+d=0</math>ïŒ</strong>
空éäžã®ç¹ <math>\mathrm{A}(\vec{a})</math> ãéãïŒ<math>\vec{h}</math> ã«åçŽãªå¹³é¢ã <math>\pi</math> ãšããïŒ
ãã® <math>\pi</math> äžã«ç¹ <math>\mathrm{P}</math> ããšãïŒ<math>\vec{\mathrm{OP}}=\vec{x}</math> ãšããïŒ
<math>\vec{x}</math> ã¯ïŒ
:<math>(\vec{x} - \vec{a})\cdot \vec{h} = 0 \quad (\vec{\mathrm{AP}} \bot \vec{h})</math>
ãæºããïŒ<math>\mathrm{P}</math> ã®åº§æšã <math>(x, y, z)</math> ãšããŠïŒæåãèšç®ãããš
:<math>ax + by + cz + d = 0</math>
ã®åœ¢ã«ãªãïŒãã¯ãã« <math>(a, b, c)</math> 㯠<math>\vec{h}</math> ã«å¹³è¡ã§ããïŒ
<!-- def:006:end -->
<references />
[[ã«ããŽãª:ç·åœ¢ä»£æ°åŠ]] | null | 2022-11-22T17:06:26Z | []
| https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6/%E8%A1%8C%E5%88%97%E3%81%A8%E8%A1%8C%E5%88%97%E5%BC%8F/%E7%AC%AC%E4%B8%89%E9%A1%9E/%E7%9B%B4%E7%B7%9A%E3%83%BB%E5%B9%B3%E9%9D%A2 |
24,918 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ | ããŸãæã
ã¯æŒç®åæ³ã宿ããåŸã段éã«éãã. p {\displaystyle p} ã埮åã§, 1 p {\displaystyle {\frac {1}{p}}} ãç©åã衚ããšããã®ã§ãããã, 埮åãšç©åã®é¢ä¿ãè¡šãæ¬¡ã®äºã€ã®å
¬åŒ,
ããŸãé ã«æµ®ãã¶.åæå€ x ( 0 ) {\displaystyle x(0)} ãå«ãã§ããåè
ãæ¡çšããã®ã劥åœã§ããã.
ããã§,ãã§ã«è¿°ã¹ãããã«,
ã«ãã£ãŠåŒ (1.10) ãèšå· p {\displaystyle p} ãçšããŠè¡šãã°,
ããã«
ãšãªã.ã㟠p {\displaystyle p} ãæ®éã®æ°ãšåãããã«åãæ±ã£ãŠãããã®ãšããã°, p {\displaystyle p} ãäž¡èŸºã«æããŠ,
ãªãé¢ä¿åŒãåŸã.ããã§ã¯ãã¯ã p {\displaystyle p} ã¯åŸ®åãšããæå³ããããªã. ãã p = d d t {\displaystyle p={\frac {d}{dt}}} ãªãã° p x ( 0 ) = 0 {\displaystyle px(0)=0} ãšãªã£ãŠããŸãããã§ãã. ãã¡ãã x ( 0 ) â¡ 0 {\displaystyle x(0)\equiv 0} ã®ãšãã¯, p {\displaystyle p} ã¯åŸ®åãšèããŠãªããå·®ãæ¯ãã¯ãªãã§ããã. åŒ (1.12) ã®ããã«å€åœ¢ããŠãããã®ã¯, å
ã« x â² {\displaystyle x'} ã p x {\displaystyle px} ã§çœ®ãæããããã«,ä»åºŠã¯ x â² {\displaystyle x'} ã p x â p x ( 0 ) {\displaystyle px-px(0)} ã§çœ®ãæããããšããäžå¿ã§ãã.
ããã§åŒ (1.12) ã®è峿·±ãå¿çšã瀺ãã. ãã®åŒã« x = e a t {\displaystyle x=e^{at}} ã代å
¥ãããš,
ããã e a t {\displaystyle e^{at}} ã«ã€ããŠè§£ããš
ãšãªã. ãã®å
¬åŒã¯å®è³ªçã«ã¯ãã§ã«ãã®åŒããã³ãã®åŒã«ãŠåŸãããŠãã. ãã®åŒã a {\displaystyle a} ã«ã€ã㊠n {\displaystyle n} å埮åãããš,
ãã£ãŠ,
ãåŸã.ç¹ã« a = 0 {\displaystyle a=0} ãšãããš,
ãšãªã.ããããã§ã«åŸãããåŒ (1.9) ãšäžèŽãã.
äŸ7 {\displaystyle \quad }
ãè§£ã.
ããã¯äŸ5 ã§ a = â 1 {\displaystyle a=-1} ãšããããã®ã§ãã. åç¯ã®ããæ¹ã§ã¯è§£æ±ºã§ããªãã£ãããšãæãåºããŠããããã. ãã®åŒã p {\displaystyle p} ã§è¡šããš,
ããã x {\displaystyle x} ã«ã€ããŠè§£ããš
ããã§å
¬åŒ (1.13), (1.14) ãçšã㊠t {\displaystyle t} ã®é¢æ°ã«æ»ããš,
äŸ8 {\displaystyle \quad }
ãããæ£ããè§£ã§ããããšã確ããã.
è§£çäŸ {\displaystyle \quad }
x = p p + 1 x 0 + p ( p + 1 ) 2 {\displaystyle x={\frac {p}{p+1}}x_{0}+{\frac {p}{(p+1)^{2}}}} ã®ãšã,
x â² ( t ) = â x 0 e â t â t e â t + e â t {\displaystyle x'(t)=-x_{0}e^{-t}-te^{-t}+e^{-t}}
⎠x â² ( t ) + x ( t ) = â x 0 e â t â t e â t + e â t + x 0 e â t + t e â t = e â t . {\displaystyle \therefore x'(t)+x(t)=-x_{0}e^{-t}-te^{-t}+e^{-t}+x_{0}e^{-t}+te^{-t}=e^{-t}.}
ãŸã
x ( 0 ) = e â t x 0 + t e â t | t = 0 = x 0 ( âµ e 0 = 1. ) {\displaystyle x(0)=e^{-t}x_{0}+te^{-t}|_{t=0}=x_{0}\quad (\because e^{0}=1.)}
äŸ9 {\displaystyle \quad }
ãè§£ã.
åŒ(1.12), åŒ(1.9)ãçšããŠ, p {\displaystyle p} ã®åŒã«æžãæãããš,
x {\displaystyle x} ã«ã€ããŠè§£ããš,
ãšãªã.ãããæé颿°ã«æ»ãã«ããã£ãŠ,(1.13), åŒ(1.9) ã䜿ããããããã«ãéšååæ°ã«åè§£ãããš,
ãšãªã.ããã¯
ã«ä»ãªããªã.
äŸ10 {\displaystyle \quad }
ãããæ£ããè§£ã§ããããšã確ããã.
è§£çäŸ {\displaystyle \quad }
x ( t ) = e â t x 0 + e â t + t 2 + t â 1 {\displaystyle x(t)=e^{-t}x_{0}+e^{^{-}t}+t^{2}+t-1} ã®ãšã,
x â² ( t ) = â x 0 e â t â e â t + 2 t + 1 {\displaystyle x'(t)=-x_{0}e^{-t}-e^{-t}+2t+1} .
ããã«
x ( t ) + x â² ( t ) = ( e â t x 0 + e â t + t 2 + t â 1 ) + ( â x 0 e â t â e â t + 2 t + 1 ) = t 2 + 3 t {\displaystyle x(t)+x'(t)=(e^{-t}x_{0}+e^{^{-}t}+t^{2}+t-1)+(-x_{0}e^{-t}-e^{-t}+2t+1)=t^{2}+3t} .
ãŸã
x ( 0 ) = e 0 â
x 0 + e 0 â 1 = x 0 {\displaystyle x(0)=e^{0}\cdot x_{0}+e^{0}-1=x_{0}} .
以äžãã x ( t ) = e â t x 0 + e â t + t 2 + t â 1 {\displaystyle x(t)=e^{-t}x_{0}+e^{-t}+t^{2}+t-1} 㯠d x d t + x = t 2 + 3 t , x ( 0 ) = x 0 {\displaystyle {\frac {dx}{dt}}+x=t^{2}+3t,x(0)=x_{0}} ã®ã²ãšã€.
äŸ11 {\displaystyle \quad }
d x d t + x = e t , x ( 0 ) = x 0 {\displaystyle {\frac {dx}{dt}}+x=e^{t},x(0)=x_{0}} ãè§£ã.
è§£çäŸ {\displaystyle \quad }
éšç®ããã.
ã§äžæ¹çšåŒãæºãã.
ããã« 2 é埮åã«å¯Ÿããå
¬åŒãå°ããŠã¿ãã. åŒ (1.12) ã 2 床çšãããš,
ãšãªã.ãã£ãŠ
ãåŸã.ããã§ã x ( 0 ) = x â² ( 0 ) = 0 {\displaystyle x(0)=x'(0)=0} ã®ãšã㯠x â²â² = p 2 x {\displaystyle x''=p^{2}x} ãšãªã, p {\displaystyle p} ã埮åã衚ããšèããŠããããšã瀺ããŠãã.
åŒ (1.15) ã«ãã㊠x ( t ) = sin β t {\displaystyle x(t)=\sin \beta t} ãšããã°,
ãåŸã.ãŸã,
ãã㯠sin t {\displaystyle \sin t} ã® Taylor å±éã§ãã.
äŸ12 {\displaystyle \quad }
(1)
(2)
ã瀺ã.
è§£çäŸ {\displaystyle \quad }
åŒ (1.15) ã« x ( t ) = cos β t {\displaystyle x(t)=\cos \beta t} ã代å
¥ããŠ,
ããªãã¡
⢠{\displaystyle \diamondsuit }
ãããã®çµæ(åŒ(1.16),åŒ (1.17) ãçšãããš
ãåŸã.ããã« i {\displaystyle i} ã¯èæ°åäœã§ãã.ãŸã,
åæ§ã«,
ãåŸã.ãããã¯æå㪠Euler ã®å
¬åŒ ã§ãã.
äŸ13 {\displaystyle \quad }
ãè§£ã.
å
¬åŒ (1.15) çãçšããŠ, p {\displaystyle p} ã®åŒã§è¡šããš,
ããã§å
¬åŒ(1.16), (1.17) ãçšã㊠t {\displaystyle t} ã®é¢æ°ã«æ»ããš,
⢠{\displaystyle \diamondsuit }
äŸ14 {\displaystyle \quad } äŸ12 ã®è§£ã®æ£ããããšã確ããã.
è§£çäŸ {\displaystyle \quad }
ãã£ãŠ
ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.
⢠{\displaystyle \diamondsuit }
äŸ15 {\displaystyle \quad }
ãè§£ã.
è§£çäŸ {\displaystyle \quad }
第äžé
ãšãããŠ
ãã
ãããã£ãŠ
åæ§ã«ç¬¬äºé
ã¯
第äžé
ã¯
ããã«
⢠{\displaystyle \diamondsuit }
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããŸãæã
ã¯æŒç®åæ³ã宿ããåŸã段éã«éãã. p {\\displaystyle p} ã埮åã§, 1 p {\\displaystyle {\\frac {1}{p}}} ãç©åã衚ããšããã®ã§ãããã, 埮åãšç©åã®é¢ä¿ãè¡šãæ¬¡ã®äºã€ã®å
¬åŒ,",
"title": "§1"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããŸãé ã«æµ®ãã¶.åæå€ x ( 0 ) {\\displaystyle x(0)} ãå«ãã§ããåè
ãæ¡çšããã®ã劥åœã§ããã.",
"title": "§1"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§,ãã§ã«è¿°ã¹ãããã«,",
"title": "§1"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã«ãã£ãŠåŒ (1.10) ãèšå· p {\\displaystyle p} ãçšããŠè¡šãã°,",
"title": "§1"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã«",
"title": "§1"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšãªã.ã㟠p {\\displaystyle p} ãæ®éã®æ°ãšåãããã«åãæ±ã£ãŠãããã®ãšããã°, p {\\displaystyle p} ãäž¡èŸºã«æããŠ,",
"title": "§1"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãªãé¢ä¿åŒãåŸã.ããã§ã¯ãã¯ã p {\\displaystyle p} ã¯åŸ®åãšããæå³ããããªã. ãã p = d d t {\\displaystyle p={\\frac {d}{dt}}} ãªãã° p x ( 0 ) = 0 {\\displaystyle px(0)=0} ãšãªã£ãŠããŸãããã§ãã. ãã¡ãã x ( 0 ) â¡ 0 {\\displaystyle x(0)\\equiv 0} ã®ãšãã¯, p {\\displaystyle p} ã¯åŸ®åãšèããŠãªããå·®ãæ¯ãã¯ãªãã§ããã. åŒ (1.12) ã®ããã«å€åœ¢ããŠãããã®ã¯, å
ã« x â² {\\displaystyle x'} ã p x {\\displaystyle px} ã§çœ®ãæããããã«,ä»åºŠã¯ x â² {\\displaystyle x'} ã p x â p x ( 0 ) {\\displaystyle px-px(0)} ã§çœ®ãæããããšããäžå¿ã§ãã.",
"title": "§1"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããã§åŒ (1.12) ã®è峿·±ãå¿çšã瀺ãã. ãã®åŒã« x = e a t {\\displaystyle x=e^{at}} ã代å
¥ãããš,",
"title": "§1"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã e a t {\\displaystyle e^{at}} ã«ã€ããŠè§£ããš",
"title": "§1"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšãªã. ãã®å
¬åŒã¯å®è³ªçã«ã¯ãã§ã«ãã®åŒããã³ãã®åŒã«ãŠåŸãããŠãã. ãã®åŒã a {\\displaystyle a} ã«ã€ã㊠n {\\displaystyle n} å埮åãããš,",
"title": "§1"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã£ãŠ,",
"title": "§1"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãåŸã.ç¹ã« a = 0 {\\displaystyle a=0} ãšãããš,",
"title": "§1"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªã.ããããã§ã«åŸãããåŒ (1.9) ãšäžèŽãã.",
"title": "§1"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äŸ7 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããã¯äŸ5 ã§ a = â 1 {\\displaystyle a=-1} ãšããããã®ã§ãã. åç¯ã®ããæ¹ã§ã¯è§£æ±ºã§ããªãã£ãããšãæãåºããŠããããã. ãã®åŒã p {\\displaystyle p} ã§è¡šããš,",
"title": "§1"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã x {\\displaystyle x} ã«ã€ããŠè§£ããš",
"title": "§1"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ããã§å
¬åŒ (1.13), (1.14) ãçšã㊠t {\\displaystyle t} ã®é¢æ°ã«æ»ããš,",
"title": "§1"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "äŸ8 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãããæ£ããè§£ã§ããããšã確ããã.",
"title": "§1"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "x = p p + 1 x 0 + p ( p + 1 ) 2 {\\displaystyle x={\\frac {p}{p+1}}x_{0}+{\\frac {p}{(p+1)^{2}}}} ã®ãšã,",
"title": "§1"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "x â² ( t ) = â x 0 e â t â t e â t + e â t {\\displaystyle x'(t)=-x_{0}e^{-t}-te^{-t}+e^{-t}}",
"title": "§1"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "⎠x â² ( t ) + x ( t ) = â x 0 e â t â t e â t + e â t + x 0 e â t + t e â t = e â t . {\\displaystyle \\therefore x'(t)+x(t)=-x_{0}e^{-t}-te^{-t}+e^{-t}+x_{0}e^{-t}+te^{-t}=e^{-t}.}",
"title": "§1"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãŸã",
"title": "§1"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "x ( 0 ) = e â t x 0 + t e â t | t = 0 = x 0 ( âµ e 0 = 1. ) {\\displaystyle x(0)=e^{-t}x_{0}+te^{-t}|_{t=0}=x_{0}\\quad (\\because e^{0}=1.)}",
"title": "§1"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "äŸ9 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "åŒ(1.12), åŒ(1.9)ãçšããŠ, p {\\displaystyle p} ã®åŒã«æžãæãããš,",
"title": "§1"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "x {\\displaystyle x} ã«ã€ããŠè§£ããš,",
"title": "§1"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãšãªã.ãããæé颿°ã«æ»ãã«ããã£ãŠ,(1.13), åŒ(1.9) ã䜿ããããããã«ãéšååæ°ã«åè§£ãããš,",
"title": "§1"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãšãªã.ããã¯",
"title": "§1"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ã«ä»ãªããªã.",
"title": "§1"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "äŸ10 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãããæ£ããè§£ã§ããããšã確ããã.",
"title": "§1"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "x ( t ) = e â t x 0 + e â t + t 2 + t â 1 {\\displaystyle x(t)=e^{-t}x_{0}+e^{^{-}t}+t^{2}+t-1} ã®ãšã,",
"title": "§1"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "x â² ( t ) = â x 0 e â t â e â t + 2 t + 1 {\\displaystyle x'(t)=-x_{0}e^{-t}-e^{-t}+2t+1} .",
"title": "§1"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ããã«",
"title": "§1"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "x ( t ) + x â² ( t ) = ( e â t x 0 + e â t + t 2 + t â 1 ) + ( â x 0 e â t â e â t + 2 t + 1 ) = t 2 + 3 t {\\displaystyle x(t)+x'(t)=(e^{-t}x_{0}+e^{^{-}t}+t^{2}+t-1)+(-x_{0}e^{-t}-e^{-t}+2t+1)=t^{2}+3t} .",
"title": "§1"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãŸã",
"title": "§1"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "x ( 0 ) = e 0 â
x 0 + e 0 â 1 = x 0 {\\displaystyle x(0)=e^{0}\\cdot x_{0}+e^{0}-1=x_{0}} .",
"title": "§1"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "以äžãã x ( t ) = e â t x 0 + e â t + t 2 + t â 1 {\\displaystyle x(t)=e^{-t}x_{0}+e^{-t}+t^{2}+t-1} 㯠d x d t + x = t 2 + 3 t , x ( 0 ) = x 0 {\\displaystyle {\\frac {dx}{dt}}+x=t^{2}+3t,x(0)=x_{0}} ã®ã²ãšã€.",
"title": "§1"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "äŸ11 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "d x d t + x = e t , x ( 0 ) = x 0 {\\displaystyle {\\frac {dx}{dt}}+x=e^{t},x(0)=x_{0}} ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "éšç®ããã.",
"title": "§1"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã§äžæ¹çšåŒãæºãã.",
"title": "§1"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ããã« 2 é埮åã«å¯Ÿããå
¬åŒãå°ããŠã¿ãã. åŒ (1.12) ã 2 床çšãããš,",
"title": "§1"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšãªã.ãã£ãŠ",
"title": "§1"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãåŸã.ããã§ã x ( 0 ) = x â² ( 0 ) = 0 {\\displaystyle x(0)=x'(0)=0} ã®ãšã㯠x â²â² = p 2 x {\\displaystyle x''=p^{2}x} ãšãªã, p {\\displaystyle p} ã埮åã衚ããšèããŠããããšã瀺ããŠãã.",
"title": "§1"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "åŒ (1.15) ã«ãã㊠x ( t ) = sin β t {\\displaystyle x(t)=\\sin \\beta t} ãšããã°,",
"title": "§1"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãåŸã.ãŸã,",
"title": "§1"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãã㯠sin t {\\displaystyle \\sin t} ã® Taylor å±éã§ãã.",
"title": "§1"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "äŸ12 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "(1)",
"title": "§1"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "(2)",
"title": "§1"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã瀺ã.",
"title": "§1"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "åŒ (1.15) ã« x ( t ) = cos β t {\\displaystyle x(t)=\\cos \\beta t} ã代å
¥ããŠ,",
"title": "§1"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ããªãã¡",
"title": "§1"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãããã®çµæ(åŒ(1.16),åŒ (1.17) ãçšãããš",
"title": "§1"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãåŸã.ããã« i {\\displaystyle i} ã¯èæ°åäœã§ãã.ãŸã,",
"title": "§1"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "åæ§ã«,",
"title": "§1"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãåŸã.ãããã¯æå㪠Euler ã®å
¬åŒ ã§ãã.",
"title": "§1"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "äŸ13 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "å
¬åŒ (1.15) çãçšããŠ, p {\\displaystyle p} ã®åŒã§è¡šããš,",
"title": "§1"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ããã§å
¬åŒ(1.16), (1.17) ãçšã㊠t {\\displaystyle t} ã®é¢æ°ã«æ»ããš,",
"title": "§1"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "äŸ14 {\\displaystyle \\quad } äŸ12 ã®è§£ã®æ£ããããšã確ããã.",
"title": "§1"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãã£ãŠ",
"title": "§1"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.",
"title": "§1"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "äŸ15 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "第äžé
",
"title": "§1"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãšãããŠ",
"title": "§1"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã",
"title": "§1"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãããã£ãŠ",
"title": "§1"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "åæ§ã«ç¬¬äºé
ã¯",
"title": "§1"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "第äžé
ã¯",
"title": "§1"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ããã«",
"title": "§1"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "",
"title": "§1"
}
]
| null | ==§1==
ããŸãæã
ã¯æŒç®åæ³ã宿ããåŸã段éã«éããïŒ
<math>p</math> ã埮åã§ïŒ<math>\frac{1}{p}</math> ãç©åã衚ããšããã®ã§ããããïŒ
埮åãšç©åã®é¢ä¿ãè¡šãæ¬¡ã®äºã€ã®å
¬åŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t \frac{dx(t)}{dt}dt = x(t) - x(0)</math>|tag=(1.10)|label=eq:1.10}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d}{dt}\int_0^t x(t)dt = x(t)</math>}}
ããŸãé ã«æµ®ãã¶ïŒåæå€ <math>x(0)</math> ãå«ãã§ããåè
ãæ¡çšããã®ã劥åœã§ãããïŒ
ããã§ïŒãã§ã«è¿°ã¹ãããã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t f(\tau)d\tau = \frac{1}{p}f(t)</math>}}
ã«ãã£ãŠåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.10|(1.10)]] ãèšå· <math>p</math> ãçšããŠè¡šãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{p}x'(t) = x(t) - x(0)</math>|tag=(1.11)|label=eq:1.11}}
ããã«
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'(t) := \frac{dx(t)}{dt}</math>}}
ãšãªãïŒã㟠<math>p</math> ãæ®éã®æ°ãšåãããã«åãæ±ã£ãŠãããã®ãšããã°ïŒ<math>p</math> ãäž¡èŸºã«æããŠïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'(t) = px(t) - px(0)</math>|tag=(1.12)|label=eq:1.12}}
ãªãé¢ä¿åŒãåŸãïŒããã§ã¯ãã¯ã <math>p</math> ã¯åŸ®åãšããæå³ããããªãïŒ
ãã <math>p = \frac{d}{dt}</math> ãªãã° <math>px(0) = 0</math> ãšãªã£ãŠããŸãããã§ããïŒ
ãã¡ãã <math>x(0) \equiv 0</math> ã®ãšãã¯ïŒ<math>p</math> ã¯åŸ®åãšèããŠãªããå·®ãæ¯ãã¯ãªãã§ãããïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.12|(1.12)]] ã®ããã«å€åœ¢ããŠãããã®ã¯ïŒ
å
ã« <math>x'</math> ã <math>px</math> ã§çœ®ãæããããã«ïŒä»åºŠã¯ <math>x'</math> ã <math>px - px(0)</math> ã§çœ®ãæããããšããäžå¿ã§ããïŒ
ããã§åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.12|(1.12)]] ã®è峿·±ãå¿çšã瀺ããïŒ
ãã®åŒã« <math>x = e^{at}</math> ã代å
¥ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>ae^{at} = pe^{at} - p</math>}}
ããã <math>e^{at}</math> ã«ã€ããŠè§£ããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{at} = \frac{p}{p - a}</math>|tag=(1.13)|label=eq:1.13}}
ãšãªãïŒ
ãã®å
¬åŒã¯å®è³ªçã«ã¯ãã§ã«[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#eq:1.7b|ãã®åŒ]]ããã³[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#eq:1.9b|ãã®åŒ]]ã«ãŠåŸãããŠããïŒ
ãã®åŒã <math>a</math> ã«ã€ã㊠<math>n</math> å埮åãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>t^ne^{at} = \frac{n!\ p}{(p - a)^{n + 1}}</math>}}
ãã£ãŠïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{p}{(p - a)^{n+1}} = \frac{t^n}{n!}e^{at}</math><ref>ãã®æ³šã¯ç¬¬äºç« èªäºã®åŸã«ããããã®ã§ãããïŒåæ¯ã® <math>p</math> ã«å¯Ÿã㊠<math>p-\alpha</math> ãšçœ®æãã圢ãšãªã£ãŠããïŒãã眮æå¯Ÿè±¡ã® <math>p</math> ã®åºçŸäœçœ®ãäžãæã«éå®ãããã®ãªãçã éœåãããïŒã©ãã©ã¹å€æã <math>p\int_0^{\infty} e^{-pt}f(t)dt</math> ã§ã¯ãªãïŒ<math>\int_0^{\infty} e^{-st}f(t)dt</math> ãšå®çŸ©ããçç±ãããã«ãããïŒ</ref>|tag=(1.14)|label=eq:1.14}}
ãåŸãïŒç¹ã« <math>a = 0</math> ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{p^n} = \frac{t^n}{n!}</math>|tag=(1.14a)|label=eq:1.14a}}
ãšãªãïŒããããã§ã«åŸãããåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#eq:1.9|(1.9)]] ãšäžèŽããïŒ
<!-- ex:007:start-->
<div id="ex:7">
<strong>äŸ7</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + x = e^{-t}, x(0) = x_0</math>}}
ãè§£ãïŒ
ããã¯[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#ex:5|äŸ5]] ã§ <math>a = -1</math> ãšããããã®ã§ããïŒ
åç¯ã®ããæ¹ã§ã¯è§£æ±ºã§ããªãã£ãããšãæãåºããŠããããã<ref>
ãªããªãã°ïŒ<math>x(t) = \frac{e^{at}}{1 + a}</math> ã«ãŠ <math>a = -1</math> ã代å
¥ãããšïŒåæ¯ã <math>0</math> ã«ãªã£ãŠããŸãïŒ
</ref>ïŒ
ãã®åŒã <math>p</math> ã§è¡šããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>px - px_0 + x = \frac{p}{p + 1}</math><ref>
ãªããªãã°[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.13|(1.13)]]ã«<math>a = -1</math> ã代å
¥ã㊠<math>e^{-t} = \frac{p}{p + 1}</math>
</ref>}}
ããã <math>x</math> ã«ã€ããŠè§£ããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{p}{p + 1}x_0 + \frac{p}{(p + 1)^2}</math>}}
ããã§å
¬åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.13|(1.13)]], [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.14|(1.14)]] ãçšã㊠<math>t</math> ã®é¢æ°ã«æ»ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = e~{-t}x_0 + te^{-t}</math>}}
<!-- ex:007:end-->
<!-- ex:008:start-->
<div id="ex:8">
<strong>äŸ8</strong><math>\quad</math>
ãããæ£ããè§£ã§ããããšã確ãããïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
<math>x = \frac{p}{p + 1}x_0 + \frac{p}{(p + 1)^2}</math> ã®ãšãïŒ
<math>x'(t) = -x_0e^{-t} - te^{-t} + e^{-t}</math>
<math>\therefore x'(t) + x(t) = -x_0e^{-t} - te^{-t} + e^{-t} + x_0e^{-t} + te^{-t} = e^{-t}.</math>
ãŸã
<math>x(0) = e^{-t}x_0 + te^{-t} |_{t = 0} = x_0 \quad (\because e^{0} = 1.)</math>
<!-- ex:008:end-->
<!-- ex:009:start-->
<div id="ex:9">
<strong>äŸ9</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + x = t^2 + 3t, x(0) = x_0</math>}}
ãè§£ãïŒ
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.12|(1.12)]], åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#eq:1.9|(1.9)]]ãçšããŠïŒ<math>p</math> ã®åŒã«æžãæãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>px - px_0 + x = \frac{2}{p^2} + \frac{3}{p}</math>}}
<math>x</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{p}{p + 1}x_0 + \frac{2 + 3p}{(p + 1)p^2}</math>}}
ãšãªãïŒãããæé颿°ã«æ»ãã«ããã£ãŠïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.13|(1.13)]], åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/ææ°é¢æ°ã®å Žå#eq:1.9|(1.9)]] ã䜿ããããããã«ãéšååæ°ã«åè§£ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{p}{p + 1}x_0 + \frac{p}{p + 1} + \frac{2}{p^2} + \frac{1}{p} - 1</math><ref>
<math>\frac{3p + 2}{p^2(p + 1)} = \frac{A}{p + 1} + \frac{B}{p^2} + \frac{C}{p}</math><br />
ãšãããŠ<br />
(å³èŸº)=<math>\frac{1}{p^2(p + 1)} \left \{ Ap^2 + B(p + 1) + Cp(p + 1) \right \}</math><br />
<math>\frac{1}{p^2(p + 1)} \left \{ (A + C)p^2 + (B + C)p + B \right \}</math><br />
ããã <math>3p + 2</math> ãšãªããã <math>B = 2, B + C = 3</math> ãã <math>C = 1, A + C = 0</math> ãã <math>A = -1</math>ïŒ<br />
ããªãã¡ <math>\frac{3p + 2}{p^2(p + 1)} = \frac{-1}{p + 1} + \frac{2}{p^2} + \frac{1}{p}</math><br />
<math> = \left ( 1 - \frac{1}{p + 1} \right ) + \frac{2}{p^2} + \frac{1}{p} - 1</math><br />
<math> = \frac{p}{p + 1} + \frac{2}{p^2} + \frac{1}{p} - 1</math><br />
ãã®ç¬¬äžé
ã®åŠç㯠[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.13|(1.13)]] ãé©çšã§ãã圢ãç®æšãšããŠå€åœ¢ãããã®ïŒ
</ref>}}
ãšãªãïŒããã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = e^{-t}x_0 + e^{-t} + t^2 + t -1</math>}}
ã«ä»ãªããªãïŒ
<!-- ex:010:start-->
<div id="ex:10">
<strong>äŸ10</strong><math>\quad</math>
ãããæ£ããè§£ã§ããããšã確ãããïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
<math>x(t) = e^{-t}x_0 + e^{^-t} + t^2 + t - 1</math> ã®ãšãïŒ
<math>x'(t) = -x_0e^{-t} - e^{-t} + 2t + 1</math>ïŒ
ããã«
<math>x(t) + x'(t) = (e^{-t}x_0 + e^{^-t} + t^2 + t - 1) + ( -x_0e^{-t} - e^{-t} + 2t + 1) = t^2 + 3t</math>ïŒ
ãŸã
<math>x(0) = e^0 \cdot x_0 + e^0 - 1 = x_0</math>ïŒ
以äžãã <math>x(t) = e^{-t}x_0 + e^{-t} + t^2 + t -1</math> 㯠<math>\frac{dx}{dt} + x = t^2 + 3t, x(0) = x_0</math> ã®ã²ãšã€ïŒ
<!-- ex:010:end-->
<!-- ex:011:start-->
<div id="ex:11">
<strong>äŸ11</strong><math>\quad</math>
<math>\frac{dx}{dt} + x = e^t, x(0)=x_0</math> ãè§£ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
:<math>px - px_0 + x = e^t</math>
:<math>(p + 1)x = px_0 + \frac{p}{p - 1}</math>
:<math>x = \frac{p}{p + 1}x_0 + \frac{p}{(p + 1)(p - 1)}</math>
:<math>= \frac{p}{p + 1}x_0 + \frac{1}{2} \left ( \frac{1}{p + 1} + \frac{1}{p - 1} \right )</math>
:<math>= \frac{p}{p + 1}x_0 + \frac{1}{2} \left ( \frac{1}{p + 1} - 1 + \frac{1}{p - 1} + 1 \right )</math>
:<math> = \frac{p}{p + 1}x_0 + \frac{1}{2} \left ( \frac{p}{p - 1} - \frac{p}{p + 1} \right )</math>
:<math> = x_0e^{-t} + \frac{1}{2} \left ( e^t - e^{-t} \right )</math>
éšç®ãããïŒ
:<math>\frac{dx}{dt} = -x_0e^{-t} + \frac{1}{2} \left ( e^t + e^{-t} \right )</math>
:<math>\therefore \frac{dx}{dt} + x = -x_0e^{-t} + \frac{1}{2} \left ( e^t + e^{-t} \right ) </math><math>+ x_0e^{-t} + \frac{1}{2} \left ( e^t - e^{-t} \right )</math>
:<math>=e^t</math>
ã§äžæ¹çšåŒãæºããïŒ
<!-- ex:011:start-->
==§2==
ããã« 2 é埮åã«å¯Ÿããå
¬åŒãå°ããŠã¿ããïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.12|(1.12)]] ã 2 床çšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'' = px'(t) - px'(0) = p \{ px(t) - px(0) \} - px'(0)</math>}}
ãšãªãïŒãã£ãŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'' = p^2x(t) - p^2x(0) - px'(0)</math>|tag=(1.15)|label=eq:1.15}}
ãåŸãïŒããã§ã <math>x(0) = x'(0) = 0</math> ã®ãšã㯠<math>x'' = p^2x</math> ãšãªãïŒ<math>p</math> ã埮åã衚ããšèããŠããããšã瀺ããŠããïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.15|(1.15)]] ã«ãã㊠<math>x(t) = \sin\beta t</math> ãšããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>-\beta^2 \sin\beta t = p^2 \sin\beta t - p\beta</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \sin\beta t = \frac{\beta p}{p^2 + \beta^2}</math>|tag=(1.16)|label=eq:1.16}}
ãåŸãïŒãŸãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\sin t = \frac{p}{p^2 + 1} = \frac{1}{p}\frac{1}{(1 + \frac{1}{p^2})}</math><ref>åé
<math>\frac{1}{p}</math>ïŒå
¬å·® <math>-\frac{1}{p^2}</math> ã®ç¡éçæ¯çŽæ°
</ref>
<math> = \frac{1}{p} - \frac{1}{p^3} + \frac{1}{p^5} - \frac{1}{p^7} + \cdots</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \cdots</math>}}
ãã㯠<math>\sin t</math> ã® [[w:%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B|Taylor å±é]]ã§ããïŒ
<!-- ex:012:start-->
<div id="ex:12">
<strong>äŸ12</strong><math>\quad</math>
(1)
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos\beta t = \frac{p^2}{p^2 + \beta^2}</math>|tag=(1.17)|label=eq:1.17}}
(2)
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \cdots</math>}}
ã瀺ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.15|(1.15)]] ã« <math>x(t) = \cos\beta t</math> ã代å
¥ããŠïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>-\beta^2\cos\beta t = p^2\cos\beta t - p^2</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>(p^2 + \beta^2)\cos\beta t = p^2</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \cos\beta t = \frac{p^2}{p^2 + \beta^2}</math>}}
ããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos t = \frac{1}{1 - (-\frac{1}{p^2})} = 1 - \frac{1}{p^2} + \frac{1}{p^4} - \frac{1}{p^6} + \cdots</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \cdots</math>}}
<math>\diamondsuit</math>
ãããã®çµæïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.16|(1.16)]]ïŒåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.17|(1.17)]] ãçšãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{it} = \frac{p}{p - i} = \frac{p(p + i)}{(p^2 + 1)} = \frac{p^2}{p^2 + 1} + i\frac{p}{p^2 + 1}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \cos t + i\sin t</math>}}
ãåŸãïŒããã« <math>i</math> ã¯èæ°åäœã§ããïŒãŸãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos t = \frac{p^2}{p^2 - i^2} = \frac{1}{2} \left( \frac{p}{p - i} + \frac{p}{p + i} \right )</math><ref>
ããã§ <math>\frac{p^2}{p^2 + 1} = 1 - \frac{1}{(p + i)(p - i)} = 1 - \left \{ \frac{A}{p + i} + \frac{B}{p - i} \right \}</math> ã«æã¡èŸŒãã®ã¯ããŸããªãïŒ<math>(p + i)</math> ã®æŽæ°åãš <math>(p - i)</math> ã®æŽæ°åã®åããèæ°éš <math>0</math> ã〠<math>p</math> ã®ä¿æ°ã <math>0</math> ãšä»®å®ã§ããŠã宿°é
ã <math>1</math> ã <math>1</math> ãšããæ¡ä»¶ãèšè¿°ããæ¹æ³ããªãïŒãã®æ¹æ³ã§èšè¿°ã§ããæ¡ä»¶ã¯ 2 åãããªãã®ã ããïŒãããã¯ä»®ã« <math>\frac{1}{p - i}</math> ãš <math>\frac{1}{p + i}</math> ã®éšååæ°å±éã«æã¡èŸŒãããšããŠãïŒãããã <math>e^x, \sin, \cos</math> ã®é¢æ°ã«çœ®ãæããå
¬åŒããªãïŒ
</ref>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \frac{e^{it} + e^{-it}}{2}</math>}}
åæ§ã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\sin t = \frac{p}{p^2 - i^2} = \frac{1}{2i} \left( \frac{p}{p - i} - \frac{p}{p + i} \right )</math><ref>
åããïŒ<math>\frac{p}{(p + i)(p - i)} = \frac{Ap}{p - i} + \frac{Bp}{p + i}</math> ãšãããŠïŒ<math>A + B = 0, -A + B = -i</math> ãè§£ãïŒ<math>A = \frac{1}{2}i, B = -\frac{1}{2}i</math>ïŒ
</ref>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \frac{e^{it} - e^{-it}}{2i}</math>}}
ãåŸãïŒãããã¯æå㪠[[w:%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F|Euler ã®å
¬åŒ]] ã§ããïŒ
<!-- ex:013:start-->
<div id="ex:13">
<strong>äŸ13</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2 x}{dt^2} + x = t, x(0) = 1, x'(0) = 0</math>}}
ãè§£ãïŒ
å
¬åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.15|(1.15)]] çãçšããŠïŒ<math>p</math> ã®åŒã§è¡šããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>p^2 x - p^2 + x = \frac{1}{p}</math><ref>
<math>\because x_0 = x(0) = 1, x'_0 = x'(0) = 0</math>
</ref>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>p^2x + x = p^2 + \frac{1}{p}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{p^2}{p^2 + 1} + \frac{1}{p(p^2 + 1)}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \frac{p^2}{p^2 + 1} - \frac{p}{p^2 + 1} + \frac{1}{p}</math><ref>
<math>\frac{1}{p(p^2 + 1)} = \frac{A}{p} + \frac{Bp + C}{p^2 + 1}</math> ãšãããŠïŒ
<math>\frac{1}{p(p^2 + 1)} \left\{ A(p^2 + 1) + p(Bp + c)\right\}
= \frac{1}{p(p^2 + 1)} \left\{ (A + B)p^2 + Cp + A \right\}</math> ãã <math>A + B = 0, C = 0, A = 1</math>, ãã£ãŠ <math>B = -1</math>ïŒ
</ref>}}
ããã§å
¬åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.16|(1.16)]], [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.17|(1.17)]] ãçšã㊠<math>t</math> ã®é¢æ°ã«æ»ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \cos t - \sin t + t</math>}}
<math>\diamondsuit</math>
<!-- ex:014:start-->
<div id="ex:14">
<strong>äŸ14</strong><math>\quad</math>
äŸ12 ã®è§£ã®æ£ããããšã確ãããïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'(t) = -\sin t - \cos t + 1</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x''(t) = -\cos t + \sin t</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x''(t) + x = -\cos t + \sin t + \cos t - \sin t + t = t, x(0) = 1 - 0 + 0 = 1, x'(0) = -0 - 1 + 1 = 0</math>}}
ãã£ãŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \cos t - \sin t + t</math>}}
ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€ïŒ
<math>\diamondsuit</math>
<!-- ex:014:end-->
<!-- ex:015:start-->
<div id="ex:15">
<strong>äŸ15</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = 5e^{2t}, x(0) = 2, x'(0) = 1</math>}}
ãè§£ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>p^2x - p^2\cdot2 - p + 4px -4p\cdot 2 + 3x = \frac{5p}{p - 2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>(p^2 + 4p + 3)x = 2p^2 + 9p + \frac{5p}{p - 2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{2p^2}{(p + 1)(p + 3)} + \frac{9p}{(p + 1)(p + 3)} + \frac{5p}{(p + 1)(p + 3)(p - 2)}</math>}}
第äžé
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{2p^2}{(p + 1)(p + 3)} = \frac{Ap}{p + 1} + \frac{Bp}{p + 3}</math>}}
ãšãããŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{Ap}{p + 1} + \frac{Bp}{p + 3} = \frac{1}{(p + 1)(p + 3)} \cdot \left \{ (A + B)p^2 + (3A + B)p \right \}</math>}}
ãã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>A+B=2,\quad3A + B = 0\quad \therefore A = -1, \quad B = 3</math>}}
ãããã£ãŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{2p^2}{(p + 1)(p + 3)} = \frac{-p}{p + 1} + \frac{3p}{p + 3}</math>}}
åæ§ã«ç¬¬äºé
ã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{9p}{(p + 1)(p + 3)} = \frac{\frac{9}{2}p}{p + 1} + \frac{-\frac{9}{2}p}{p + 3}</math>}}
第äžé
ã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{5p}{(p + 1)(p + 3)(p - 2)} = \frac{-\frac{5}{6}p}{p + 1} + \frac{\frac{1}{2}p}{p + 3} + \frac{\frac{1}{3}p}{p - 2}</math>}}
ããã«
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{(-1 + \frac{9}{2} - \frac{5}{6})p}{p + 1} + \frac{(3 - \frac{9}{2} + \frac{1}{2})p}{p + 3} + \frac{\frac{1}{3}p}{p - 2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math> = \frac{\frac{8}{3}p}{p + 1} + \frac{-p}{p + 3} + \frac{\frac{1}{3}p}{p - 2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math> = \frac{8}{3}e^{-t} -e^{-3t}+ \frac{1}{3}e^{2t}</math>}}
<math>\diamondsuit</math>
<!-- ex:015:start-->
<references />
[[ã«ããŽãª:åŸ®åæ¹çšåŒ]] | null | 2022-11-23T17:01:05Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95%E3%81%AE%E8%AA%95%E7%94%9F/%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95%E3%81%AE%E5%AE%8C%E6%88%90 |
24,919 | äžåŠæ ¡æè¡/ããã°ã©ãã³ã°èšèª | ããã°ã©ãã³ã°èšèªã«ã¯å€ãã®çš®é¡ããããã1950幎代ã«èšèšã»å®è£
ãããèšèªã«ãFORTRAN(ãã©ãŒãã©ã³)ã»COBOL(ã³ãã«)ã»LISP(ãªã¹ã)/ ALGOL(ã¢ã«ãŽã«)ãããã ãã®å
ãALGOLã¯æ»èªãšãªã£ããã1960幎代ã«èšèšã»å®è£
ãããBASIC(ããŒã·ãã¯)ãCèšèª(ã·ãŒããã)ã«å€ãã®åœ±é¿ãäžãã1970幎代ã«èšèšã»å®è£
ãããPascalã»Modula-2ã«çŽæ¥çã»éæ¥çã«åœ±é¿ãäžããã
(â» æç§æžã®åŸå)æ
å ±ãæ£èŠæç§ãšãªã£ãŠä»¥éã®æç§æžã§ã¯ãPythonãJavaScriptãVBAãScratchãåãäžããŠããããã®å
ãVBAã¯ãå¯äžé«é颿°ããµããŒãããããããEXCELãã©ã ãåŒããµããŒããããªã©ããžã¬ãçããŠããã
ãã®ã»ãã衚èšç®ãœããã®ExcelãPowerPointã§ãããã¯ãããšããããã°ã©ãã³ã°çãªæ©èœã䜿ããã
äžåŠé«æ ¡ã®ææã§ããã¯ãã玹ä»ããŠãããã®ãããã
ãªããMicrosoft ã®ãœãããŠã§ã¢ã®Excel, PowerPoint ã§ãªããšãããã¯ãã¯äœ¿ãããããšãã°ãGoogle ã¹ãã¬ããã·ãŒãã Google ã¹ã©ã€ããªã©ãä»ç€Ÿã®ãœããã§ã䌌ããããªæ©èœãããã
ãªããGoogle ã®ã¯ãGoogle Apps Script ãšãããGoogle ã®webã¢ããªã«ããããã¯ããã¯ãããšã¯æå³ãéãã®ã§ãééããªãããã«ã
ãã ããMicrosoft ã®ãã¯ããšGoogle Apps Script ã¯åŸ®åŠã«ææ³ãªã©ãç°ãªã£ãŠããã®ã§ããã¯ã䜿çšã®éã¯ãããããã®ææ³ã確èªã®ããšããªããMicorosoft ã®ãã¯ãã¯BASIC颚ã ããGoogle Apps Script ã¯JavaScript颚ã§ããã
å®çšçã«ã¯è¡šèšç®ãœããã®Excel ãã¯ãã®ã»ãã䜿çšé »åºŠã¯å€ãã ãããããããåŠæ ¡ã§ã¯çºè¡šã®ãããããªã©ããPowerPoint ãã¯ãã䜿ããããããªãã
2023幎çŸåš(å·çæç¹)ãæç§çã®GIGAã¹ã¯ãŒã«æ§æ³ãªã©ã§Googleã®Chromebookãæ¥æ¬åå°ã®äžåŠé«æ ¡ã«å°å
¥ãããŠããã®ã§ããããããã Googleã¹ã©ã€ãã®Google Apps Script ãªã©ã®ã»ãã䜿ããããããªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã°ã©ãã³ã°èšèªã«ã¯å€ãã®çš®é¡ããããã1950幎代ã«èšèšã»å®è£
ãããèšèªã«ãFORTRAN(ãã©ãŒãã©ã³)ã»COBOL(ã³ãã«)ã»LISP(ãªã¹ã)/ ALGOL(ã¢ã«ãŽã«)ãããã ãã®å
ãALGOLã¯æ»èªãšãªã£ããã1960幎代ã«èšèšã»å®è£
ãããBASIC(ããŒã·ãã¯)ãCèšèª(ã·ãŒããã)ã«å€ãã®åœ±é¿ãäžãã1970幎代ã«èšèšã»å®è£
ãããPascalã»Modula-2ã«çŽæ¥çã»éæ¥çã«åœ±é¿ãäžããã",
"title": "äžè¬çãªããã°ã©ãã³ã°èšèªã«ã€ããŠïŒâ»ãç¯å²å€ïŒ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(â» æç§æžã®åŸå)æ
å ±ãæ£èŠæç§ãšãªã£ãŠä»¥éã®æç§æžã§ã¯ãPythonãJavaScriptãVBAãScratchãåãäžããŠããããã®å
ãVBAã¯ãå¯äžé«é颿°ããµããŒãããããããEXCELãã©ã ãåŒããµããŒããããªã©ããžã¬ãçããŠããã",
"title": "äžè¬çãªããã°ã©ãã³ã°èšèªã«ã€ããŠïŒâ»ãç¯å²å€ïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ã»ãã衚èšç®ãœããã®ExcelãPowerPointã§ãããã¯ãããšããããã°ã©ãã³ã°çãªæ©èœã䜿ããã",
"title": "ãã¯ã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžåŠé«æ ¡ã®ææã§ããã¯ãã玹ä»ããŠãããã®ãããã",
"title": "ãã¯ã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãªããMicrosoft ã®ãœãããŠã§ã¢ã®Excel, PowerPoint ã§ãªããšãããã¯ãã¯äœ¿ãããããšãã°ãGoogle ã¹ãã¬ããã·ãŒãã Google ã¹ã©ã€ããªã©ãä»ç€Ÿã®ãœããã§ã䌌ããããªæ©èœãããã",
"title": "ãã¯ã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªããGoogle ã®ã¯ãGoogle Apps Script ãšãããGoogle ã®webã¢ããªã«ããããã¯ããã¯ãããšã¯æå³ãéãã®ã§ãééããªãããã«ã",
"title": "ãã¯ã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": "ãã¯ã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã ããMicrosoft ã®ãã¯ããšGoogle Apps Script ã¯åŸ®åŠã«ææ³ãªã©ãç°ãªã£ãŠããã®ã§ããã¯ã䜿çšã®éã¯ãããããã®ææ³ã確èªã®ããšããªããMicorosoft ã®ãã¯ãã¯BASIC颚ã ããGoogle Apps Script ã¯JavaScript颚ã§ããã",
"title": "ãã¯ã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å®çšçã«ã¯è¡šèšç®ãœããã®Excel ãã¯ãã®ã»ãã䜿çšé »åºŠã¯å€ãã ãããããããåŠæ ¡ã§ã¯çºè¡šã®ãããããªã©ããPowerPoint ãã¯ãã䜿ããããããªãã",
"title": "ãã¯ã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "2023幎çŸåš(å·çæç¹)ãæç§çã®GIGAã¹ã¯ãŒã«æ§æ³ãªã©ã§Googleã®Chromebookãæ¥æ¬åå°ã®äžåŠé«æ ¡ã«å°å
¥ãããŠããã®ã§ããããããã Googleã¹ã©ã€ãã®Google Apps Script ãªã©ã®ã»ãã䜿ããããããªãã",
"title": "ãã¯ã"
}
]
| null | == äžè¬çãªããã°ã©ãã³ã°èšèªã«ã€ããŠïŒâ»ãç¯å²å€ïŒ ==
:â» é«æ ¡ã¬ãã«ã倧å¹
ã«è¶
ããã®ã§ãæèšããªããŠããã§ãã
ããã°ã©ãã³ã°èšèªã«ã¯å€ãã®çš®é¡ããããã1950幎代ã«èšèšã»å®è£
ãããèšèªã«ã[[Fortran|FORTRAN]]ïŒãã©ãŒãã©ã³ïŒã»[[COBOL]]ïŒã³ãã«ïŒã»[[Lisp|LISP]]ïŒãªã¹ãïŒ/
[[ALGOL]]ïŒã¢ã«ãŽã«ïŒãããã
ãã®å
ãALGOLã¯æ»èª<ref>ALGOLã®èšèªåŠçç³»ã¯çµ¶ããæ°èŠã«ALGOLã§èšè¿°ãããã³ãŒãããªãç¶æ
ããæ»èªããšè¡šçŸãããèªç¶èšèªã«ãããŠã¯ã話è
ã倱ã£ãèšèªã[[W:æ»èª|æ»èª]]ãšç§°ããã</ref>ãšãªã£ããã1960幎代ã«èšèšã»å®è£
ããã[[BASIC]](ããŒã·ãã¯)ã[[Cèšèª]]ïŒã·ãŒãããïŒã«å€ãã®åœ±é¿ãäžãã1970幎代ã«èšèšã»å®è£
ãããPascalã»Modula-2ã«çŽæ¥çã»éæ¥çã«åœ±é¿ãäžããã
;FortranïŒãã©ãŒãã©ã³ïŒ:æ°å€èšç®ãç§åŠæè¡èšç®ãªã©ã«ç¹åããããã°ã©ãã³ã°èšèªã§ãé«éãªæŒç®ãå¯èœããŸããé
åæäœã«åªããŠãããå€§èŠæš¡ãªããŒã¿åŠçã«é©ããŠããã
;COBOLïŒã³ãã«ïŒ:ããžãã¹ã¢ããªã±ãŒã·ã§ã³ã®éçºã«ç¹åããããã°ã©ãã³ã°èšèªã§ã倧éã®ããŒã¿ãåŠçããã®ã«é©ããŠãããè±èªã«äŒŒãææ³ã§æžããããããããžãã¹ã®çŸå Žã§ã®å©çšãå€ãã
;LISPïŒãªã¹ãïŒ:ã€ã³ã¿ãŒããªã¿ãŒåããã°ã©ãã³ã°èšèªã®å§ç¥ããã£ãšã®åçŽãªèšèªä»æ§ãæã€ããã°ã©ãã³ã°èšèªã®äžã€ãããã°ã©ã ãããŒã¿ããªã¹ããšããŠè¡šçŸããã
;CèšèªïŒã·ãŒãããïŒ: ã·ã¹ãã éçºãçµã¿èŸŒã¿ã·ã¹ãã ãªã©ã«åºãå©çšãããŠããããã°ã©ãã³ã°èšèªã§ãé«éãªåŠçãå¯èœãã¡ã¢ãªç®¡çããã€ã³ã¿æäœãªã©ãããã°ã©ã ã®æé©åã«éç¹ã眮ãããŠããã
;C++ïŒã·ãŒãã©ã¹ãã©ã¹ïŒ: Cèšèªãåºã«ãããªããžã§ã¯ãæåããã°ã©ãã³ã°èšèªã§ãã¯ã©ã¹ãç¶æ¿ãªã©ã®æŠå¿µããããè€éãªã¢ããªã±ãŒã·ã§ã³ã®éçºã«é©ããŠããããŸããCèšèªãšåæ§ã«é«éãªåŠçãå¯èœã
;JavaïŒãžã£ãïŒ: ãªããžã§ã¯ãæåããã°ã©ãã³ã°èšèªã§ãé«ãããŒã¿ããªãã£ããããç°ãªãOSããã©ãããã©ãŒã ã§ãåäœããããŸããã»ãã¥ãªãã£é¢ã«åªããŠãããWebã¢ããªã±ãŒã·ã§ã³ãã¢ãã€ã«ã¢ããªã®éçºã«é©ããŠããã
; JavaScriptïŒãžã£ãã¹ã¯ãªããïŒ: Webãã©ãŠã¶äžã§åäœããã¹ã¯ãªããèšèªã§ãWebããŒãžã®åçãªæäœãããªããŒã·ã§ã³ãã¢ãã¡ãŒã·ã§ã³ãªã©ã«äœ¿ãããããŸããNode.jsãšçµã¿åãããŠãµãŒããŒãµã€ãã®éçºã«ãå©çšãããã
; PythonïŒãã€ãœã³ïŒ: ã·ã³ãã«ã§ããããããææ³ãæã¡ãååŠè
ã«ãæ±ããããããã°ã©ãã³ã°èšèªãããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãWebéçºãªã©å¹
åºãåéã§äœ¿ãããŠããã
; RubyïŒã«ããŒïŒ: ãªããžã§ã¯ãæåããã°ã©ãã³ã°èšèªã§ãã·ã³ãã«ãªææ³ãæã¡ãéçºã®çç£æ§ãé«ããWebã¢ããªã±ãŒã·ã§ã³ãã¬ãŒã ã¯ãŒã¯ã§ããRuby on Railsãæåã§ããã
ïŒâ» æç§æžã®åŸåïŒæ
å ±ãæ£èŠæç§ãšãªã£ãŠä»¥éã®æç§æžã§ã¯ãPythonãJavaScriptãVBAãScratchãåãäžããŠããããã®å
ãVBAã¯ãå¯äž[[W:é«é颿°|é«é颿°]]ããµããŒãããããããEXCELãã©ã ãåŒããµããŒããããªã©ããžã¬ãçããŠããã
== ãã¯ã ==
ãã®ã»ãã衚èšç®ãœããã®ExcelãPowerPointã§ãããã¯ãããšããããã°ã©ãã³ã°çãªæ©èœã䜿ããã
äžåŠé«æ ¡ã®ææã§ããã¯ãã玹ä»ããŠãããã®ãããã
ãªããMicrosoft ã®ãœãããŠã§ã¢ã®Excel, PowerPoint ã§ãªããšãããã¯ãã¯äœ¿ãããããšãã°ãGoogle ã¹ãã¬ããã·ãŒãã Google ã¹ã©ã€ããªã©ãä»ç€Ÿã®ãœããã§ã䌌ããããªæ©èœãããã
ãªããGoogle ã®ã¯ãGoogle Apps Script ãšãããGoogle ã®webã¢ããªã«ããããã¯ããã¯ãããšã¯æå³ãéãã®ã§ãééããªãããã«ã
ãã ããMicrosoft ã®ãã¯ããšGoogle Apps Script ã¯åŸ®åŠã«ææ³ãªã©ãç°ãªã£ãŠããã®ã§ããã¯ã䜿çšã®éã¯ãããããã®ææ³ã確èªã®ããšããªããMicorosoft ã®ãã¯ãã¯BASIC颚ã ããGoogle Apps Script ã¯JavaScript颚ã§ããã
å®çšçã«ã¯è¡šèšç®ãœããã®Excel ãã¯ãã®ã»ãã䜿çšé »åºŠã¯å€ãã ãããããããåŠæ ¡ã§ã¯çºè¡šã®ãããããªã©ããPowerPoint ãã¯ãã䜿ããããããªãã
2023幎çŸåšïŒå·çæç¹ïŒãæç§çã®GIGAã¹ã¯ãŒã«æ§æ³ãªã©ã§Googleã®Chromebookãæ¥æ¬åå°ã®äžåŠé«æ ¡ã«å°å
¥ãããŠããã®ã§ããããããã Googleã¹ã©ã€ãã®Google Apps Script ãªã©ã®ã»ãã䜿ããããããªãã
{{ã³ã©ã |ïŒâ» ç¯å²å€ïŒãã¯ããæªçšãããŠã€ã«ã¹|
ãã¯ãã¯ã»ãã¥ãªãã£ã®éœåäžãç¡å¹åããå Žåãããã
äžéã®å€ãã®äººã¯ããããäžã®å®è¡ãã¡ã€ã«ïŒexe圢åŒïŒã¯å²ãšæ³šæã¶ãã補äœè
ã®çŽ æ§ã確èªããã®ã«ãwordãã¡ã€ã«ãexcelãã¡ã€ã«ã¯ãããŸã§ç¢ºèªããªãããšãå€ãããã ãããããã¯ããæªçšãããŠã€ã«ã¹ã®æå£ãããã
ã ããäŒç€Ÿãªã©ã§ã¯ã瀟å
ã®ããœã³ã³ã®åºæ¬èšå®ãšããŠãã¯ããç¡å¹åããŠããå Žåãããã
ãã®å Žåãã©ãããŠããã¯ã䜿çšããããå Žåã¯ãwordãexcelãªã©ãœããåŽã®èšå®ã倿Žããå¿
èŠããããäŒç€ŸåŽã®éœåãããã ãããããäžåžã«èš±å¯ãæ±ãããªã©ããããçžè«ãããã
}}
[[ã«ããŽãª:ããã°ã©ãã³ã°èšèª]] | 2019-01-14T13:38:59Z | 2024-03-03T11:20:53Z | [
"ãã³ãã¬ãŒã:ã³ã©ã "
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E5%AD%A6%E6%A0%A1%E6%8A%80%E8%A1%93/%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0%E8%A8%80%E8%AA%9E |
24,931 | å
¬èªäŒèšå£«è©Šéš/å¹³æ30å¹Žè«æåŒ/äŒèšåŠååŸ/第3ååé¡1 | æ ªäž»è³æ¬çå€åèšç®æžã«é¢ããæ¬¡ã®å 1 ããã³å 2 ã«çããªããã
å1 A瀟ã®åœæ(X1 幎4 æ1 æ¥ãX2 幎3 æ31 æ¥)ã«é¢ããæ¬¡ã®ãè³æIãããè³æIIIãã«åºã¥ã,ãè³æIIIãã«ç€ºããåœæã®æ ªäž»è³æ¬çå€åèšç®æžã®1ã9ã«åœãŠã¯ãŸãèªå¥ãŸãã¯éé¡ãçããªããããªã,çšå¹æãèæ
®ããå¿
èŠãããå Žåã«ã¯,å®å¹çšçã30 %ãšã,çšå¹æäŒèšãé©çšããããšããŸã,éé¡ããã€ãã¹ã®å Žåã«ã¯,ãã®éé¡ã®åã«â³ãä»ãããšã
ãè³æIã èªå·±æ ªåŒã«é¢ããè£è¶³æ
å ±
1.åææ«ã«ãããèªå·±æ ªåŒã®ä¿ææ ªæ°ã¯10 äžæ ªã§ããã
2.èªå·±æ ªåŒã¯ç§»å平忳ã«ããæåºäŸ¡é¡ãèšç®ããããšã
ãè³æIIã çŽè³ç£ã«é¢ããåœæäžã®ååŒç
1.A瀟ã¯X1 幎9 æ1 æ¥ãäŒæ¥çµåæ¥,èªå·±ãååŸäŒæ¥,B瀟ã被ååŸäŒæ¥ãšããåžåå䜵ãè¡ã£ããB瀟ã®è²žå察ç
§è¡šã«èšäžãããéé¡ã¯,ç·è³ç£700,000 åå,è² åµ300,000 åå,è³æ¬é250,000 åå,å©çå°äœé150,000 ååã§ãã£ããäŒæ¥çµåæ¥ã«ãããŠB瀟ã®ä¿æããåå°ã®æäŸ¡ã¯åž³ç°¿äŸ¡é¡ã50,000 ååäžåã£ãŠããããã®ä»ã®è³ç£ããã³è² åµã®æäŸ¡ã¯,垳簿䟡é¡ãšåäžã§ãã£ãã
Aç€Ÿæ ªåŒã®äŒæ¥çµåæ¥ã®æäŸ¡ã¯1 æ ª1,000 å,äº€ä»æ ªåŒã¯ç·æ°45 äžæ ª,æäŸ¡ç·é¡ã¯450,000ååã§ãã£ããAç€Ÿæ ªåŒã®äº€ä»ã«åœãã£ãŠã¯,ä¿æèªå·±æ ªåŒ5 äžæ ªãå
ãŠ,æ®ãã¯æ°æ ªãçºè¡ãããååŸã«çŽæ¥èŠããè²»çšã¯ãªãã£ãã
Aç€Ÿã¯æ ªäž»æèŸŒè³æ¬å€åé¡ã®å
šé¡ãè³æ¬éãšããã
2.X1 幎6 æã®å®ææ ªäž»ç·äŒã«ãããŠ,ç¹°è¶å©çå°äœéããçŸéã«ããé
åœ50,000 ååã®æ¯æã決è°ã,é
åœã宿œããã
宿¬Ÿã®èŠå®ã«ãã,åç· åœ¹äŒã®æ±ºè°ãçµãŠ,X1 幎9 ææ«ãåºæºæ¥ãšããŠ,X1 幎12 æã«çŸéã«ããäžéé
åœ30,000 ååã®æ¯æãè¡ã£ãã
ããããã®é
åœéæ¯æã«ã€ããŠäŒç€Ÿæ³ã®èŠå®ã«ããå¿
èŠæäœéã®å©çæºåéã®ç©ç«ãŠãè¡ãããšãšããŠããã
3.X2 幎3 ææã®æ±ºç®ã«åœãã,åæã«èšå®ããå§çž®ç©ç«é70,000 ååãåã厩ã,æ°ãã«å§çž®ç©ç«é20,000 ååãç©ã¿ç«ãŠãã
4.X2 幎2 æã«,èªå·±æ ªåŒ(æäŸ¡1 æ ª1,100 å,ç·æ°7 äžæ ª)ãååŸã,çŸéã§æ¯æã£ãã
X2 幎3 æã«,èªå·±æ ªåŒ(æäŸ¡1 æ ª1,200 å,ç·æ°2 äžæ ª)ãåŠåããã
5.åœææéŠã«,åæããä¿æããŠãããã®ä»æäŸ¡èšŒåžã®äžéš(垳簿䟡é¡40,000 åå)ã,100,000ååã§å£²åŽããããã®ãã¡,åææ«ã«æäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠãããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯40,000 åå,æäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠããªãã£ããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯20,000 ååã§ãã£ãããªã,åœæã«ãããŠ,A瀟ã¯B瀟ã®ä¿æããæäŸ¡èšŒåž(Zç€Ÿæ ªåŒ:垳簿䟡é¡10,000 åå,X2 幎3 æ31 æ¥ã®æäŸ¡20,000 åå)ããã®ä»æäŸ¡èšŒåžãšããŠåŒãç¶ãã§ãããA瀟ã¯,å䜵以åã«ã¯Zç€Ÿæ ªåŒãä¿æããŠããªãããŸãA瀟ã¯åœæã«,äžèšä»¥å€ã®æäŸ¡èšŒåžã®ååŸããã³å£²åŽã¯è¡ã£ãŠããªãã
6.A瀟ã«ãããæ°æ ªäºçŽæš©ã®ç¶æ³ã¯æ¬¡ã®ãšããã§ããããªã,è³æ¬éã«èšäžããé¡ã¯,äŒç€Ÿæ³ã«èŠå®ããæäœé床é¡ãšããã
7.X1 幎7 æã«,ãããžå¯Ÿè±¡ãæ¶æ»
ã,ç¹°å»¶ãããžå©ç70,000 åå(çšå¹æèª¿æŽåŸ)ã®æžå°ããã£ãã
X2 幎3 æ1 æ¥ã«X2 幎5 æ31 æ¥ãæ±ºæžæ¥ãšããŠ, 1 ãã«110 åã§å売ããã«è²·ãã®çºæ¿äºçŽã10,000 åãã«ç· çµããããã®çºæ¿äºçŽã¯,ãããžäŒèšã®èŠä»¶ãæºãããŠãããX2 幎3 æ31æ¥ã®çºæ¿çžå Žã¯1 ãã«116 åã§ãã£ããA瀟ã¯ãã以å€ã®ãããžå¥çŽã¯è¡ã£ãŠããªãã
8.åœæçŽå©çã¯,350,000 ååã§ããã
ãè³æIIIã æ ªäž»è³æ¬çå€åèšç®æž (åäœ:åå)
å2 åå¥è²¡å諞衚ã«ãããŠã¯å©çåŠåèšç®æž(ãŸãã¯æå€±åŠçèšç®æž)ã,é£çµè²¡å諞衚ã«ãã㊠ã¯é£çµå°äœéèšç®æžãé瀺ãããŠããã,çŸåšã¯æ ªäž»è³æ¬çå€åèšç®æžã«å€æŽãããŠãããã ã®å€æŽçç±ããã£ã¹ã¯ããŒãžã£ãŒã®èгç¹ãã説æããªããã
ãæ ªäž»è³æ¬çå€åèšç®æžã«é¢ããäŒèšåºæºã17é
åç
§ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ ªäž»è³æ¬çå€åèšç®æžã«é¢ããæ¬¡ã®å 1 ããã³å 2 ã«çããªããã",
"title": "åé¡"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å1 A瀟ã®åœæ(X1 幎4 æ1 æ¥ãX2 幎3 æ31 æ¥)ã«é¢ããæ¬¡ã®ãè³æIãããè³æIIIãã«åºã¥ã,ãè³æIIIãã«ç€ºããåœæã®æ ªäž»è³æ¬çå€åèšç®æžã®1ã9ã«åœãŠã¯ãŸãèªå¥ãŸãã¯éé¡ãçããªããããªã,çšå¹æãèæ
®ããå¿
èŠãããå Žåã«ã¯,å®å¹çšçã30 %ãšã,çšå¹æäŒèšãé©çšããããšããŸã,éé¡ããã€ãã¹ã®å Žåã«ã¯,ãã®éé¡ã®åã«â³ãä»ãããšã",
"title": "åé¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãè³æIã èªå·±æ ªåŒã«é¢ããè£è¶³æ
å ±",
"title": "åé¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "1.åææ«ã«ãããèªå·±æ ªåŒã®ä¿ææ ªæ°ã¯10 äžæ ªã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "2.èªå·±æ ªåŒã¯ç§»å平忳ã«ããæåºäŸ¡é¡ãèšç®ããããšã",
"title": "åé¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãè³æIIã çŽè³ç£ã«é¢ããåœæäžã®ååŒç",
"title": "åé¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "1.A瀟ã¯X1 幎9 æ1 æ¥ãäŒæ¥çµåæ¥,èªå·±ãååŸäŒæ¥,B瀟ã被ååŸäŒæ¥ãšããåžåå䜵ãè¡ã£ããB瀟ã®è²žå察ç
§è¡šã«èšäžãããéé¡ã¯,ç·è³ç£700,000 åå,è² åµ300,000 åå,è³æ¬é250,000 åå,å©çå°äœé150,000 ååã§ãã£ããäŒæ¥çµåæ¥ã«ãããŠB瀟ã®ä¿æããåå°ã®æäŸ¡ã¯åž³ç°¿äŸ¡é¡ã50,000 ååäžåã£ãŠããããã®ä»ã®è³ç£ããã³è² åµã®æäŸ¡ã¯,垳簿䟡é¡ãšåäžã§ãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "Aç€Ÿæ ªåŒã®äŒæ¥çµåæ¥ã®æäŸ¡ã¯1 æ ª1,000 å,äº€ä»æ ªåŒã¯ç·æ°45 äžæ ª,æäŸ¡ç·é¡ã¯450,000ååã§ãã£ããAç€Ÿæ ªåŒã®äº€ä»ã«åœãã£ãŠã¯,ä¿æèªå·±æ ªåŒ5 äžæ ªãå
ãŠ,æ®ãã¯æ°æ ªãçºè¡ãããååŸã«çŽæ¥èŠããè²»çšã¯ãªãã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "Aç€Ÿã¯æ ªäž»æèŸŒè³æ¬å€åé¡ã®å
šé¡ãè³æ¬éãšããã",
"title": "åé¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "2.X1 幎6 æã®å®ææ ªäž»ç·äŒã«ãããŠ,ç¹°è¶å©çå°äœéããçŸéã«ããé
åœ50,000 ååã®æ¯æã決è°ã,é
åœã宿œããã",
"title": "åé¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "宿¬Ÿã®èŠå®ã«ãã,åç· åœ¹äŒã®æ±ºè°ãçµãŠ,X1 幎9 ææ«ãåºæºæ¥ãšããŠ,X1 幎12 æã«çŸéã«ããäžéé
åœ30,000 ååã®æ¯æãè¡ã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããããã®é
åœéæ¯æã«ã€ããŠäŒç€Ÿæ³ã®èŠå®ã«ããå¿
èŠæäœéã®å©çæºåéã®ç©ç«ãŠãè¡ãããšãšããŠããã",
"title": "åé¡"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "3.X2 幎3 ææã®æ±ºç®ã«åœãã,åæã«èšå®ããå§çž®ç©ç«é70,000 ååãåã厩ã,æ°ãã«å§çž®ç©ç«é20,000 ååãç©ã¿ç«ãŠãã",
"title": "åé¡"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "4.X2 幎2 æã«,èªå·±æ ªåŒ(æäŸ¡1 æ ª1,100 å,ç·æ°7 äžæ ª)ãååŸã,çŸéã§æ¯æã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "X2 幎3 æã«,èªå·±æ ªåŒ(æäŸ¡1 æ ª1,200 å,ç·æ°2 äžæ ª)ãåŠåããã",
"title": "åé¡"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "5.åœææéŠã«,åæããä¿æããŠãããã®ä»æäŸ¡èšŒåžã®äžéš(垳簿䟡é¡40,000 åå)ã,100,000ååã§å£²åŽããããã®ãã¡,åææ«ã«æäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠãããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯40,000 åå,æäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠããªãã£ããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯20,000 ååã§ãã£ãããªã,åœæã«ãããŠ,A瀟ã¯B瀟ã®ä¿æããæäŸ¡èšŒåž(Zç€Ÿæ ªåŒ:垳簿䟡é¡10,000 åå,X2 幎3 æ31 æ¥ã®æäŸ¡20,000 åå)ããã®ä»æäŸ¡èšŒåžãšããŠåŒãç¶ãã§ãããA瀟ã¯,å䜵以åã«ã¯Zç€Ÿæ ªåŒãä¿æããŠããªãããŸãA瀟ã¯åœæã«,äžèšä»¥å€ã®æäŸ¡èšŒåžã®ååŸããã³å£²åŽã¯è¡ã£ãŠããªãã",
"title": "åé¡"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "6.A瀟ã«ãããæ°æ ªäºçŽæš©ã®ç¶æ³ã¯æ¬¡ã®ãšããã§ããããªã,è³æ¬éã«èšäžããé¡ã¯,äŒç€Ÿæ³ã«èŠå®ããæäœé床é¡ãšããã",
"title": "åé¡"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "7.X1 幎7 æã«,ãããžå¯Ÿè±¡ãæ¶æ»
ã,ç¹°å»¶ãããžå©ç70,000 åå(çšå¹æèª¿æŽåŸ)ã®æžå°ããã£ãã",
"title": "åé¡"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "X2 幎3 æ1 æ¥ã«X2 幎5 æ31 æ¥ãæ±ºæžæ¥ãšããŠ, 1 ãã«110 åã§å売ããã«è²·ãã®çºæ¿äºçŽã10,000 åãã«ç· çµããããã®çºæ¿äºçŽã¯,ãããžäŒèšã®èŠä»¶ãæºãããŠãããX2 幎3 æ31æ¥ã®çºæ¿çžå Žã¯1 ãã«116 åã§ãã£ããA瀟ã¯ãã以å€ã®ãããžå¥çŽã¯è¡ã£ãŠããªãã",
"title": "åé¡"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "8.åœæçŽå©çã¯,350,000 ååã§ããã",
"title": "åé¡"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãè³æIIIã æ ªäž»è³æ¬çå€åèšç®æž (åäœ:åå)",
"title": "åé¡"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "å2 åå¥è²¡å諞衚ã«ãããŠã¯å©çåŠåèšç®æž(ãŸãã¯æå€±åŠçèšç®æž)ã,é£çµè²¡å諞衚ã«ãã㊠ã¯é£çµå°äœéèšç®æžãé瀺ãããŠããã,çŸåšã¯æ ªäž»è³æ¬çå€åèšç®æžã«å€æŽãããŠãããã ã®å€æŽçç±ããã£ã¹ã¯ããŒãžã£ãŒã®èгç¹ãã説æããªããã",
"title": "åé¡"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãæ ªäž»è³æ¬çå€åèšç®æžã«é¢ããäŒèšåºæºã17é
åç
§",
"title": "解説"
}
]
| null | == åé¡ ==
ãæ ªäž»è³æ¬çå€åèšç®æžã«é¢ããæ¬¡ã®<span style="border:1px solid #000">å 1</span> ããã³<span style="border:1px solid #000">å 2</span> ã«çããªããã
<span style="border:1px solid #000">å1</span>ã瀟ã®åœæïŒïŒž1 幎4 æ1 æ¥ã2 幎3 æ31 æ¥ïŒã«é¢ããæ¬¡ã®ãè³æâ
ãããè³æâ
¢ãã«åºã¥ãïŒãè³æâ
¢ãã«ç€ºããåœæã®æ ªäž»è³æ¬çå€åèšç®æžã®â ãâšã«åœãŠã¯ãŸãèªå¥ãŸãã¯éé¡ãçããªããããªãïŒçšå¹æãèæ
®ããå¿
èŠãããå Žåã«ã¯ïŒå®å¹çšçã30 ïŒ
ãšãïŒçšå¹æäŒèšãé©çšããããšããŸãïŒéé¡ããã€ãã¹ã®å Žåã«ã¯ïŒãã®éé¡ã®åã«â³ãä»ãããšã
ã'''è³æâ
'''ããèªå·±æ ªåŒã«é¢ããè£è¶³æ
å ±
1ïŒåææ«ã«ãããèªå·±æ ªåŒã®ä¿ææ ªæ°ã¯10 äžæ ªã§ããã
2ïŒèªå·±æ ªåŒã¯ç§»å平忳ã«ããæåºäŸ¡é¡ãèšç®ããããšã
ã'''è³æâ
¡'''ããçŽè³ç£ã«é¢ããåœæäžã®ååŒç
1ïŒïŒ¡ç€Ÿã¯ïŒž1 幎9 æ1 æ¥ãäŒæ¥çµåæ¥ïŒèªå·±ãååŸäŒæ¥ïŒïŒ¢ç€Ÿã被ååŸäŒæ¥ãšããåžåå䜵ãè¡ã£ãã瀟ã®è²žå察ç
§è¡šã«èšäžãããéé¡ã¯ïŒç·è³ç£700,000 ååïŒè² åµ300,000 ååïŒè³æ¬é250,000 ååïŒå©çå°äœé150,000 ååã§ãã£ããäŒæ¥çµåæ¥ã«ãããŠïŒ¢ç€Ÿã®ä¿æããåå°ã®æäŸ¡ã¯åž³ç°¿äŸ¡é¡ã50,000 ååäžåã£ãŠããããã®ä»ã®è³ç£ããã³è² åµã®æäŸ¡ã¯ïŒåž³ç°¿äŸ¡é¡ãšåäžã§ãã£ãã
ãïŒ¡ç€Ÿæ ªåŒã®äŒæ¥çµåæ¥ã®æäŸ¡ã¯1 æ ª1,000 åïŒäº€ä»æ ªåŒã¯ç·æ°45 äžæ ªïŒæäŸ¡ç·é¡ã¯450,000ååã§ãã£ããïŒ¡ç€Ÿæ ªåŒã®äº€ä»ã«åœãã£ãŠã¯ïŒä¿æèªå·±æ ªåŒ5 äžæ ªãå
ãŠïŒæ®ãã¯æ°æ ªãçºè¡ãããååŸã«çŽæ¥èŠããè²»çšã¯ãªãã£ãã
ãïŒ¡ç€Ÿã¯æ ªäž»æèŸŒè³æ¬å€åé¡ã®å
šé¡ãè³æ¬éãšããã
2ïŒïŒž1 幎6 æã®å®ææ ªäž»ç·äŒã«ãããŠïŒç¹°è¶å©çå°äœéããçŸéã«ããé
åœ50,000 ååã®æ¯æã決è°ãïŒé
åœã宿œããã
ã宿¬Ÿã®èŠå®ã«ããïŒåç· åœ¹äŒã®æ±ºè°ãçµãŠïŒïŒž1 幎9 ææ«ãåºæºæ¥ãšããŠïŒïŒž1 幎12 æã«çŸéã«ããäžéé
åœ30,000 ååã®æ¯æãè¡ã£ãã
ãããããã®é
åœéæ¯æã«ã€ããŠäŒç€Ÿæ³ã®èŠå®ã«ããå¿
èŠæäœéã®å©çæºåéã®ç©ç«ãŠãè¡ãããšãšããŠããã
3ïŒïŒž2 幎3 ææã®æ±ºç®ã«åœããïŒåæã«èšå®ããå§çž®ç©ç«é70,000 ååãåã厩ãïŒæ°ãã«å§çž®ç©ç«é20,000 ååãç©ã¿ç«ãŠãã
4ïŒïŒž2 幎2 æã«ïŒèªå·±æ ªåŒïŒæäŸ¡1 æ ª1,100 åïŒç·æ°7 äžæ ªïŒãååŸãïŒçŸéã§æ¯æã£ãã
ã2 幎3 æã«ïŒèªå·±æ ªåŒïŒæäŸ¡1 æ ª1,200 åïŒç·æ°2 äžæ ªïŒãåŠåããã
5ïŒåœææéŠã«ïŒåæããä¿æããŠãããã®ä»æäŸ¡èšŒåžã®äžéšïŒåž³ç°¿äŸ¡é¡40,000 ååïŒãïŒ100,000ååã§å£²åŽããããã®ãã¡ïŒåææ«ã«æäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠãããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯40,000 ååïŒæäŸ¡è©äŸ¡ã®å¯Ÿè±¡ãšãªã£ãŠããªãã£ããã®ä»æäŸ¡èšŒåžã®å£²åŽçã¯20,000 ååã§ãã£ãããªãïŒåœæã«ãããŠïŒïŒ¡ç€Ÿã¯ïŒ¢ç€Ÿã®ä¿æããæäŸ¡èšŒåžïŒïŒºç€Ÿæ ªåŒïŒåž³ç°¿äŸ¡é¡10,000 ååïŒïŒž2 幎3 æ31 æ¥ã®æäŸ¡20,000 ååïŒããã®ä»æäŸ¡èšŒåžãšããŠåŒãç¶ãã§ããã瀟ã¯ïŒå䜵以åã«ã¯ïŒºç€Ÿæ ªåŒãä¿æããŠããªãããŸã瀟ã¯åœæã«ïŒäžèšä»¥å€ã®æäŸ¡èšŒåžã®ååŸããã³å£²åŽã¯è¡ã£ãŠããªãã
6ïŒïŒ¡ç€Ÿã«ãããæ°æ ªäºçŽæš©ã®ç¶æ³ã¯æ¬¡ã®ãšããã§ããããªãïŒè³æ¬éã«èšäžããé¡ã¯ïŒäŒç€Ÿæ³ã«èŠå®ããæäœé床é¡ãšããã
:âŽã1 幎4 æã«ïŒæéŠã®æ°æ ªäºçŽæš©ã«ã€ããŠã¯ïŒæš©å©ãè¡äœ¿ãããã«å
šãŠè¡äœ¿æéãå°æ¥ããã
:âµã2 幎1 æã«ïŒæ°æ ªäºçŽæš©ã200,000 ååçºè¡ããããã®æ°æ ªäºçŽæš©ã®è¡äœ¿æã«è¿œå çã«æã蟌ãéé¡ã¯300,000 ååã§ããã
:â¶ã2 幎1 æã«ïŒâµã®æ°æ ªäºçŽæš©ã®ãã¡30 ïŒ
ãè¡äœ¿ããïŒæ°æ ªãçºè¡ããã
7ïŒïŒž1 幎7 æã«ïŒãããžå¯Ÿè±¡ãæ¶æ»
ãïŒç¹°å»¶ãããžå©ç70,000 ååïŒçšå¹æèª¿æŽåŸïŒã®æžå°ããã£ãã
ã2 幎3 æ1 æ¥ã«ïŒž2 幎5 æ31 æ¥ãæ±ºæžæ¥ãšããŠïŒ 1 ãã«110 åã§å売ããã«è²·ãã®çºæ¿äºçŽã10,000 åãã«ç· çµããããã®çºæ¿äºçŽã¯ïŒãããžäŒèšã®èŠä»¶ãæºãããŠããã2 幎3 æ31æ¥ã®çºæ¿çžå Žã¯1 ãã«116 åã§ãã£ãã瀟ã¯ãã以å€ã®ãããžå¥çŽã¯è¡ã£ãŠããªãã
8ïŒåœæçŽå©çã¯ïŒ350,000 ååã§ããã
ã'''è³æIII'''ããæ ªäž»è³æ¬çå€åèšç®æžãïŒåäœïŒååïŒ
{| class="wikitable"
| rowspan="3" |
| colspan="10" |æ ªäž»è³æ¬
| colspan="3" |è©äŸ¡ã»æç®å·®é¡ç
| rowspan="3" |â
| rowspan="3" |çŽè³ç£åèš
|-
| rowspan="2" |è³æ¬é
| colspan="3" |è³æ¬å°äœé
| colspan="4" |å©çå°äœé
| rowspan="2" |ïŒ
| rowspan="2" |æ ªäž»è³æ¬åèš
| rowspan="2" |ãã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡é
| rowspan="2" |ç¹°å»¶ãããžæç
| rowspan="2" |è©äŸ¡ã»æç®å·®é¡çåèš
|-
|è³æ¬æºåé
|ãã®ä»è³æ¬å°äœé
|è³æ¬å°äœéåèš
|ïŒ
|å§çž®ç©ç«é
|ç¹°è¶å©çå°äœé
|å©çå°äœéåèš
|-
|åœæéŠæ®é«
|500,000
|150,000
|80,000
|
|50,000
|70,000
|200,000
|
|â³80,000
|
|140,000
|70,000
|
|100,000
|1,280,000
|-
|åœæå€åé¡
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªã®çºè¡ïŒæ°æ ªäºçŽæš©ã®è¡äœ¿ïŒ
|â¡
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªã®çºè¡ãšèªå·±æ ªåŒã®åŠåïŒåžåå䜵ã«ãããã®ïŒ
|
|
|â£
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãïŒ
|
|
|
|
|â€
|
|
|
|
|
|
|
|
|
|
|-
|ãå§çž®ç©ç«éã®ç©ç«ãŠ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãå§çž®ç©ç«éã®å厩ã
|
|
|
|
|
|â¥
|
|
|
|
|
|
|
|
|
|-
|ãåœæçŽå©ç
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãèªå·±æ ªåŒã®ååŸ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãèªå·±æ ªåŒã®åŠå
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ããã®ä»æäŸ¡èšŒåžã®å£²åŽã«ãã墿ž
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãçŽè³ç£ã®éšã«èšäžããããã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡éã®å¢æž
|
|
|
|
|
|
|
|
|
|
|âŠ
|
|
|
|
|-
|ããããžäŒèšã®çµäºã«ãã墿ž
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãçŽè³ç£ã®éšã«èšäžãããç¹°è¶ãããžæçã®å¢æž
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªäºçŽæš©ã®çºè¡
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªäºçŽæš©ã®å€±å¹
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|åœæå€åé¡åèš
|
|â¢
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|åœææ«æ®é«
|
|
|
|
|
|
|
|
|
|
|
|â§
|
|
|âš
|}
<span style="border:1px solid #000">å2</span>ãåå¥è²¡å諞衚ã«ãããŠã¯å©çåŠåèšç®æžïŒãŸãã¯æå€±åŠçèšç®æžïŒãïŒé£çµè²¡å諞衚ã«ãããŠ
ã¯é£çµå°äœéèšç®æžãé瀺ãããŠãããïŒçŸåšã¯æ ªäž»è³æ¬çå€åèšç®æžã«å€æŽãããŠãããã
ã®å€æŽçç±ããã£ã¹ã¯ããŒãžã£ãŒã®èгç¹ãã説æããªããã
== 解説 ==
=== å1 ===
{|
| colspan="6" |åžåå䜵
|-
|(å)
|諞è³ç£
|750,000
|(貞)
|è«žè² åµ
|300,000
|-
|
|
|
|
|æèŸŒè³æ¬
|450,000
|-
|(å)
|æèŸŒè³æ¬
|450,000
|(貞)
|è³æ¬é
|410,000
|-
|
|
|
|
|èªå·±æ ªåŒ
|40,000
|-
| colspan="6" |X1.6 é
åœ
|-
|(å)
|ç¹°è¶å©çå°äœé
|50,000
|(貞)
|å©çæºåé
|0
|-
|
|
|
|
|æªæé
åœé
|50,000
|-
| colspan="6" |X1.12 é
åœ
|-
|(å)
|ç¹°è¶å©çå°äœé
|33,000
|(貞)
|å©çæºåé
|3,000
|-
|
|
|
|
|æªæé
åœé
|30,000
|-
| colspan="6" |â»é
åœæè³æ¬éïŒæéŠ500,000ïŒåžåå䜵410,000ïŒ910,000
|-
| colspan="6" |å§çž®ç©ç«éã®å厩ã
|-
|(å)
|å§çž®ç©ç«é
|70,000
|(貞)
|ç¹°è¶å©çå°äœé
|70,000
|-
| colspan="6" |å§çž®ç©ç«éã®ç©ç«ãŠ
|-
|(å)
|ç¹°è¶å©çå°äœé
|20,000
|(貞)
|å§çž®ç©ç«é
|20,000
|-
| colspan="6" |èªå·±æ ªåŒååŸ
|-
|(å)
|èªå·±æ ªåŒ
|77,000
|(貞)
|çŸéé é
|77,000
|-
| colspan="6" |èªå·±æ ªåŒåŠå
|-
|(å)
|çŸéé é
|24,000
|(貞)
|èªå·±æ ªåŒ
|19,500
|-
|
|
|
|
|ãã®ä»è³æ¬å°äœé
|4,500
|-
| colspan="6" |â»èªå·±æ ªåŒå䟡ïŒç°¿äŸ¡ïŒæéŠ80,000ïŒåžåå䜵40,000ïŒååŸ77,000ïŒÃ·ïŒæéŠ10äžæ ªïŒåžåå䜵5äžæ ªïŒååŸ7äžæ ªïŒïŒ@975
|-
| colspan="6" |ãã®ä»æäŸ¡èšŒåž
|-
| colspan="6" |ãæéŠåæ¯æ¿ä»èš³
|-
|(å)
|ç¹°å»¶çšéè² åµ
|60,000
|(貞)
|æè³æäŸ¡èšŒåž
|200,000
|-
|
|ãã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡é
|140,000
|
|
|
|-
| colspan="6" |ã売åŽ
|-
|(å)
|çŸéé é
|100,000
|(貞)
|æè³æäŸ¡èšŒåž
|40,000
|-
|
|
|
|
|æè³æäŸ¡èšŒåžå£²åŽç
|60,000
|-
| colspan="6" |ãææ«æäŸ¡è©äŸ¡
|-
|(å)
|æè³æäŸ¡èšŒåž
|150,000
|(貞)
|ç¹°å»¶çšéè² åµ
|45,000
|-
|
|
|
|
|ãã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡é
|105,000
|-
| colspan="6" |æ°æ ªäºçŽæš©
|-
| colspan="6" |ãX1.4 è¡äœ¿æéå°æ¥
|-
|(å)
|æ°æ ªäºçŽæš©
|100,000
|(貞)
|æ°æ ªäºç޿𩿻å
¥ç
|100,000
|-
| colspan="6" |ãX2.1 çºè¡
|-
|(å)
|çŸéé é
|200,000
|(貞)
|æ°æ ªäºçŽæš©
|200,000
|-
| colspan="6" |ãX2.1 è¡äœ¿
|-
|(å)
|çŸéé é
|90,000
|(貞)
|æèŸŒè³æ¬
|150,000
|-
|
|æ°æ ªäºçŽæš©
|60,000
|
|
|
|-
|(å)
|æèŸŒè³æ¬
|150,000
|(貞)
|è³æ¬é
|75,000
|-
|
|
|
|
|è³æ¬æºåé
|75,000
|-
| colspan="6" |ãããžäŒèš
|-
| colspan="6" |ãX1.7 ãããžäŒèšã®çµäº
|-
|(å)
|ç¹°å»¶çšéè² åµ
|30,000
|(貞)
|ãããžææ®µ
|100,000
|-
|
|ç¹°å»¶ãããžæç
|70,000
|
|
|
|-
| colspan="6" |ãææ«æäŸ¡è©äŸ¡
|-
|(å)
|çºæ¿äºçŽ
|60,000
|(貞)
|ç¹°å»¶çšéè² åµ
|18,000
|-
|
|
|
|
|ç¹°å»¶ãããžæç
|42,000
|-
| colspan="6" |åœæçŽå©ç
|-
|(å)
|æç
|350,000
|(貞)
|ç¹°è¶å©çå°äœé
|350,000
|}
{| class="wikitable"
| rowspan="3" |
| colspan="10" |æ ªäž»è³æ¬
|-
| rowspan="2" |è³æ¬é
| colspan="3" |è³æ¬å°äœé
| colspan="4" |å©çå°äœé
| rowspan="2" |èªå·±æ ªåŒ
| rowspan="2" |æ ªäž»è³æ¬åèš
|-
|è³æ¬æºåé
|ãã®ä»è³æ¬å°äœé
|è³æ¬å°äœéåèš
|å©çæºåé
|å§çž®ç©ç«é
|ç¹°è¶å©çå°äœé
|å©çå°äœéåèš
|-
|åœæéŠæ®é«
|500,000
|150,000
|80,000
|230,000
|50,000
|70,000
|200,000
|320,000
|â³80,000
|970,000
|-
|åœæå€åé¡
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªã®çºè¡ïŒæ°æ ªäºçŽæš©ã®è¡äœ¿ïŒ
|â¡75,000
|75,000
|
|75,000
|
|
|
|
|
|150,000
|-
|ãæ°æ ªã®çºè¡ãšèªå·±æ ªåŒã®åŠåïŒåžåå䜵ã«ãããã®ïŒ
|410,000
|
|â£0
|0
|
|
|
|
|40,000
|450,000
|-
|ãå°äœéã®é
åœ
|
|
|
|
|â€3,000
|
|â³83,000
|â³80,000
|
|â³80,000
|-
|ãå§çž®ç©ç«éã®ç©ç«ãŠ
|
|
|
|
|
|20,000
|â³20,000
|0
|
|0
|-
|ãå§çž®ç©ç«éã®å厩ã
|
|
|
|
|
|â¥â³70,000
|70,000
|0
|
|0
|-
|ãåœæçŽå©ç
|
|
|
|
|
|
|350,000
|350,000
|
|350,000
|-
|ãèªå·±æ ªåŒã®ååŸ
|
|
|
|
|
|
|
|
|â³77,000
|â³77,000
|-
|ãèªå·±æ ªåŒã®åŠå
|
|
|4,500
|4,500
|
|
|
|
|19,500
|24,000
|-
|ããã®ä»æäŸ¡èšŒåžã®å£²åŽã«ãã墿ž
|
|
|
|
|
|
|
|
|
|
|-
|ãçŽè³ç£ã®éšã«èšäžããããã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡éã®å¢æž
|
|
|
|
|
|
|
|
|
|
|-
|ããããžäŒèšã®çµäºã«ãã墿ž
|
|
|
|
|
|
|
|
|
|
|-
|ãçŽè³ç£ã®éšã«èšäžãããç¹°è¶ãããžæçã®å¢æž
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªäºçŽæš©ã®çºè¡
|
|
|
|
|
|
|
|
|
|
|-
|ãæ°æ ªäºçŽæš©ã®å€±å¹
|
|
|
|
|
|
|
|
|
|
|-
|åœæå€åé¡åèš
|485,000
|â¢75,000
|4,500
|79,500
|3,000
|â³50,000
|317,000
|270,000
|â³17,500
|817,000
|-
|åœææ«æ®é«
|985,000
|225,000
|84,500
|309,500
|53,000
|20,000
|517,000
|590,000
|â³97,500
|1,787,000
|}
{| class="wikitable"
| rowspan="2" |
| colspan="3" |è©äŸ¡ã»æç®å·®é¡ç
| rowspan="2" |â æ°æ ªäºçŽæš©
| rowspan="2" |çŽè³ç£åèš
|-
|ãã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡é
|ç¹°å»¶ãããžæç
|è©äŸ¡ã»æç®å·®é¡çåèš
|-
|åœæéŠæ®é«
|140,000
|70,000
|210,000
|100,000
|1,280,000
|-
|åœæå€åé¡
|
|
|
|
|
|-
|ãæ°æ ªã®çºè¡ïŒæ°æ ªäºçŽæš©ã®è¡äœ¿ïŒ
|
|
|
|
|90,000
|-
|ãæ°æ ªã®çºè¡ãšèªå·±æ ªåŒã®åŠåïŒåžåå䜵ã«ãããã®ïŒ
|
|
|
|
|450,000
|-
|ãå°äœéã®é
åœ
|
|
|
|
|â³80,000
|-
|ãå§çž®ç©ç«éã®ç©ç«ãŠ
|
|
|
|
|0
|-
|ãå§çž®ç©ç«éã®å厩ã
|
|
|
|
|0
|-
|ãåœæçŽå©ç
|
|
|
|
|350,000
|-
|ãèªå·±æ ªåŒã®ååŸ
|
|
|
|
|â³77,000
|-
|ãèªå·±æ ªåŒã®åŠå
|
|
|
|
|24,000
|-
|ããã®ä»æäŸ¡èšŒåžã®å£²åŽã«ãã墿ž
|â³28,000
|
|â³28,000
|
|â³28,000
|-
|ãçŽè³ç£ã®éšã«èšäžããããã®ä»æäŸ¡èšŒåžè©äŸ¡å·®é¡éã®å¢æž
|âŠâ³7,000
|
|â³7,000
|
|â³7,000
|-
|ããããžäŒèšã®çµäºã«ãã墿ž
|
|â³70,000
|â³70,000
|
|â³70,000
|-
|ãçŽè³ç£ã®éšã«èšäžãããç¹°è¶ãããžæçã®å¢æž
|
|42,000
|42,000
|
|42,000
|-
|ãæ°æ ªäºçŽæš©ã®çºè¡
|
|
|
|200,000
|200,000
|-
|ãæ°æ ªäºçŽæš©ã®å€±å¹
|
|
|
|â³100,000
|â³100,000
|-
|åœæå€åé¡åèš
|â³35,000
|â³28,000
|â³63,000
|40,000
|794,000
|-
|åœææ«æ®é«
|105,000
|â§42,000
|147,000
|140,000
|âš2,074,000
|}
=== å2 ===
[https://www.asb.or.jp/jp/wp-content/uploads/kaikei_1.pdf#page=6 ãæ ªäž»è³æ¬çå€åèšç®æžã«é¢ããäŒèšåºæºã17é
]åç
§
[[ã«ããŽãª:äŒèšåŠ]] | null | 2022-11-28T05:02:22Z | []
| https://ja.wikibooks.org/wiki/%E5%85%AC%E8%AA%8D%E4%BC%9A%E8%A8%88%E5%A3%AB%E8%A9%A6%E9%A8%93/%E5%B9%B3%E6%88%9030%E5%B9%B4%E8%AB%96%E6%96%87%E5%BC%8F/%E4%BC%9A%E8%A8%88%E5%AD%A6%E5%8D%88%E5%BE%8C/%E7%AC%AC3%E5%95%8F%E5%95%8F%E9%A1%8C1 |
24,935 | ä¿éºæ³ç¬¬1æ¡ | æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬1æ¡
(è¶£æš) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬1æ¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(è¶£æš)",
"title": "æ¡æ"
}
]
| æ³åŠïŒæ°äºæ³ïŒåæ³ïŒã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³ïŒä¿éºæ³ç¬¬1æ¡ | [[æ³åŠ]]ïŒ[[æ°äºæ³]]ïŒ[[åæ³]]ïŒ[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³]]ïŒ[[ä¿éºæ³ç¬¬1æ¡]]
==æ¡æ==
ïŒè¶£æšïŒ
;第1æ¡
: [[w:ä¿éº|ä¿éº]]ã«ä¿ã[[w:å¥çŽ|å¥çŽ]]ã®æç«ãå¹åãå±¥è¡åã³çµäºã«ã€ããŠã¯ãä»ã®æ³ä»€ã«å®ãããã®ã®ã»ãããã®æ³åŸã®å®ãããšããã«ããã
==解説==
{{stub}}
{{ååŸ
|[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³|ä¿éºæ³]]
|第1ç« ç·å<br>
|
|[[ä¿éºæ³ç¬¬2æ¡]]<br>ïŒå®çŸ©ïŒ
}}
[[category:ä¿éºæ³|001]] | null | 2019-01-23T14:59:47Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:ååŸ"
]
| https://ja.wikibooks.org/wiki/%E4%BF%9D%E9%99%BA%E6%B3%95%E7%AC%AC1%E6%9D%A1 |
24,937 | ä¿éºæ³ç¬¬2æ¡ | æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬2æ¡
(å®çŸ©) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬2æ¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(å®çŸ©)",
"title": "æ¡æ"
}
]
| æ³åŠïŒæ°äºæ³ïŒåæ³ïŒã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³ïŒä¿éºæ³ç¬¬2æ¡ | [[æ³åŠ]]ïŒ[[æ°äºæ³]]ïŒ[[åæ³]]ïŒ[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³]]ïŒ[[ä¿éºæ³ç¬¬2æ¡]]
==æ¡æ==
ïŒ[[w:å®çŸ©|å®çŸ©]]ïŒ
;第2æ¡
# ä¿éºå¥çŽãä¿éºå¥çŽãå
±æžå¥çŽãã®ä»ãããªãåç§°ã§ããããåãããåœäºè
ã®äžæ¹ãäžå®ã®äºç±ãçããããšãæ¡ä»¶ãšããŠè²¡ç£äžã®çµŠä»ïŒçåœä¿éºå¥çŽåã³å·å®³çŸç
å®é¡ä¿éºå¥çŽã«ãã£ãŠã¯ãééã®æ¯æã«éãã以äžãä¿éºçµŠä»ããšãããïŒãè¡ãããšãçŽããçžææ¹ãããã«å¯ŸããŠåœè©²äžå®ã®äºç±ã®çºçã®å¯èœæ§ã«å¿ãããã®ãšããŠä¿éºæïŒå
±æžæéãå«ãã以äžåããïŒãæ¯æãããšãçŽããå¥çŽãããã
# ä¿éºè
ãä¿éºå¥çŽã®åœäºè
ã®ãã¡ãä¿éºçµŠä»ãè¡ã矩åãè² ãè
ãããã
# ä¿éºå¥çŽè
ãä¿éºå¥çŽã®åœäºè
ã®ãã¡ãä¿éºæãæ¯æã矩åãè² ãè
ãããã
# 被ä¿éºè
ãæ¬¡ã®ã€ããããŸã§ã«æ²ããä¿éºå¥çŽã®åºåã«å¿ããåœè©²ã€ããããŸã§ã«å®ããè
ãããã
#:ã€ã[[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ãæå®³ä¿éºå¥çŽã«ãããŠãè£ããããšãšãããæå®³ãåããè
#:ãã[[w:çåœä¿éºå¥çŽ|çåœä¿éºå¥çŽ]]ããã®è
ã®çååã¯æ»äº¡ã«é¢ãä¿éºè
ãä¿éºçµŠä»ãè¡ãããšãšãªãè
#:ãã[[w:å·å®³çŸç
å®é¡ä¿éºå¥çŽ|å·å®³çŸç
å®é¡ä¿éºå¥çŽ]]ããã®è
ã®å·å®³åã¯çŸç
ïŒä»¥äžãå·å®³çŸç
ããšãããïŒã«åºã¥ãä¿éºè
ãä¿éºçµŠä»ãè¡ãããšãšãªãè
# ä¿éºéåå人ãä¿éºçµŠä»ãåããè
ãšããŠçåœä¿éºå¥çŽåã¯å·å®³çŸç
å®é¡ä¿éºå¥çŽã§å®ãããã®ãããã
# [[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ãä¿éºå¥çŽã®ãã¡ãä¿éºè
ãäžå®ã®å¶ç¶ã®äºæ
ã«ãã£ãŠçããããšã®ããæå®³ããŠãè£ããããšãçŽãããã®ãããã
# [[w:å·å®³çŸç
æå®³ä¿éºå¥çŽ|å·å®³çŸç
æå®³ä¿éºå¥çŽ]]ãæå®³ä¿éºå¥çŽã®ãã¡ãä¿éºè
ã人ã®å·å®³çŸç
ã«ãã£ãŠçããããšã®ããæå®³ïŒåœè©²å·å®³çŸç
ãçããè
ãåãããã®ã«éããïŒããŠãè£ããããšãçŽãããã®ãããã
# [[w:çåœä¿éºå¥çŽ|çåœä¿éºå¥çŽ]]ãä¿éºå¥çŽã®ãã¡ãä¿éºè
ã人ã®çååã¯æ»äº¡ã«é¢ãäžå®ã®ä¿éºçµŠä»ãè¡ãããšãçŽãããã®ïŒå·å®³çŸç
å®é¡ä¿éºå¥çŽã«è©²åœãããã®ãé€ããïŒãããã
# [[w:å·å®³çŸç
å®é¡ä¿éºå¥çŽ|å·å®³çŸç
å®é¡ä¿éºå¥çŽ]]ãä¿éºå¥çŽã®ãã¡ãä¿éºè
ã人ã®å·å®³çŸç
ã«åºã¥ãäžå®ã®ä¿éºçµŠä»ãè¡ãããšãçŽãããã®ãããã
==解説==
{{stub}}
{{ååŸ
|[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³|ä¿éºæ³]]
|第1ç« ç·å<br>
|[[ä¿éºæ³ç¬¬1æ¡]]<br>ïŒè¶£æšïŒ
|[[ä¿éºæ³ç¬¬3æ¡]]<br>ïŒæå®³ä¿éºå¥çŽã®ç®çïŒ
}}
[[category:ä¿éºæ³|002]] | null | 2019-01-23T04:37:28Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:ååŸ"
]
| https://ja.wikibooks.org/wiki/%E4%BF%9D%E9%99%BA%E6%B3%95%E7%AC%AC2%E6%9D%A1 |
24,938 | ä¿éºæ³ç¬¬3æ¡ | æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬3æ¡
(æå®³ä¿éºå¥çŽã®ç®ç)
æå®³ä¿éºã®å¯Ÿè±¡ã«ã€ããŠã¯ãäžè¬çã«ééçã«è©äŸ¡ããªããã®ããã®å¯Ÿè±¡ãšããªããšãããæ°æ³ç¬¬399æ¡(嵿š©ã®ç®ç)ã®äŸå€èŠå®ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬3æ¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(æå®³ä¿éºå¥çŽã®ç®ç)",
"title": "æ¡æ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æå®³ä¿éºã®å¯Ÿè±¡ã«ã€ããŠã¯ãäžè¬çã«ééçã«è©äŸ¡ããªããã®ããã®å¯Ÿè±¡ãšããªããšãããæ°æ³ç¬¬399æ¡(嵿š©ã®ç®ç)ã®äŸå€èŠå®ã§ããã",
"title": "解説"
}
]
| æ³åŠïŒæ°äºæ³ïŒåæ³ïŒã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³ïŒä¿éºæ³ç¬¬3æ¡ | [[æ³åŠ]]ïŒ[[æ°äºæ³]]ïŒ[[åæ³]]ïŒ[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³]]ïŒ[[ä¿éºæ³ç¬¬3æ¡]]
==æ¡æ==
ïŒ[[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ã®ç®çïŒ
;第3æ¡
: [[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ã¯ãééã«èŠç©ããããšãã§ããå©çã«éãããã®ç®çãšããããšãã§ããã
==解説==
[[w:æå®³ä¿éº|æå®³ä¿éº]]ã®å¯Ÿè±¡ã«ã€ããŠã¯ãäžè¬çã«ééçã«è©äŸ¡ããªããã®ããã®å¯Ÿè±¡ãšããªããšããã[[æ°æ³ç¬¬399æ¡]]ïŒ[[w:嵿š©|嵿š©]]ã®ç®çïŒã®äŸå€èŠå®ã§ããã
==åç
§æ¡æ==
*[[æ°æ³ç¬¬399æ¡]]ïŒ[[w:嵿š©|嵿š©]]ã®ç®çïŒ
{{stub}}
{{ååŸ
|[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³|ä¿éºæ³]]
|第2ç« æå®³ä¿éº<br>第1ç¯ æç«
|[[ä¿éºæ³ç¬¬2æ¡]]<br>ïŒå®çŸ©ïŒ
|[[ä¿éºæ³ç¬¬4æ¡]]<br>ïŒåç¥çŸ©åïŒ
}}
[[category:ä¿éºæ³|003]] | null | 2019-01-23T15:02:17Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:ååŸ"
]
| https://ja.wikibooks.org/wiki/%E4%BF%9D%E9%99%BA%E6%B3%95%E7%AC%AC3%E6%9D%A1 |
24,940 | ä¿éºæ³ç¬¬4æ¡ | æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬4æ¡
(åç¥çŸ©å) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³åŠ>æ°äºæ³>åæ³>ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³>ä¿éºæ³ç¬¬4æ¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(åç¥çŸ©å)",
"title": "æ¡æ"
}
]
| æ³åŠïŒæ°äºæ³ïŒåæ³ïŒã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³ïŒä¿éºæ³ç¬¬4æ¡ | [[æ³åŠ]]ïŒ[[æ°äºæ³]]ïŒ[[åæ³]]ïŒ[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³]]ïŒ[[ä¿éºæ³ç¬¬4æ¡]]
==æ¡æ==
ïŒ[[w:æå®³ä¿éºå¥çŽ#åç¥çŸ©å|åç¥çŸ©å]]ïŒ
;第4æ¡
: ä¿éºå¥çŽè
åã¯è¢«ä¿éºè
ã«ãªãè
ã¯ã[[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ã®ç· çµã«éããæå®³ä¿éºå¥çŽã«ãããŠãè£ããããšãšãããæå®³ã®çºçã®å¯èœæ§ïŒä»¥äžãã®ç« ã«ãããŠãå±éºããšãããïŒã«é¢ããéèŠãªäºé
ã®ãã¡ä¿éºè
ã«ãªãè
ãåç¥ãæ±ãããã®ïŒ[[ä¿éºæ³ç¬¬28æ¡|第28æ¡]]第1é
åã³[[ä¿éºæ³ç¬¬29æ¡|第29æ¡]]第1é
ã«ãããŠãåç¥äºé
ããšãããïŒã«ã€ããŠãäºå®ã®åç¥ãããªããã°ãªããªãã
==解説==
==åç
§æ¡æ==
*[[ä¿éºæ³ç¬¬37æ¡]]ïŒåç¥çŸ©åïŒ - [[w:çåœä¿éºå¥çŽ|çåœä¿éºå¥çŽ]]ã®å Žåã
*[[ä¿éºæ³ç¬¬66æ¡]]ïŒåç¥çŸ©åïŒ - [[w:å·å®³çŸç
å®é¡ä¿éºå¥çŽ|å·å®³çŸç
å®é¡ä¿éºå¥çŽ]]ã®å Žåã
{{stub}}
{{ååŸ
|[[ã³ã³ã¡ã³ã¿ãŒã«ä¿éºæ³|ä¿éºæ³]]
|第2ç« æå®³ä¿éº<br>第1ç¯ æç«
|[[ä¿éºæ³ç¬¬3æ¡]]<br>ïŒ[[w:æå®³ä¿éºå¥çŽ|æå®³ä¿éºå¥çŽ]]ã®ç®çïŒ
|[[ä¿éºæ³ç¬¬5æ¡]]<br>ïŒé¡åä¿éºïŒ
}}
[[category:ä¿éºæ³|004]] | null | 2019-01-23T15:17:48Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:ååŸ"
]
| https://ja.wikibooks.org/wiki/%E4%BF%9D%E9%99%BA%E6%B3%95%E7%AC%AC4%E6%9D%A1 |
24,946 | äžçæè²åæã®æ°åŠ/代æ°ç·š/äžå·»/é åãšçµã¿åãã | å Žåã®æ°ã®èšç®æ¹æ³ã®å§ããšããŠãnåã®ç°ãªã£ããã®ãäžŠã¹æãã仿¹ã®æ°ãæ°ããã ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯
ãšãªãããšãåããã ããã§ã
ãå®çŸ©ãããšãã®ãšãã®å Žåã®æ°ã¯ãn!ã§ãããšèšãããšãåºæ¥ãã
n!ãnã®éä¹(ããããããfactorial)ãšåŒã¶ã
ãããããèšç®ããã
ãçšããŠèšç®ããã°ããã çãã¯ã
ãšãªãã
ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã ãã®ã«ãŒãã䞊ã¹ããããšãã (1)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (2)å¶æ°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ°ã (3)奿°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ° ãããããèšç®ããªããã
(1) ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯
ãšãªãã120ãšãªãã
(2) å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
ãšãªãã
(3) 奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
ãšãªããäžæ¹ã5æã®ã«ãŒãã䞊ã¹ãããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã® ã©ã¡ããã§ããã®ã§ã(1)ã®çµæãã(2)ã®çµæãåŒãããšã«ãã£ãŠã (III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš
ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã
ã0ã,ã1ã,ã2ã,ã3ã,ã5ããšæžããã5æã®ã«ãŒãããããããã䞊ã³ããããšãã
ã¯ããã€ã§ãããããããæ±ããªããã
(1) å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯
ãšãªãã
(2) æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§
éãã®çµã¿åãããããã
次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã
éãããã 2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãšãªãå Žåã®æ°ã§ãããçãã¯ã
ãšãªãã
(3) (1)ã®çµæãã(2)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã 確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã 5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§ ãã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã
ãšãªãããã5æ¡ã®å¥æ°ãšãªãå Žåã®æ°ã§ããã (2)ã®çµæãšè¶³ãåããããšç¢ºãã«(1)ã®çµæãšçãã96ãšãªãã
(4) 5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã
ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã
ã ãååšããã ãã£ãŠçãã¯
ãšãªãã
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã n P r {\displaystyle {}_{n}{}P_{r}} ãšæžãã ãŸãããã®ãããªèšç®ã®ä»æ¹ã é å(ãã
ããã€ãè±:permutation) ãšããã ãã®æ°ã¯ãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... æåŸã«ã¯(n-(r-1))åãšããããã«ãã ãã ããšããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšã
ãåŸãããã
(1)
(2)
(3)
(4)
(5)
(6)
ãããããèšç®ããªããã
ãããã
ãçšããŠèšç®ããã°ããã
çãã¯ã (1)
(2)
(3)
(4)
(5)
(6)
ãšãªãã
(5)ãš(6)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ
ãåŸãããããã®ãšã
ã¯å
ã
ã®é åã®å®çŸ©ãããããš"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãããã ããããŸãå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã n C r {\displaystyle {}_{n}{}C_{r}} ãšæžãããã®ãããªèšç®ã çµã¿åãã(ãã¿ããããè±:combination) ãšããã äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å n P r {\displaystyle {}_{n}{}P_{r}} ã«å¯Ÿå¿ããã
äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã n C r {\displaystyle {}_{n}{}C_{r}} ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã
n C r {\displaystyle {}_{n}{}C_{r}} ã¯ã n P r {\displaystyle {}_{n}{}P_{r}} éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã
ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯ r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã
ãåŸãããã
(1)
(2)
(3)
(4)
ãèšç®ããªããã
ããããã«ã€ããŠ
ãçšããŠèšç®ããã°ããã
(1)
(2)
(3)
(3)
ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ
ãå®çŸ©ããã
ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸããªããšæãããããèšç®ã®éœåäžã®ããå®çŸ©ãäžã®ããã«ããã ãŸããäžã®èšç®ã§ã¯
ã®åŒããã®ãŸãŸçšãããšã
ã€ãŸãã
ãšãªã£ãŠããã
å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯å€ã«æããã ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã ãã®å Žåã䟿å®äž
ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã
5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ããããåºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ãäœéããããèšç®ããªããã
ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã 5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã
ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã
6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã ãã®äžãã (1)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(2)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(3)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããªããã
(1) æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã
ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
ãšãªãã60éãã§ããããšãåããã
(2)
(1)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã åãã ãããšãããã®å Žåã®æ°ã¯
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã
ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
ãšãªãã90éãã§ããããšãåããã
(3) (2)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§ æ±ããå Žåã®æ°ã¯45éããšãªãã
n C r {\displaystyle {}_{n}{}C_{r}} ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã
å°åº
ãçšãããšã
ãåŸããã瀺ãããã
åæ§ã«
ãçšãããšã
ãšãªã瀺ãããã
2ã€ç®ã®åŒã¯ã"nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ãããæåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã®åã§ããã"ãšããããšã衚ããŠããã
ãçšã㊠(1)
(2)
(3)
(4)
ãããããèšç®ããªããã
äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥èšç®ããŠã çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã (1)
(2)
(3)
(4)
ãšãªãã
å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã
ãèšç®ããããã ãç¹Aã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®ç¢ç€ç®äžã®ã«ãŒãã« ãªã£ãŠããããšã«æ³šæããªããã
(1) å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã
ã§æžãããããã®éãèšç®ãããšã
ã§ããããšããããã
(2) ç¹ãééããŠé²ãã«ãŒãã®æ°ã¯ç¹Aã®å·Šã®ç¹ãŸã§ãã£ãŠããç¹Aãééããç¹Aã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã ããããã®ã«ãŒãã®æ°ã¯(1)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã
ãšãªãã36éãã§ããããšãåããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å Žåã®æ°ã®èšç®æ¹æ³ã®å§ããšããŠãnåã®ç°ãªã£ããã®ãäžŠã¹æãã仿¹ã®æ°ãæ°ããã ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯",
"title": "éä¹"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšãªãããšãåããã ããã§ã",
"title": "éä¹"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãå®çŸ©ãããšãã®ãšãã®å Žåã®æ°ã¯ãn!ã§ãããšèšãããšãåºæ¥ãã",
"title": "éä¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "n!ãnã®éä¹(ããããããfactorial)ãšåŒã¶ã",
"title": "éä¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãããããèšç®ããã",
"title": "éä¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã çãã¯ã",
"title": "éä¹"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": "éä¹"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã ãã®ã«ãŒãã䞊ã¹ããããšãã (1)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (2)å¶æ°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ°ã (3)奿°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ° ãããããèšç®ããªããã",
"title": "éä¹"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "(1) ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯",
"title": "éä¹"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªãã120ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "(2) å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã",
"title": "éä¹"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "(3) 奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã",
"title": "éä¹"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªããäžæ¹ã5æã®ã«ãŒãã䞊ã¹ãããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã® ã©ã¡ããã§ããã®ã§ã(1)ã®çµæãã(2)ã®çµæãåŒãããšã«ãã£ãŠã (III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš",
"title": "éä¹"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã",
"title": "éä¹"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã0ã,ã1ã,ã2ã,ã3ã,ã5ããšæžããã5æã®ã«ãŒãããããããã䞊ã³ããããšãã",
"title": "éä¹"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã¯ããã€ã§ãããããããæ±ããªããã",
"title": "éä¹"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "(1) å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯",
"title": "éä¹"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "(2) æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§",
"title": "éä¹"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "éãã®çµã¿åãããããã",
"title": "éä¹"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã",
"title": "éä¹"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "éãããã 2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãšãªãå Žåã®æ°ã§ãããçãã¯ã",
"title": "éä¹"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "(3) (1)ã®çµæãã(2)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã 確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã 5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§ ãã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã",
"title": "éä¹"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšãªãããã5æ¡ã®å¥æ°ãšãªãå Žåã®æ°ã§ããã (2)ã®çµæãšè¶³ãåããããšç¢ºãã«(1)ã®çµæãšçãã96ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "(4) 5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã",
"title": "éä¹"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã",
"title": "éä¹"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã ãååšããã ãã£ãŠçãã¯",
"title": "éä¹"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšãªãã",
"title": "éä¹"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã n P r {\\displaystyle {}_{n}{}P_{r}} ãšæžãã ãŸãããã®ãããªèšç®ã®ä»æ¹ã é å(ãã
ããã€ãè±:permutation) ãšããã ãã®æ°ã¯ãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... æåŸã«ã¯(n-(r-1))åãšããããã«ãã ãã ããšããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšã",
"title": "é å"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãåŸãããã",
"title": "é å"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "(1)",
"title": "é å"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "(2)",
"title": "é å"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "(3)",
"title": "é å"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "(4)",
"title": "é å"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "(5)",
"title": "é å"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "(6)",
"title": "é å"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãããããèšç®ããªããã",
"title": "é å"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãããã",
"title": "é å"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã",
"title": "é å"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "çãã¯ã (1)",
"title": "é å"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "(2)",
"title": "é å"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "(3)",
"title": "é å"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "(4)",
"title": "é å"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "(5)",
"title": "é å"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "(6)",
"title": "é å"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãšãªãã",
"title": "é å"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "(5)ãš(6)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ",
"title": "é å"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãåŸãããããã®ãšã",
"title": "é å"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã¯å
ã
ã®é åã®å®çŸ©ãããããš\"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°\"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãããã ããããŸãå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã",
"title": "é å"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã n C r {\\displaystyle {}_{n}{}C_{r}} ãšæžãããã®ãããªèšç®ã çµã¿åãã(ãã¿ããããè±:combination) ãšããã äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å n P r {\\displaystyle {}_{n}{}P_{r}} ã«å¯Ÿå¿ããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã n C r {\\displaystyle {}_{n}{}C_{r}} ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "n C r {\\displaystyle {}_{n}{}C_{r}} ã¯ã n P r {\\displaystyle {}_{n}{}P_{r}} éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯ r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãåŸãããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "",
"title": "çµã¿åãã"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "(1)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "(2)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "(3)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "(4)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãèšç®ããªããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ããããã«ã€ããŠ",
"title": "çµã¿åãã"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "(1)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "(2)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "(3)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "(3)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ",
"title": "çµã¿åãã"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãå®çŸ©ããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸããªããšæãããããèšç®ã®éœåäžã®ããå®çŸ©ãäžã®ããã«ããã ãŸããäžã®èšç®ã§ã¯",
"title": "çµã¿åãã"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ã®åŒããã®ãŸãŸçšãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ã€ãŸãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãšãªã£ãŠããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯å€ã«æããã ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã ãã®å Žåã䟿å®äž",
"title": "çµã¿åãã"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ããããåºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ãäœéããããèšç®ããªããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã 5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã ãã®äžãã (1)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(2)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(3)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããªããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "(1) æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯",
"title": "çµã¿åãã"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯",
"title": "çµã¿åãã"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ã ãã«ãªããå®éãã®å€ãèšç®ãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãšãªãã60éãã§ããããšãåããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "(2)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "(1)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã åãã ãããšãããã®å Žåã®æ°ã¯",
"title": "çµã¿åãã"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯",
"title": "çµã¿åãã"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ã ãã«ãªããå®éãã®å€ãèšç®ãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãšãªãã90éãã§ããããšãåããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "(3) (2)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§ æ±ããå Žåã®æ°ã¯45éããšãªãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "n C r {\\displaystyle {}_{n}{}C_{r}} ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "å°åº",
"title": "çµã¿åãã"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãçšãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãåŸããã瀺ãããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "åæ§ã«",
"title": "çµã¿åãã"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãçšãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšãªã瀺ãããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "2ã€ç®ã®åŒã¯ã\"nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ãããæåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã®åã§ããã\"ãšããããšã衚ããŠããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "",
"title": "çµã¿åãã"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãçšã㊠(1)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "(2)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "(3)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "(4)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãããããèšç®ããªããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥èšç®ããŠã çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã (1)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "(2)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "(3)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "(4)",
"title": "çµã¿åãã"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãšãªãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãèšç®ããããã ãç¹Aã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®ç¢ç€ç®äžã®ã«ãŒãã« ãªã£ãŠããããšã«æ³šæããªããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "",
"title": "çµã¿åãã"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "",
"title": "çµã¿åãã"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "(1) å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ã§æžãããããã®éãèšç®ãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ã§ããããšããããã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "(2) ç¹ãééããŠé²ãã«ãŒãã®æ°ã¯ç¹Aã®å·Šã®ç¹ãŸã§ãã£ãŠããç¹Aãééããç¹Aã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã ããããã®ã«ãŒãã®æ°ã¯(1)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ãšãªãã36éãã§ããããšãåããã",
"title": "çµã¿åãã"
}
]
| null | == éä¹ ==
å Žåã®æ°ã®èšç®æ¹æ³ã®å§ããšããŠãnåã®ç°ãªã£ããã®ãäžŠã¹æãã仿¹ã®æ°ãæ°ããã
ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯
:<math>
n (n-1) (n-2) \times 3 \times 2 \times 1
</math>
ãšãªãããšãåããã
ããã§ã
:<math>
n! \equiv n (n-1) (n-2) \times 3 \times 2 \times 1
</math>
ãå®çŸ©ãããšãã®ãšãã®å Žåã®æ°ã¯ãn!ã§ãããšèšãããšãåºæ¥ãã
n!ãnã®éä¹ïŒããããããfactorialïŒãšåŒã¶ã
=== åé¡äŸ ===
* åé¡
:<math>
3!,4!,5!,6!,\cdots 10!
</math>
ãããããèšç®ããã
* è§£ç
:<math>
n! = 1 \times 2 \times \times n
</math>
ãçšããŠèšç®ããã°ããã
çãã¯ã
:<math>3! = 6</math>
:<math>4! = 24</math>
:<math>5! = 120</math>
:<math>6! = 720</math>
:<math>7! = 5040</math>
:<math>8! = 40320</math>
:<math>9! = 362880</math>
:<math>10! = 3628800</math>
ãšãªãã
* åé¡
ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã
ãã®ã«ãŒãã䞊ã¹ããããšãã
(1)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (2)å¶æ°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ°ã (3)奿°ãšãªãã«ãŒãã®äžŠã¹æ¹ã®æ° ãããããèšç®ããªããã
* è§£ç
(1)
ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯
:<math>5!</math>
ãšãªãã120ãšãªãã
(2)
å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã
ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã
ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
:<math>2 \times 4! = 48</math>
ãšãªãã
(3)
奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã
ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã
ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
:<math>3 \times 4! = 72</math>
ãšãªããäžæ¹ã5æã®ã«ãŒãã䞊ã¹ãããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã®
ã©ã¡ããã§ããã®ã§ã(1)ã®çµæãã(2)ã®çµæãåŒãããšã«ãã£ãŠã
(III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš
:<math>120 - 48 = 72</math>
ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã
* åé¡
ã0ã,ã1ã,ã2ã,ã3ã,ã5ããšæžããã5æã®ã«ãŒãããããããã䞊ã³ããããšãã
:(1)5æ¡ã®æ°ã (2) 5æ¡ã®å¶æ°ã(3) 5æ¡ã®å¥æ°ã(4) 5æ¡ã®5ã®åæ°
ã¯ããã€ã§ãããããããæ±ããªããã
* è§£ç
(1)
å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯
:<math>4 \times 4! = 96</math>
ãšãªãã
(2)
æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§
:<math>4! = 24</math>
éãã®çµã¿åãããããã
次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã
:<math>3 \times 3! = 18</math>
éãããã
2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãšãªãå Žåã®æ°ã§ãããçãã¯ã
:<math>24 + 18 = 42</math>
ãšãªãã
(3)
(1)ã®çµæãã(2)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã
確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã
5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã
ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§
ãã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã
:<math>3 \times 3 \times 3! = 54</math>
ãšãªãããã5æ¡ã®å¥æ°ãšãªãå Žåã®æ°ã§ããã
(2)ã®çµæãšè¶³ãåããããšç¢ºãã«(1)ã®çµæãšçãã96ãšãªãã
(4)
5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã
ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã
:<math>4! = 24</math>
ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã
:<math>3 \times 3! = 18</math>
ã ãååšããã
ãã£ãŠçãã¯
:<math>24 + 18=42</math>
ãšãªãã
== é å ==
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã<math> {}_n{}P_r </math>ãšæžãã
ãŸãããã®ãããªèšç®ã®ä»æ¹ã é åïŒãã
ããã€ãè±ïŒpermutationïŒ ãšããã
ãã®æ°ã¯ãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... æåŸã«ã¯(n-(r-1))åãšããããã«ãã ãã ããšããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšã
:<math> {}_n{}P_r = n (n-1) (n-2) \times (n-r+1) = \frac{n!}{(n-r)!}</math>
ãåŸãããã
=== åé¡äŸ ===
* åé¡
(1)
:<math>{} _5 P _3</math>
(2)
:<math>{} _4 P _2</math>
(3)
:<math>{} _7 P _3</math>
(4)
:<math>{} _{10} P _5</math>
(5)
:<math>{} _{10} P _1</math>
(6)
:<math>{} _7 P _0</math>
ãããããèšç®ããªããã
* è§£ç
ãããã
:<math>{} _n{}P _r = n (n-1) (n-2) \times (n-r+1) = \frac{n!}{(n-r)!}</math>
ãçšããŠèšç®ããã°ããã
çãã¯ã
(1)
:<math>{} _5 P _3 = 5 \times 4 \times 3 = 60</math>
(2)
:<math>{} _4 P _2 = 4 \times 3 = 12</math>
(3)
:<math>{} _7 P _3 = 7\times 6\times 5 = 210</math>
(4)
:<math>{} _{10} P _5 = 10\times 9\times 8\times 7\times 6 = 30240</math>
(5)
:<math>{} _{10} P _1 = 10 </math>
(6)
:<math>{} _7 P _0 = \frac {7!}{7!} = 1</math>
ãšãªãã
(5)ãš(6)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ
:<math>{} _n P _1 = n</math>
:<math>{} _n P _0 = 1</math>
ãåŸãããããã®ãšã
:<math>{} _n P _0 = 1</math>
ã¯å
ã
ã®é åã®å®çŸ©ãããããš"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãããã ããããŸãå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã
== çµã¿åãã ==
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã<math> {}_n{}C_r </math>ãšæžãããã®ãããªèšç®ã çµã¿åããïŒãã¿ããããè±ïŒcombinationïŒ ãšããã
äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å<math>{} _n{}P _r</math>ã«å¯Ÿå¿ããã
äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã<math>{} _n{}C _r</math>ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã
<math>{} _n{}C _r</math>ã¯ã<math>{} _n{}P _r</math>éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã
ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯
r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã
:<math> {}_nC_r =\frac { {}_nP_r }{r!} = \frac{n!}{(n-r)!r!}</math>
ãåŸãããã
=== åé¡äŸ ===
*åé¡
(1)
:<math>{} _5C _2</math>
(2)
:<math>{} _7C _3</math>
(3)
:<math>{} _{10}C _1</math>
(4)
:<math>{} _8C _0</math>
ãèšç®ããªããã
*è§£ç
ããããã«ã€ããŠ
:<math>{}_nC _r =\frac { {}_nP _r }{r!} = \frac{n!}{(n-r)!r!}</math>
ãçšããŠèšç®ããã°ããã
(1)
:<math>{} _5C _2 = \frac {5\times 4}{2\times 1} = 10</math>
(2)
:<math>{} _7C _3 = \frac { 7\times 6\times 5} { 3\times 2\times 1} = 35</math>
(3)
:<math>{} _{10}C _1 = \frac {10} {1} = 10</math>
(3)
:<math>{} _8C _0 = 1 </math>
ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ
:<math>{} _nC _0 = 1</math>
ãå®çŸ©ããã
ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã
å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸããªããšæãããããèšç®ã®éœåäžã®ããå®çŸ©ãäžã®ããã«ããã
ãŸããäžã®èšç®ã§ã¯
:<math>{} _n{}C _r =\frac { {}_n{}P _r }{r!}</math>
ã®åŒããã®ãŸãŸçšãããšã
:<math>{} _nC _0 = \frac {{} _nP _0} {0!} = \frac 1 {0!} = 1</math>
ã€ãŸãã
:<math>0! = 1</math>
ãšãªã£ãŠããã
å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯å€ã«æããã
ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã
ãã®å Žåã{{ruby|䟿å®|ã¹ãã}}äž
:<math>0! = 1</math>
ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã
* åé¡
5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ããããåºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ãäœéããããèšç®ããªããã
* è§£ç
ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã
5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã
:<math>{} _5C _2 = \frac {5!}{2!3!} = \frac { 5 \cdot 4 \cdot 3 \cdot 2\cdot 1}{(3 \cdot 2 \cdot 1)( \cdot 2 \cdot 1)}</math>
:<math>= 10</math>
ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã
* åé¡
6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã
ãã®äžãã (1)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(2)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(3)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããªããã
* è§£ç
(1)
æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯
:<math>{} _6C _3</math>
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯
ãã®åãã ãæ¹ã¯ã
:<math>{} _3C _2</math>
ã ãããã
ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
:<math>{} _6C _3 \times {} _3C _2 </math>
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
:<math>{} _6C _3 \times {} _3C _2 = 20 \times 3 = 60</math>
ãšãªãã60éãã§ããããšãåããã
(2)
(1)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã
åãã ãããšãããã®å Žåã®æ°ã¯
:<math>{} _6C _2</math>
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯
ãã®åãã ãæ¹ã¯ã
:<math>{} _4C _2</math>
ã ãããã
ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
:<math>{} _6C _2 \times {} _4C _2 </math>
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
:<math>{} _6C _2 \times {} _4C _2 = 15 \times 6 = 90</math>
ãšãªãã90éãã§ããããšãåããã
(3)
(2)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã
äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã
ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§
æ±ããå Žåã®æ°ã¯45éããšãªãã
<math> {}_n{}C_r </math>ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã
:<math> {}_nC_r = _n C _{n-r}</math>,
:<math> {}_n C _r = _{n-1} C_r + _{n-1} C _{r-1}</math>
å°åº
:<math> {}_n{}C_r = \frac{n!}{(n-r)!r!}</math>
ãçšãããšã
:<math> {}_n{}C_{n-r} = \frac{n!}{(n-(n-r))!(n-r)!}</math>
:<math> = \frac{n!}{(r!(n-r)!}</math>
:<math> = {}_n{}C_r </math>
ãåŸããã瀺ãããã
åæ§ã«
:<math> {}_n{}C_r = \frac{n!}{(n-r)!r!}</math>
ãçšãããšã
:<math> {}_{n-1} C_r + _{n-1} C _{r-1}</math>
:<math>= \frac {(n-1)!}{(n-1-r)!r!} +\frac {(n-1)!}{(n-r)!(r-1)!} </math>
:<math>= \frac {(n-r)}n {}_n{}C_r +\frac r n {}_n{}C_r</math>
:<math>= {}_n{}C_r</math>
ãšãªã瀺ãããã
2ã€ç®ã®åŒã¯ã"nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ãããæåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã®åã§ããã"ãšããããšã衚ããŠããã
* åé¡äŸ
:<math>{} _nC _r = _n C _{n-r}</math>
ãçšããŠ
(1)
:<math>{} _5C _3</math>
(2)
:<math>{} _7C _4</math>
(3)
:<math>{} _{10}C _9</math>
(4)
:<math>{} _8C _5</math>
ãããããèšç®ããªããã
* è§£ç
äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥èšç®ããŠã
çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã
(1)
:<math>{} _5C _3 = {} _5C _{5-3} = {} _5C _2 = 10</math>
(2)
:<math>{} _7C _4= {} _7C _{7-4}={} _7C _3 = 35</math>
(3)
:<math>{} _{10}C _9= {} _{10}C _{10-9}= {} _{10}C _1 = 10</math>
(4)
:<math>{} _8C _5= {} _8C _{8-5}= {} _8C _3= 56</math>
ãšãªãã
* åé¡
å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã
ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã
:(1) å·Šäžããå³äžãŸã§é²ã仿¹ã®æ°
:(2) ç¹AãééããŠå³äžãŸã§é²ã仿¹ã®æ°
ãèšç®ããããã ãç¹Aã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã
ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®{{ruby|ç¢ç€ç®|ãã°ããã}}äžã®ã«ãŒãã«
ãªã£ãŠããããšã«æ³šæããªããã
___________
|_|_|_|_|_|
|_|_|*|_|_|
|_|_|_|_|_|
|_|_|_|_|_|
* è§£ç
(1)
å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã
éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã
:<math>{} _9C _4</math>
ã§æžãããããã®éãèšç®ãããšã
:<math>{} _9C _4 = 126</math>
ã§ããããšããããã
(2)
ç¹ãééããŠé²ãã«ãŒãã®æ°ã¯ç¹Aã®å·Šã®ç¹ãŸã§ãã£ãŠããç¹Aãééããç¹Aã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã
ããããã®ã«ãŒãã®æ°ã¯(1)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã
:<math>{} _4 C _2 \times {} _4 C _2 = 6 \times 6 = 36 </math>
ãšãªãã36éãã§ããããšãåããã
[[Category:äžåŠæ ¡æ°åŠ|ããããã€ãšãã¿ããã]]
[[Category:äžé«äžè²«æè² æ°åŠ|ããããã€ãšãã¿ããã]] | null | 2020-04-07T06:34:06Z | [
"ãã³ãã¬ãŒã:Ruby"
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E7%AD%89%E6%95%99%E8%82%B2%E5%89%8D%E6%9C%9F%E3%81%AE%E6%95%B0%E5%AD%A6/%E4%BB%A3%E6%95%B0%E7%B7%A8/%E4%B8%8B%E5%B7%BB/%E9%A0%86%E5%88%97%E3%81%A8%E7%B5%84%E3%81%BF%E5%90%88%E3%82%8F%E3%81%9B |
24,947 | ãŠããèª/é³é» | ãŠããèªã«ã¯3åã®æ¯é³é³çŽ ãš81åã®åé³é³çŽ (倿¥èªç±æ¥ãåãããã°84å)ããããŸãã
æ£æžæ³ãå®ããããåã«æ»æ»
ããŠããŸã£ãããçŸåšã§ãç¹ã«ãŠããèªã®è¡šè𿹿³ã«ã€ããŠã¯å®ããããŠããŸããã
ããã§ã¯åœéé³å£°èšå·ãçšããŸããåèæç®ãåç
§ããéã¯ä»¥äžã®è¡šèšæ³ã«åèã«å€æããŠãã ããã
æ¯é³ã¯3é³çŽ ã®ã¿ã§ãããå®éã¯ã¢ãããºèªã®ãããªç°é³åããŠããèªã§ãçºçããŸãã
åé³ã«ã€ããŠãã¢ãããºèªã®ãããªç°é³åãçºçããŸãã
åé³ã®æ°ãå€ãããã¢ãããºèªã®é ã«ãããããªå¯Ÿå¿è¡šã¯çç¥ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãŠããèªã«ã¯3åã®æ¯é³é³çŽ ãš81åã®åé³é³çŽ (倿¥èªç±æ¥ãåãããã°84å)ããããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ£æžæ³ãå®ããããåã«æ»æ»
ããŠããŸã£ãããçŸåšã§ãç¹ã«ãŠããèªã®è¡šè𿹿³ã«ã€ããŠã¯å®ããããŠããŸããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯åœéé³å£°èšå·ãçšããŸããåèæç®ãåç
§ããéã¯ä»¥äžã®è¡šèšæ³ã«åèã«å€æããŠãã ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ¯é³ã¯3é³çŽ ã®ã¿ã§ãããå®éã¯ã¢ãããºèªã®ãããªç°é³åããŠããèªã§ãçºçããŸãã",
"title": "æ¯é³ã«ã€ããŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": "æ¯é³ã«ã€ããŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åé³ã«ã€ããŠãã¢ãããºèªã®ãããªç°é³åãçºçããŸãã",
"title": "åé³ã«ã€ããŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "åé³ã®æ°ãå€ãããã¢ãããºèªã®é ã«ãããããªå¯Ÿå¿è¡šã¯çç¥ããŸãã",
"title": "åé³ã«ã€ããŠ"
}
]
| ãŠããèªã«ã¯3åã®æ¯é³é³çŽ ãš81åã®åé³é³çŽ (倿¥èªç±æ¥ãåãããã°84å)ããããŸãã æ£æžæ³ãå®ããããåã«æ»æ»
ããŠããŸã£ãããçŸåšã§ãç¹ã«ãŠããèªã®è¡šè𿹿³ã«ã€ããŠã¯å®ããããŠããŸããã ããã§ã¯åœéé³å£°èšå·ãçšããŸããåèæç®ãåç
§ããéã¯ä»¥äžã®è¡šèšæ³ã«åèã«å€æããŠãã ããã èµ€å - Georges Dumézil 1975 "Le verbe oubykh." ã§ã®è¡šèšã
éå - Hans Vogt 1963 "Dictionnaire de la langue Oubykh." ã§ã®è¡šèšã
æ©å - ãã«ã³èªãªã©ã®å€æ¥èªã§ã®ã¿åºçŸã | ãŠããèªã«ã¯3åã®æ¯é³é³çŽ ãš81åã®åé³é³çŽ (倿¥èªç±æ¥ãåãããã°84å)ããããŸãã
æ£æžæ³ãå®ããããåã«æ»æ»
ããŠããŸã£ãããçŸåšã§ãç¹ã«ãŠããèªã®è¡šè𿹿³ã«ã€ããŠã¯å®ããããŠããŸããã
ããã§ã¯[[w:åœéé³å£°èšå·|åœéé³å£°èšå·]]ãçšããŸããåèæç®ãåç
§ããéã¯ä»¥äžã®è¡šèšæ³ã«åèã«å€æããŠãã ããã
* <span style="color:red;">èµ€å</span> - Georges Dumézil 1975 "Le verbe oubykh." ã§ã®è¡šèšã
* <span style="color:blue;">éå</span> - Hans Vogt 1963 "Dictionnaire de la langue Oubykh." ã§ã®è¡šèšã
* <span style="color:orange;">æ©å</span> - ãã«ã³èªãªã©ã®å€æ¥èªã§ã®ã¿åºçŸã
{| class="wikitable IPA"
| style="width:5em; text-align:center; padding: 3px;" | a <br /><span style="color:red;">/É/</span> <span style="color:blue;">/a/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:red;">ạ</span> , <span style="color:blue;">aË </span> <br /><span style="color:red;">/É/</span> <span style="color:blue;">/aË /</span>
| style="width:5em; text-align:center; padding: 3px;" | b <br /> /b/
| style="width:5em; text-align:center; padding: 3px;" | ហ<br /> /bˀ/
| style="width:5em; text-align:center; padding: 3px;" | c <br /> /t͡s/
| style="width:5em; text-align:center; padding: 3px;" | câ <br /> /tÍ¡sÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | Ä <br /> /tÍ¡É/
| style="width:5em; text-align:center; padding: 3px;" | Äâ <br /> /tÍ¡ÉÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | c° <br /> /tÍ¡ÉÊ·/
| style="width:5em; text-align:center; padding: 3px;" | c°â <br /> /tÍ¡ÉÊ·ÊŒ/
|-
| style="width:5em; text-align:center; padding: 3px;" | Ä <br /> /ÊÍ¡Ê/
| style="width:5em; text-align:center; padding: 3px;" | Äâ <br /> /ÊÍ¡ÊÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | Äʹ <br /> /tÍ¡Ê/
| style="width:5em; text-align:center; padding: 3px;" | Äʹâ <br /> /tÍ¡ÊÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | d <br /> /d/
| style="width:5em; text-align:center; padding: 3px;" | d° <br /> /dʷ/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">e<br /> /e/</span>
| style="width:5em; text-align:center; padding: 3px;" | f <br /> /f/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">g<br /> /g/</span>
| style="width:5em; text-align:center; padding: 3px;" | gʹ <br /> /gʲ/
|-
| style="width:5em; text-align:center; padding: 3px;" | g° <br /> /gʷ/
| style="width:5em; text-align:center; padding: 3px;" | h <br /> /h/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">ı <br /> /ɯ/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">i <br /> /i/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">k <br /> /k/</span>
| style="width:5em; text-align:center; padding: 3px;" | kâ<br /> /kÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | kʹ <br /> /kʲ/
| style="width:5em; text-align:center; padding: 3px;" | kʹâ <br /> /kʲʌ/
| style="width:5em; text-align:center; padding: 3px;" | k° <br /> /kʷ/
| style="width:5em; text-align:center; padding: 3px;" | k°â <br /> /kÊ·ÊŒ/
|-
| style="width:5em; text-align:center; padding: 3px;" | l <br /> /l/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:red;">λ</span> , <span style="color:blue;">ɬ</span> <br /> /ɬ/
| style="width:5em; text-align:center; padding: 3px;" | λâ <br /> /ɬʌ/
| style="width:5em; text-align:center; padding: 3px;" | m <br /> /m/
| style="width:5em; text-align:center; padding: 3px;" | m̱ <br /> /mˀ/
| style="width:5em; text-align:center; padding: 3px;" | n <br /> /n/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">o <br /> /o/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">ö <br /> /Å/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:red;">aw</span> , <span style="color:blue;">oË</span> <br />/oË /
| style="width:5em; text-align:center; padding: 3px;" | p <br /> /p/
|-
| style="width:5em; text-align:center; padding: 3px;" | pâ <br /> /pÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | pÌ <br /> /pË€/
| style="width:5em; text-align:center; padding: 3px;" | pÌâ <br /> /pˀʌ/
| style="width:5em; text-align:center; padding: 3px;" | q <br /> /q/
| style="width:5em; text-align:center; padding: 3px;" | qâ <br /> /qÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | qʹ <br /> /qʲ/
| style="width:5em; text-align:center; padding: 3px;" | qʹâ <br /> /qʲʌ/
| style="width:5em; text-align:center; padding: 3px;" | q° <br /> /qʷ/
| style="width:5em; text-align:center; padding: 3px;" | q°â <br /> /qÊ·ÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | qÌ <br /> /qË€/
|-
| style="width:5em; text-align:center; padding: 3px;" | qÌâ <br /> /qˀʌ/
| style="width:5em; text-align:center; padding: 3px;" | q̰ <br /> /qʷˀ/
| style="width:5em; text-align:center; padding: 3px;" | q̰â <br /> /qʷˀʌ/
| style="width:5em; text-align:center; padding: 3px;" | r <br /> /r/
| style="width:5em; text-align:center; padding: 3px;" | s <br /> /s/
| style="width:5em; text-align:center; padding: 3px;" | ṡ <br /> /É/
| style="width:5em; text-align:center; padding: 3px;" | s° <br /> /ÉÊ·/
| style="width:5em; text-align:center; padding: 3px;" | š° <br /> /ÊÊ·/
| style="width:5em; text-align:center; padding: 3px;" | Å¡ <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | šʹ <br /> /Ê/
|-
| style="width:5em; text-align:center; padding: 3px;" | t <br /> /t/
| style="width:5em; text-align:center; padding: 3px;" | t° <br /> /tʷ/
| style="width:5em; text-align:center; padding: 3px;" | tâ <br /> /tÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | t°â <br /> /tÊ·ÊŒ/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">u <br /> /u/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">Ì <br /> /y/</span>
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:orange;">v <br /> /v/</span>
| style="width:5em; text-align:center; padding: 3px;" | v̱ <br /> /vˀ/
| style="width:5em; text-align:center; padding: 3px;" | w <br /> /w/
| style="width:5em; text-align:center; padding: 3px;" | w̱ <br /> /wˀ/
|-
| style="width:5em; text-align:center; padding: 3px;" | x <br /> /Ï/
| style="width:5em; text-align:center; padding: 3px;" | xʹ <br /> /Ïʲ/
| style="width:5em; text-align:center; padding: 3px;" | x° <br /> /ÏÊ·/
| style="width:5em; text-align:center; padding: 3px;" | xÌ <br /> /ÏË€/
| style="width:5em; text-align:center; padding: 3px;" | x̰ <br /> /Ïˀʷ/
| style="width:5em; text-align:center; padding: 3px;" | Ï <br /> /x/
| style="width:5em; text-align:center; padding: 3px;" | y <br /> /j/
| style="width:5em; text-align:center; padding: 3px;" | z <br /> /z/
| style="width:5em; text-align:center; padding: 3px;" | ÅŒ <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | z° <br /> /ÊÊ·/
|-
| style="width:5em; text-align:center; padding: 3px;" | ş° <br /> /ÊÊ·/
| style="width:5em; text-align:center; padding: 3px;" | ÅŸ <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | şʹ <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | γ <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | γʹ <br /> /Êʲ/
| style="width:5em; text-align:center; padding: 3px;" | γ° <br /> /ÊÊ·/
| style="width:5em; text-align:center; padding: 3px;" | Î³Ì <br /> /ÊË€/
| style="width:5em; text-align:center; padding: 3px;" | γ̰ <br /> /Êˀʷ/
| style="width:5em; text-align:center; padding: 3px;" | ǧ <br /> /ɣ/
| style="width:5em; text-align:center; padding: 3px;" | Ê <br /> /dÍ¡z/
|-
| style="width:5em; text-align:center; padding: 3px;" | ÊÌ <br /> /dÍ¡Ê/
| style="width:5em; text-align:center; padding: 3px;" | ʰ <br /> /dÍ¡ÊÊ·/
| style="width:5em; text-align:center; padding: 3px;" | ǯ <br /> /ÉÍ¡Ê/
| style="width:5em; text-align:center; padding: 3px;" | ǯʹ <br /> /dÍ¡Ê/
| style="width:5em; text-align:center; padding: 3px;" | <span style="color:red;">ʹ</span> , <span style="color:blue;">?</span> <br /> /Ê/
| style="width:5em; text-align:center; padding: 3px;" | É <br /><span style="color:red;">/Éš/</span> <span style="color:blue;">/É/</span>
|}
==æ¯é³ã«ã€ããŠ==
æ¯é³ã¯3é³çŽ ã®ã¿ã§ãããå®éã¯[[ã¢ãããºèª]]ã®ãããª[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]ããŠããèªã§ãçºçããŸã<ref name="charachidze">Charachidzé, G. 1991 Nouveaux récits Oubykhs.</ref>ã
* É+É â É
* É+É+j â Éj [Êi]
* Éš+É â É
* Éš+É+j â Éj [Êi]
* É+w â [ou]ïœ[oË]ãååã§çºé³ãããŸã
* É+wÉš â [Êu]
* É+wÉš+j âÉwÉšj [ÊoËiË]
==åé³ã«ã€ããŠ==
åé³ã«ã€ããŠãã¢ãããºèªã®ãããª[[ã¢ãããºèª/é³é»/ç°é³å|ç°é³å]]ãçºçããŸãã
* ç¹å®ã®åè©ããŒã«ãŒãéã¢ã¯ã»ã³ããã€çŽåŸãæå£°é³ã§ãããšããããŒã«ãŒãæå£°é³åãã
åé³ã®æ°ãå€ãããã¢ãããºèªã®é ã«ãããããªå¯Ÿå¿è¡šã¯çç¥ããŸãã
==åèæç®==
{{reflist}}
[[ã«ããŽãª:ãŠããèª|ãããã]] | null | 2023-01-20T13:41:03Z | [
"ãã³ãã¬ãŒã:Reflist"
]
| https://ja.wikibooks.org/wiki/%E3%82%A6%E3%83%93%E3%83%95%E8%AA%9E/%E9%9F%B3%E9%9F%BB |
24,948 | ãŠããèª | èªåŠ > ãŠããèª
ãŠããèªãt°axÉbza (IPA:twÉÏÉšbzÉ)ã¯ãã€ãŠãœãä»è¿ã«äœãã§ãããŠãã人ã«ãã£ãŠè©±ãããŠããèšèªã§ããã1992å¹Žã«æ»æ»
ããŸããã(ãŠãã人ãšããæ°æãæ»æ»
ããããã§ã¯ãããŸãã) ãã ããæåŸã®è©±è
ã ã£ãããŽãã£ã¯ã»ãšã»ã³ãæ°ã®å°œåã®çµæãããçšåºŠã®é³å£°è³æãšææ³è³æãæ®ããŸããã äŒè©±ãããäºã¯éçŸå®çã§ã¯ãããŸããã¢ãããºèªããã¯ææ³ãç¹ã«åè©ã®æŽ»çšãåçŽãªãããããã§ã¯ã¢ãããºèªã®ææ³æ§é ãçè§£ããããã®è£å©ææãšããŠèšèŒããŠãããŸãã æ¬WIKIã§çšããããŠããè¡šèšæ³ã«ã€ããŠã¯æåãšé³ãã芧ãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "èªåŠ > ãŠããèª",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãŠããèªãt°axÉbza (IPA:twÉÏÉšbzÉ)ã¯ãã€ãŠãœãä»è¿ã«äœãã§ãããŠãã人ã«ãã£ãŠè©±ãããŠããèšèªã§ããã1992å¹Žã«æ»æ»
ããŸããã(ãŠãã人ãšããæ°æãæ»æ»
ããããã§ã¯ãããŸãã) ãã ããæåŸã®è©±è
ã ã£ãããŽãã£ã¯ã»ãšã»ã³ãæ°ã®å°œåã®çµæãããçšåºŠã®é³å£°è³æãšææ³è³æãæ®ããŸããã äŒè©±ãããäºã¯éçŸå®çã§ã¯ãããŸããã¢ãããºèªããã¯ææ³ãç¹ã«åè©ã®æŽ»çšãåçŽãªãããããã§ã¯ã¢ãããºèªã®ææ³æ§é ãçè§£ããããã®è£å©ææãšããŠèšèŒããŠãããŸãã æ¬WIKIã§çšããããŠããè¡šèšæ³ã«ã€ããŠã¯æåãšé³ãã芧ãã ããã",
"title": "ãŠããèª â t°axÉbza"
}
]
| èªåŠ > ãŠããèª | __NOTOC__
<small>[[èªåŠ]] > ãŠããèª</small>
[[Image:Flag_of_Adygea.svg|400px|center|ã¢ãã£ã²æ]]
<h2 style="text-align:center; margin-bottom: 1em; font-weight: bold;">ãŠããèª â {{lang|uby|t°axÉbza}}</h2>
ãŠããèªãt°axÉbza (IPA:tÊ·ÉÏÉšbzÉ)ã¯ãã€ãŠ[[W:ãœã|ãœã]]ä»è¿ã«äœãã§ãããŠãã人ã«ãã£ãŠè©±ãããŠããèšèªã§ããã1992å¹Žã«æ»æ»
ããŸããã(ãŠãã人ãšããæ°æãæ»æ»
ããããã§ã¯ãããŸãã)<br>
ãã ããæåŸã®è©±è
ã ã£ãããŽãã£ã¯ã»ãšã»ã³ãæ°ã®å°œåã®çµæãããçšåºŠã®é³å£°è³æãšææ³è³æãæ®ããŸããã<br>
äŒè©±ãããäºã¯éçŸå®çã§ã¯ãããŸãã[[ã¢ãããºèª]]ããã¯ææ³ãç¹ã«åè©ã®æŽ»çšãåçŽãªãããããã§ã¯ã¢ãããºèªã®ææ³æ§é ãçè§£ããããã®è£å©ææãšããŠèšèŒããŠãããŸãã<br>
æ¬WIKIã§çšããããŠããè¡šèšæ³ã«ã€ããŠã¯[[/é³é»|æåãšé³]]ãã芧ãã ããã
==ç®æ¬¡==
{{Wikipedia}}
{{é²æç¶æ³}}
*[[/é³é»|æåãšé³]]
*[[/æ°|æ°]]
*[[/åè©|åè©]]
*[[/åè©|åè©]]
*[[/èªåœ|èªåœ]]
{{stub}}
[[Category:ãŠããèª|*]]
[[Category:èªåŠã®æžåº«|ãã²ãµã]] | 2019-01-28T14:52:41Z | 2023-09-25T04:56:45Z | [
"ãã³ãã¬ãŒã:Lang",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:Stub"
]
| https://ja.wikibooks.org/wiki/%E3%82%A6%E3%83%93%E3%83%95%E8%AA%9E |
24,949 | ãŠããèª/èªåœ | ãŠããèªã®æšæ¶ã¯æ®ã©èšé²ã«æ®ã£ãŠããŸããã ãšã»ã³ãæ°ã®æ®ããæšæ¶ãããã€ã玹ä»ããŸãã
ããã§ã¯æ¥èŸä»¥å€ã®åèªã®æå³ãæ²èŒããŠããŸãã
åºæ¬:Vogt, H. 1963 Dictionnaire de la langue oubykh | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãŠããèªã®æšæ¶ã¯æ®ã©èšé²ã«æ®ã£ãŠããŸããã ãšã»ã³ãæ°ã®æ®ããæšæ¶ãããã€ã玹ä»ããŸãã",
"title": "æšæ¶"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã§ã¯æ¥èŸä»¥å€ã®åèªã®æå³ãæ²èŒããŠããŸãã",
"title": "äŸæã§æ±ã£ãåèª"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "äŸæã§æ±ã£ãåèª"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åºæ¬:Vogt, H. 1963 Dictionnaire de la langue oubykh",
"title": "äŸæã§æ±ã£ãåèª"
}
]
| null |
==æšæ¶==
ãŠããèªã®æšæ¶ã¯æ®ã©èšé²ã«æ®ã£ãŠããŸãããããšã»ã³ãæ°ã®æ®ããæšæ¶ãããã€ã玹ä»ããŸãã
*wÉšmÉtÍ¡ÉÊ·ÊŒ ÊÍ¡ÊÊŒÉnÉš. ãã¯ãã
*wÉšmÉÊ·É ÊÍ¡ÊÊŒÉnÉš. ããã«ã¡ã¯
*ÊÍ¡ÊÊŒÉ wqÊŒÉgʲÉ. ãããã
*sÉwlÉtÊ·Éšy? ãæ©å«ãããïŒ
*wÉn wÉšÊÊ·ÉqʌɚÏ. ããããšã
*ÉÊ·ÉšÉÉšÉ ÊÍ¡ÊÊŒÉn ÊÉšÏ. ãããã¿ãªãã
*ÊÍ¡ÊÊŒÉÊÉwn ÉÊ·ÉšlÉxÉnÉw. ããããªã(ãã«ã³èª: hoÅça kalın; å»ãåŽãèšã)
*mÉšÊʲamÉšÉÊ·. ããããªã(ãã«ã³èª: gÃŒle gÃŒle; èŠéãåŽãèšã)
==äŸæã§æ±ã£ãåèª==
ããã§ã¯æ¥èŸä»¥å€ã®åèªã®æå³ãæ²èŒããŠããŸãã
===[[ãŠããèª/æ°]]===
*ÊÊ·É â
. 100(æ°) ã'''â
¡. 幎'''
*bÉšj çŸ
*wÉqʌɚ å±±çŸ
*mÉÊ·É æ¥
----åºæ¬:Vogt, H. 1963 Dictionnaire de la langue oubykh
[[ã«ããŽãª:ãŠããèª|ãã]] | null | 2023-01-20T14:06:40Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A6%E3%83%93%E3%83%95%E8%AA%9E/%E8%AA%9E%E5%BD%99 |
24,950 | èæžããã©ã€èªå
¥é/å眮è©(2)/æ§æèª¬æ | 11.3 æ§æèª¬æ
ããã§ã¯å
ã,åèª²ã®æ1ã«ã€ããŠè©Šã¿ãããã«ãæ¬åŒ§ãçšããŠåæã®æ§æãå³ç€ºããŠã¿ãã.
1. [(×Ö±×××ÖµÖ«× ×ÖŒ ××××)×Ö¶×ÖŸ]P [×¢Öµ×× ÖµÖ«×× ×ÖŒ]S
2. [×Ö°ÖŒ×××Öž× ×Ö¶Ö«×Ö¶×]S [(××Ö°ÖŒ×ֵך ×€ÖŽÖŒ) ×¢Ö·×]P
3. [(×Öž×Öž× ×Ö°ÖŒ×ַךְ×Öµ×) ×Ö°ÖŒ××֌ת]S [( ×Ö°ÖŒ××֌ת ×Ö·×֎֌סֵ֌×) ×¢Ö·×]P
4. [×Öµ×]P [×ַת֞֌×]S [(×¢×××Öž× ×¢Ö·×)×Ö° (×Öµ×¢×Ö¹×Öž×)]A
5. [×¢ÖŽ×Ö°ÖŒ×Öž]P [ ×××× ×Ö±×××Ö¶Ö«××Öž]S [(×ַךְ×֞֌ע֎×× ×©Öž×× Öž×)×Ö¶×]A
6. [(×Ö°ÖŒ× Öµ×ÖŸ×Ö·Ö«×ÖŽ×) (×Ö²×֎ש֎֌××× ×ÖŽ×ש×)]S [(×֎ת֎֌×) ×ֵש×]P
7. [תַ֌×ַת ×ַשֶ֌×Ö«×ֶש×]A [×ÖžÖŒ×ÖŸ×Öž×֞ש×]S [×Öµ××]P
8. [( ×Ö°×Öµ× ×©Öž××ÖŒ×) ×ÖŒ××]A [(×ÖµÖŒ×× ×֎שְ×ך֞×Öµ× ×ÖŒ×Öµ×× ×€Ö°ÖŒ×֎שְ×ת֎֌××) ×Ö·×ÖŽÖŒ×Ö°×Öž×Öž×]S [×Ö²×Öž×§Öž×]P
ãã®å³ã§åçš®é¡ã®æ¬åŒ§ã«ãããããŠãããã®ã¯äœããã®å¥âããã§ã¯åè©å¥ãŸãã¯å眮è©å¥âããªããæ¬åŒ§ã®å³ã®èšå·ã¯å¥ã®æ©èœã瀺ã(S:äž»éšãP:è¿°éšãA:å¯è©å¥)ãå¯è©å¥ã¯ãã¡ããè¿°éšã®äžã«ãµããŸããŠããã®ã§ããããããã§ã¯äŸ¿å®äžããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.3 æ§æèª¬æ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã§ã¯å
ã,åèª²ã®æ1ã«ã€ããŠè©Šã¿ãããã«ãæ¬åŒ§ãçšããŠåæã®æ§æãå³ç€ºããŠã¿ãã.",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "1. [(×Ö±×××ÖµÖ«× ×ÖŒ ××××)×Ö¶×ÖŸ]P [×¢Öµ×× ÖµÖ«×× ×ÖŒ]S",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "2. [×Ö°ÖŒ×××Öž× ×Ö¶Ö«×Ö¶×]S [(××Ö°ÖŒ×ֵך ×€ÖŽÖŒ) ×¢Ö·×]P",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "3. [(×Öž×Öž× ×Ö°ÖŒ×ַךְ×Öµ×) ×Ö°ÖŒ××֌ת]S [( ×Ö°ÖŒ××֌ת ×Ö·×֎֌סֵ֌×) ×¢Ö·×]P",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "4. [×Öµ×]P [×ַת֞֌×]S [(×¢×××Öž× ×¢Ö·×)×Ö° (×Öµ×¢×Ö¹×Öž×)]A",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "5. [×¢ÖŽ×Ö°ÖŒ×Öž]P [ ×××× ×Ö±×××Ö¶Ö«××Öž]S [(×ַךְ×֞֌ע֎×× ×©Öž×× Öž×)×Ö¶×]A",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "6. [(×Ö°ÖŒ× Öµ×ÖŸ×Ö·Ö«×ÖŽ×) (×Ö²×֎ש֎֌××× ×ÖŽ×ש×)]S [(×֎ת֎֌×) ×ֵש×]P",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "7. [תַ֌×ַת ×ַשֶ֌×Ö«×ֶש×]A [×ÖžÖŒ×ÖŸ×Öž×֞ש×]S [×Öµ××]P",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "8. [( ×Ö°×Öµ× ×©Öž××ÖŒ×) ×ÖŒ××]A [(×ÖµÖŒ×× ×֎שְ×ך֞×Öµ× ×ÖŒ×Öµ×× ×€Ö°ÖŒ×֎שְ×ת֎֌××) ×Ö·×ÖŽÖŒ×Ö°×Öž×Öž×]S [×Ö²×Öž×§Öž×]P",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®å³ã§åçš®é¡ã®æ¬åŒ§ã«ãããããŠãããã®ã¯äœããã®å¥âããã§ã¯åè©å¥ãŸãã¯å眮è©å¥âããªããæ¬åŒ§ã®å³ã®èšå·ã¯å¥ã®æ©èœã瀺ã(S:äž»éšãP:è¿°éšãA:å¯è©å¥)ãå¯è©å¥ã¯ãã¡ããè¿°éšã®äžã«ãµããŸããŠããã®ã§ããããããã§ã¯äŸ¿å®äžããããã",
"title": ""
}
]
| 11.3 æ§æèª¬æ ããã§ã¯å
ãïŒåèª²ã®æ1ã«ã€ããŠè©Šã¿ãããã«ãæ¬åŒ§ãçšããŠåæã®æ§æãå³ç€ºããŠã¿ããïŒ 1.
â[(â×Ö±×××ÖµÖ«× ×ÖŒâ â××××â)â×Ö¶×ÖŸâ]P [â×¢Öµ×× ÖµÖ«×× ×ÖŒâ]S 2.
â[â×Ö°ÖŒ×××Öž×â â×Ö¶Ö«×Ö¶×â]S [(â××Ö°ÖŒ×ֵךâ â×€ÖŽÖŒâ) â×¢Ö·×â]P 3.
â[(â×Öž×Öž×â â×Ö°ÖŒ×ַךְ×Öµ×â) â×Ö°ÖŒ××֌תâ]S [(â ×Ö°ÖŒ××֌ת ×Ö·×֎֌סֵ֌×â) â×¢Ö·×â]P 4.
â[â×Öµ×â]P [â×ַת֞֌×â]S [(â×¢×××Öž×â â×¢Ö·×â)â×Ö°â (â×Öµ×¢×Ö¹×Öž×â)]A 5.
â[â×¢ÖŽ×Ö°ÖŒ×Öžâ]P [â ×××× ×Ö±×××Ö¶Ö«××Öžâ]S [(â×ַךְ×֞֌ע֎×× ×©Öž×× Öž×â)â×Ö¶×â]A 6.
â[(â×Ö°ÖŒ× Öµ×ÖŸ×Ö·Ö«×ÖŽ×â)]S [(â×֎ת֎֌×â) â×ֵש×â]P 7.
â[âתַ֌×ַת ×ַשֶ֌×Ö«×ֶש×â]A [â×ÖžÖŒ×ÖŸ×Öž×֞ש×â]S [â×Öµ××â]P 8.
â[( â×Ö°×Öµ× ×©Öž××ÖŒ×â) â×ÖŒ××â]A [(â×ÖµÖŒ×× ×֎שְ×ך֞×Öµ× ×ÖŒ×Öµ×× ×€Ö°ÖŒ×֎שְ×ת֎֌××â) ×Ö·×ÖŽÖŒ×Ö°×Öž×Öž×â]S [â×Ö²×Öž×§Öž×â]P ãã®å³ã§åçš®é¡ã®æ¬åŒ§ã«ãããããŠãããã®ã¯äœããã®å¥âããã§ã¯åè©å¥ãŸãã¯å眮è©å¥âããªããæ¬åŒ§ã®å³ã®èšå·ã¯å¥ã®æ©èœã瀺ãïŒS:äž»éšãP:è¿°éšãA:å¯è©å¥ïŒãå¯è©å¥ã¯ãã¡ããè¿°éšã®äžã«ãµããŸããŠããã®ã§ããããããã§ã¯äŸ¿å®äžããããã | 11.3 æ§æèª¬æ
ããã§ã¯å
ãïŒ[[èæžããã©ã€èªå
¥é/å眮è©(1)/æ§æèª¬æ|åèª²ã®æ1]]ã«ã€ããŠè©Šã¿ãããã«ãæ¬åŒ§ãçšããŠåæã®æ§æãå³ç€ºããŠã¿ããïŒ
1.
‎[(‏×Ö±×××ÖµÖ«× ×ÖŒ‎ ‏××××‎)‏×Ö¶×ÖŸ‎]P [‏×¢Öµ×× ÖµÖ«×× ×ÖŒ‎]S
2.
‎[‏×Ö°ÖŒ×××Öž×‎ ‏×Ö¶Ö«×Ö¶×‎]S [(‏××Ö°ÖŒ×ֵך‎ ‏×€ÖŽÖŒ‎) ‏×¢Ö·×‎]P
3.
‎[(‏×Öž×Öž×‎ ‏×Ö°ÖŒ×ַךְ×Öµ×‎) ‏×Ö°ÖŒ××֌ת‎]S [(‎ ×Ö°ÖŒ××֌ת ×Ö·×֎֌סֵ֌×‎) ‏×¢Ö·×‎]P
4.
‎[‏×Öµ×‎]P [‏×ַת֞֌×‎]S [(‏×¢×××Öž×‎ ‏×¢Ö·×‎)‏×Ö°‎ (‏×Öµ×¢×Ö¹×Öž×‎)]A
5.
‎[‏×¢ÖŽ×Ö°ÖŒ×Öž‎]P [‏ ×××× ×Ö±×××Ö¶Ö«××Öž‎]S [(‏×ַךְ×֞֌ע֎×× ×©Öž×× Öž×‎)‏×Ö¶×‏]A
6.
‎[(‏×Ö°ÖŒ× Öµ×ÖŸ×Ö·Ö«×ÖŽ×‎) (‏×Ö²×֎ש֎֌××× ×ÖŽ×ש×‎)]S [(‏×֎ת֎֌×‎) ‏×ֵש×‎]P
7.
‎[‏תַ֌×ַת ×ַשֶ֌×Ö«×ֶש×‎]A [‏×ÖžÖŒ×ÖŸ×Öž×֞ש×‎]S [‏×Öµ××‎]P
8.
‎[( ‏×Ö°×Öµ× ×©Öž××ÖŒ×‎) ‏×ÖŒ××‎]A [(‏×ÖµÖŒ×× ×֎שְ×ך֞×Öµ× ×ÖŒ×Öµ×× ×€Ö°ÖŒ×֎שְ×ת֎֌××‎) ×Ö·×ÖŽÖŒ×Ö°×Öž×Öž×‎]S [‏×Ö²×Öž×§Öž×‎]P
ãã®å³ã§åçš®é¡ã®æ¬åŒ§ã«ãããããŠãããã®ã¯äœããã®å¥âããã§ã¯åè©å¥ãŸãã¯å眮è©å¥âããªããæ¬åŒ§ã®å³ã®èšå·ã¯å¥ã®æ©èœã瀺ãïŒS:äž»éšãP:è¿°éšãA:å¯è©å¥ïŒãå¯è©å¥ã¯ãã¡ããè¿°éšã®äžã«ãµããŸããŠããã®ã§ããããããã§ã¯äŸ¿å®äžããããã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:41Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E6%A7%8B%E6%96%87%E8%AA%AC%E6%98%8E |
24,951 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå | Heaviside ã®çæ³ã¯å€§å€åªãããã®ã§ãã, å€ãã®æ£ããçµæãå°ãã. ããããªããæ°åŠçã«éŠè¯ãããããšãããå€ã.
ãšã
ãšçœ®ãããšã«ã¯åé¡ã¯ãªã.ããã,
ãªã©ã¯ p {\displaystyle p} ãæ°ã§ãããªãã°å·®ãæ¯ããªãã,ããã§ãªãå Žåã¯æ¥µããŠåé¡ã§ãã. ãã®ãããªçåããã£ãŠ,圌ã®ä»äºã¯çåã¯å¿
ãããæ£ããè©äŸ¡ãããªãã£ããšãã. ããããã®ææã®è±ããã«ã¯ç®ãã¿ã¯ããã®ããã. ãã®ããšã,幟人ãã®æ°åŠè
ã®æ³šæãåŒãã1920 幎ååŸã«ã¯,T. Bromwitch,K. W. Wagner,J. R. Carson ãªã©ã«ãã,æ£åœåã詊ã¿ãã, å€ãã®å¿çšãçã¿,ãããã¯,G. Doetsch ã«ãã Laplace 倿ã«ããå倧ãªèäœ ãšããŠãŸãšããããŠãã.
ããŠãã®åçåã®æ¹æ³ã§ããã,
ããªãã¡,埮åããã° p {\displaystyle p} åãšãªã,ç©åããã° 1 p {\displaystyle {\frac {1}{p}}} ãšãªã颿°ã¯æè¿ãªãšããã«èŠåºããã.ããã¯ææ°é¢æ°
ã§ãã.ããã« p {\displaystyle p} ã¯å®æ°ãŸãã¯è€çŽ æ°ã§ãã.ãã®äºå®ã«çæã㊠x ( t ) {\displaystyle x(t)} ã«å¯Ÿãã埮åãç©åã e p t {\displaystyle e^{pt}} ã«è©ä»£ãããããããšã詊ã¿ãã. ããã¯éšåç©åãéããŠå¯èœãšãªã.ããªãã¡
ãšãããš,éšåç©åã¯
ã«å€ããææ³ã§ãããã,ãŸã
(a)
ãšãããš,
ãšãªã.ããã§,
ãšãªããªãã°,
ãšãªã.ããã§ä»,
ã®ãããªå¯Ÿå¿(ç©å倿)ãèãããš,åŒ (1.18) ã¯
ãšãªã.
(b)
次ã«,
ãšãããŠéšåç©åãèãããš,
ãšãªã.ããã§ã,
ãšãªããªãã°,
ãšãªã.å¯Ÿå¿ åŒ (1.19) ãèããã°,
ãåŸã. åŒ (1.20) ãš (1.21) ã¯æã
ãæ±ããŠããé¢ä¿ã§ãã. ã€ãŸã,å€æåŒ (1.19) ã«ãã£ãŠ t {\displaystyle t} ã®é¢æ°ã p {\displaystyle p} ã®é¢æ°ã«å€æããã°, t {\displaystyle t} ã®é åã§ã®åŸ®åãç©åã, p {\displaystyle p} ã®é åã§ã¯ p {\displaystyle p} ãä¹é€ããããšã«å¯Ÿå¿ããããšã蚌æãããã®ã§ãã. ããã§ã¯ p {\displaystyle p} ã¯æ°ã§ãããã, p {\displaystyle p} ã«é¢ããæŒç®ã«ä¿ãããã ããŸãã¯æ°·è§£ããã®ã§ãã. ãã®ããã«ããŠ,å°ãªããšã,1930 幎é ãŸã§ã«ã¯,
ãªãé¢ä¿åŒãèŠåºã ãã,æŒç®åæ³ã®åçåã宿ããã®ã§ãã.ãããçŸåšã§ã¯,
ãçšããããŠãã.ãã®æ¹ãéšååæ°åè§£ãªã©ãè¡ãéã®èšç®ã楜ã«ãªãã®ã§ãã. ãã®åŒã¯,ãããã以åã« Laplace (1749-1827) ã«ãã£ãŠçšããããŠããã®ã§, åŒ (1.22) ã Laplace 倿(Laplace ç©å), åŒ (1.23) ã Laplace ã®é倿(Bromwich ç©å, ãŸã㯠Laplace ç©åã®å転å
¬åŒ)ãšåŒãã§ãã. ãã®å¯Ÿå¿ã,
ãããã¯,
ãªã©ãšèšã.ãã®å¯Ÿå¿(倿)ã«ãã,埮åã»ç©åã, s {\displaystyle s} ã®ä¹ã»é€ãšããä»£æ°æŒç®ã«å€æãã,ããã«äŒŽãåŸ®åæ¹çšåŒãä»£æ°æ¹çšåŒãšãªã.ãããŠ, ãã®åçã«ãã£ãŠ,åŸ®åæ¹çšåŒãè§£ãããšãã§ããã®ã§ãã.ãã®ãããªæ¹æ³ã§,ããçš®ã®ç©åæ¹çšåŒã差忹çšåŒãè§£ãããšãã§ãã. ãã®ãããªèãæ¹ã¯,ç¹ã«æ°å¥ãªãã®ã§ã¯ãªã.ãããšé¡äŒŒã®æŒç®ææ³ã¯ãã§ã«çµéšæžã¿ã§ãã. 察æ°ããšãããšã«ãã£ãŠ,æãç®ãè¶³ãç®ã«å€ãããã®ææ³ãæãåºãã°ããã®ã§ãã.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "Heaviside ã®çæ³ã¯å€§å€åªãããã®ã§ãã, å€ãã®æ£ããçµæãå°ãã. ããããªããæ°åŠçã«éŠè¯ãããããšãããå€ã.",
"title": "§1"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšã",
"title": "§1"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšçœ®ãããšã«ã¯åé¡ã¯ãªã.ããã,",
"title": "§1"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãªã©ã¯ p {\\displaystyle p} ãæ°ã§ãããªãã°å·®ãæ¯ããªãã,ããã§ãªãå Žåã¯æ¥µããŠåé¡ã§ãã. ãã®ãããªçåããã£ãŠ,圌ã®ä»äºã¯çåã¯å¿
ãããæ£ããè©äŸ¡ãããªãã£ããšãã. ããããã®ææã®è±ããã«ã¯ç®ãã¿ã¯ããã®ããã. ãã®ããšã,幟人ãã®æ°åŠè
ã®æ³šæãåŒãã1920 幎ååŸã«ã¯,T. Bromwitch,K. W. Wagner,J. R. Carson ãªã©ã«ãã,æ£åœåã詊ã¿ãã, å€ãã®å¿çšãçã¿,ãããã¯,G. Doetsch ã«ãã Laplace 倿ã«ããå倧ãªèäœ ãšããŠãŸãšããããŠãã.",
"title": "§1"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããŠãã®åçåã®æ¹æ³ã§ããã,",
"title": "§2"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããªãã¡,埮åããã° p {\\displaystyle p} åãšãªã,ç©åããã° 1 p {\\displaystyle {\\frac {1}{p}}} ãšãªã颿°ã¯æè¿ãªãšããã«èŠåºããã.ããã¯ææ°é¢æ°",
"title": "§2"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã§ãã.ããã« p {\\displaystyle p} ã¯å®æ°ãŸãã¯è€çŽ æ°ã§ãã.ãã®äºå®ã«çæã㊠x ( t ) {\\displaystyle x(t)} ã«å¯Ÿãã埮åãç©åã e p t {\\displaystyle e^{pt}} ã«è©ä»£ãããããããšã詊ã¿ãã. ããã¯éšåç©åãéããŠå¯èœãšãªã.ããªãã¡",
"title": "§2"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšãããš,éšåç©åã¯",
"title": "§2"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã«å€ããææ³ã§ãããã,ãŸã",
"title": "§2"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "(a)",
"title": "§2"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšãããš,",
"title": "§2"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªã.ããã§,",
"title": "§2"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšãªããªãã°,",
"title": "§2"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªã.ããã§ä»,",
"title": "§2"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã®ãããªå¯Ÿå¿(ç©å倿)ãèãããš,åŒ (1.18) ã¯",
"title": "§2"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšãªã.",
"title": "§2"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "(b)",
"title": "§2"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "次ã«,",
"title": "§2"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãããŠéšåç©åãèãããš,",
"title": "§2"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšãªã.ããã§ã,",
"title": "§2"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªããªãã°,",
"title": "§2"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãšãªã.å¯Ÿå¿ åŒ (1.19) ãèããã°,",
"title": "§2"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãåŸã. åŒ (1.20) ãš (1.21) ã¯æã
ãæ±ããŠããé¢ä¿ã§ãã. ã€ãŸã,å€æåŒ (1.19) ã«ãã£ãŠ t {\\displaystyle t} ã®é¢æ°ã p {\\displaystyle p} ã®é¢æ°ã«å€æããã°, t {\\displaystyle t} ã®é åã§ã®åŸ®åãç©åã, p {\\displaystyle p} ã®é åã§ã¯ p {\\displaystyle p} ãä¹é€ããããšã«å¯Ÿå¿ããããšã蚌æãããã®ã§ãã. ããã§ã¯ p {\\displaystyle p} ã¯æ°ã§ãããã, p {\\displaystyle p} ã«é¢ããæŒç®ã«ä¿ãããã ããŸãã¯æ°·è§£ããã®ã§ãã. ãã®ããã«ããŠ,å°ãªããšã,1930 幎é ãŸã§ã«ã¯,",
"title": "§2"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãªãé¢ä¿åŒãèŠåºã ãã,æŒç®åæ³ã®åçåã宿ããã®ã§ãã.ãããçŸåšã§ã¯,",
"title": "§2"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãçšããããŠãã.ãã®æ¹ãéšååæ°åè§£ãªã©ãè¡ãéã®èšç®ã楜ã«ãªãã®ã§ãã. ãã®åŒã¯,ãããã以åã« Laplace (1749-1827) ã«ãã£ãŠçšããããŠããã®ã§, åŒ (1.22) ã Laplace 倿(Laplace ç©å), åŒ (1.23) ã Laplace ã®é倿(Bromwich ç©å, ãŸã㯠Laplace ç©åã®å転å
¬åŒ)ãšåŒãã§ãã. ãã®å¯Ÿå¿ã,",
"title": "§2"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãããã¯,",
"title": "§2"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãªã©ãšèšã.ãã®å¯Ÿå¿(倿)ã«ãã,埮åã»ç©åã, s {\\displaystyle s} ã®ä¹ã»é€ãšããä»£æ°æŒç®ã«å€æãã,ããã«äŒŽãåŸ®åæ¹çšåŒãä»£æ°æ¹çšåŒãšãªã.ãããŠ, ãã®åçã«ãã£ãŠ,åŸ®åæ¹çšåŒãè§£ãããšãã§ããã®ã§ãã.ãã®ãããªæ¹æ³ã§,ããçš®ã®ç©åæ¹çšåŒã差忹çšåŒãè§£ãããšãã§ãã. ãã®ãããªèãæ¹ã¯,ç¹ã«æ°å¥ãªãã®ã§ã¯ãªã.ãããšé¡äŒŒã®æŒç®ææ³ã¯ãã§ã«çµéšæžã¿ã§ãã. 察æ°ããšãããšã«ãã£ãŠ,æãç®ãè¶³ãç®ã«å€ãããã®ææ³ãæãåºãã°ããã®ã§ãã.",
"title": "§2"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "§2"
}
]
| null | ==§1==
[[w:%E3%82%AA%E3%83%AA%E3%83%B4%E3%82%A1%E3%83%BC%E3%83%BB%E3%83%98%E3%83%B4%E3%82%A3%E3%82%B5%E3%82%A4%E3%83%89|Heaviside]] ã®çæ³ã¯å€§å€åªãããã®ã§ããïŒ
å€ãã®æ£ããçµæãå°ããïŒ
ããããªããæ°åŠçã«éŠè¯ãããããšãããå€ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>p = \frac{d}{dt}</math>}}
ãšã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{p} = \int_0^t dt</math>}}
ãšçœ®ãããšã«ã¯åé¡ã¯ãªãïŒãããïŒ
:(1) <math>p</math> ã®é¢æ°ïŒäŸãã° <math>p + 1</math>)ã§å²ã
:(2) <math>p</math> ã <math>\frac{1}{p}</math> ã®ã¹ãã§å±éãã
:(3) éšååæ°ã«åè§£ãã
ãªã©ã¯ <math>p</math> ãæ°ã§ãããªãã°å·®ãæ¯ããªããïŒããã§ãªãå Žåã¯æ¥µããŠåé¡ã§ããïŒ
ãã®ãããªçåããã£ãŠïŒåœŒã®ä»äºã¯çåã¯å¿
ãããæ£ããè©äŸ¡ãããªãã£ããšããïŒ
ããããã®ææã®è±ããã«ã¯ç®ãã¿ã¯ããã®ãããïŒ
ãã®ããšãïŒå¹Ÿäººãã®æ°åŠè
ã®æ³šæãåŒãã1920 幎ååŸã«ã¯ïŒ[[w:en:Thomas_John_I%27Anson_Bromwich|T. Bromwitch]]ïŒ[[w:de:Karl_Willy_Wagner|K. W. Wagner]]ïŒ[[w:en:John_Renshaw_Carson|J. R. Carson]] ãªã©ã«ããïŒæ£åœåã詊ã¿ããïŒ
å€ãã®å¿çšãçã¿ïŒãããã¯ïŒ[[w:en:Gustav_Doetsch|G. Doetsch]] ã«ãã [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ã«ããå倧ãªèäœ<ref>
[https://link.springer.com/book/10.1007/978-3-0348-6984-3 Handbuch der Laplace-Transformation] 3å·» (1950, 1955, 1956, Springer)
</ref>
ãšããŠãŸãšããããŠããïŒ
==§2==
ããŠãã®åçåã®æ¹æ³ã§ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x' = px, \quad \int xdt = \frac{1}{p}x</math>}}
ããªãã¡ïŒåŸ®åããã° <math>p</math> åãšãªãïŒç©åããã° <math>\frac{1}{p}</math> ãšãªã颿°ã¯æè¿ãªãšããã«èŠåºãããïŒããã¯ææ°é¢æ°
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{pt}</math>}}
ã§ããïŒããã« <math>p</math> ã¯å®æ°ãŸãã¯è€çŽ æ°ã§ããïŒãã®äºå®ã«çæã㊠<math>x(t)</math> ã«å¯Ÿãã埮åãç©åã <math>e^{pt}</math> ã«è©ä»£ãããããããšã詊ã¿ããïŒ
ããã¯éšåç©å<ref>
éšåç©åã埩ç¿ããŠããïŒé¢æ° <math>f(x), g(x)</math> ã®ç© <math>f(x)g(x)</math> ã® <math>x</math> ã«ãã埮åã¯<br />
<math>\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x)</math><br />
ããã« <math>f(x)g'(x) = \{ f(x)g(x) \}' - f'(x)g(x)</math><br />
䞡蟺ã <math>x</math> ã§ç©åãããš <math>\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx</math>
</ref>ãéããŠå¯èœãšãªãïŒããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|颿°ïŒ<math>f(t), g(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|å°é¢æ°ïŒ<math>f'(t), g'(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|åå§é¢æ°ïŒ<math>F(t), G(t)</math>}}
ãšãããšïŒéšåç©åã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int f'(t)g(t)dt</math> ã <math>\int f(t)g'(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int F(t)g(t)dt</math> ã <math>\int f(t)G(t)</math>}}
ã«å€ããææ³ã§ããããïŒãŸã
<strong>(a)</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = x(t), g(t) = e^{-pt}</math>}}
ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T x'(t)e^{-pt}dt = x(T)e^{-pT} - x(0) - (-p) \int_0^T x(t)e^{-pt}dt</math><ref><math>x'(t)</math> ãç©åã<math>e^{-pt}</math> ã埮åããïŒ</ref>}}
ãšãªãïŒããã§ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(T)e^{-pT} \to 0 \quad (T \to \infty)</math>}}
ãšãªããªãã°<ref>
<math>|x(t)|<Me^{\alpha t} (\alpha</math> ã¯å®æ°) ãªãã°ïŒ<math>p > \alpha</math> ã®ãšãå¯èœïŒãã®ãã㪠<math>x(t)</math> ãææ°äœã®é¢æ°ãšããïŒ
</ref>ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^\infty x'(t)e^{-pt}dt = p \int_0^\infty x(t)e^{-pt}dt - x(0)</math>|tag=(1.18)|label=eq:1.18}}
ãšãªãïŒããã§ä»ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) \mapsto \tilde{X}(p) := p \int_0^\infty x(t)e^{-pt}dt</math>|tag=(1.19)|label=eq:1.19}}
ã®ãããªå¯Ÿå¿ïŒç©å倿ïŒãèãããšïŒåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.18|(1.18)]] ã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x'(t) \mapsto p \tilde{X}(p) - px(0)</math><ref>
ããã«ç²Ÿç·»ã«ã¿ãŠããïŒ<math>x(t) \mapsto \tilde{X}(p) = p \int_0^\infty x(t)e^{-pt}dt</math>ïŒãããã£ãŠ<br />
<math>x'(t) \mapsto p \int_0^\infty x'(t)e^{-pt}dt</math>ïŒ<br />
ããã§åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.18|(1.18)]] ãããã ã¡ã«<br />
<math>\int_0^\infty x'(t)e^{-pt}dt = p \int_0^\infty x(t)e^{-pt}dt - x(0)</math><br />
ããã« <math>x'(t) \mapsto p \left[ p \int_0^\infty x(t)e^{-pt}dt - x(0) \right]</math><br />
<math>p</math> ãåé
ã«åé
ã㊠<math>x'(t) \mapsto p \cdot p \int_0^\infty x(t)e^{-pt}dt - px(0)</math><br />
ããã§ <math>\tilde{X}(p) = p \ \int_0^\infty x(t)e^{-pt}dt</math> ã ãã<br />
<math>x'(t) \mapsto p \tilde{X}(x) - px(0)</math>ïŒ<br />
</ref><ref>
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.12|(1.12)]] ãšæ¯èŒããïŒ
</ref>|tag=(1.20)|label=eq:1.20}}
ãšãªãïŒ
<strong>(b)</strong>
次ã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(t)=\int_0^t x(\tau)d\tau, \quad g(t) = e^{-pt}</math>
<ref>éšåç©å <math>\int F(t)g(t)dt = F(t)G(t) - \int f(t)G(t)dt</math> ãé©çšããïŒ
</ref>}}
ãšãããŠéšåç©åãèãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T F(t)e^{-pt}dt = \left[ F(t)(-\frac{1}{p})e^{-pt} \right]^T_0 - \frac{(-1)}{p}\int_0^T x(t)e^{-pt}dt</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T F(t)e^{-pt}dt = -\frac{F(T)}{p}e^{-pT} + \frac{1}{p}\int_0^T x(t)e^{-pt}dt</math><ref>
<math>F(0)=\int_0^{t=0} x(\tau)d\tau = 0</math>
</ref>}}
ãšãªãïŒããã§ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(T)e^{-pT} \to 0 \quad (T \to \infty)</math>}}
ãšãªããªãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^\infty \left \{ \int_0^t x(\tau)d\tau \right \} e^{-pt}dt</math><math> = \frac{1}{p}\int_0^\infty x(t)e^{-pt}dt</math>}}
ãšãªãïŒå¯Ÿå¿ãåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.19|(1.19)]] ãèããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t x(\tau)d\tau \mapsto \frac{1}{p}\tilde{X}(p)</math>|tag=(1.21)|label=eq:1.21}}
ãåŸã<ref>
<math>x(t) \mapsto \tilde{X}(p) = p \int_0^\infty x(t)e^{-pt}dt</math>ïŒãããã£ãŠ<br />
<math>\int_0^t x(\tau)d\tau \mapsto p\int_0^\infty \left \{ \int_0^t x(\tau)d\tau \right \} e^{-pt}dt</math>ïŒ<br />
<math>\int_0^\infty \left \{ \int_0^t x(\tau)d\tau \right \} e^{-pt}dt = \frac{1}{p}\int_0^\infty x(t)e^{-pt}dt</math> ã§ããããïŒ<br />
<math>\int_0^t x(\tau)d\tau \mapsto p \cdot \frac{1}{p} \int_0^\infty x(t)e^{-pt}dt = \frac{1}{p} \cdot p \int_0^\infty x(t)e^{-pt}dt</math><br />
ããã§ <math>\tilde{X}(p) = p \ \int_0^\infty x(t)e^{-pt}dt</math> ã ãã<br />
<math>\int_0^t x(\tau)d\tau \mapsto \frac{1}{p} \tilde{X}(p)</math>ïŒ
</ref>ïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.20|(1.20)]] ãš [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.21|(1.21)]] ã¯æã
ãæ±ããŠããé¢ä¿ã§ãã<ref>
ããã« [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.13|åŒ(1.13)]] ã«ã€ããŠã¯ïŒ
<math>e^{at} \mapsto p \int_0^\infty e^{at}e^{-pt}dt = p\int_0^\infty e^{(a - p)t}dt = \frac{p}{a - p} \left[ e^{(a - p)t} \right]_0^\infty = \frac{p}{p - a}</math>ïŒïŒãã ã <math>p > a</math>ïŒ<br />
ãŸãåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.14a|(1.14a)]] ã«ã€ããŠã¯ïŒ
<math>p\int_0^{\infty} t^n e^{-pt}dt = \frac{n}{p}\cdot p\int_0^{\infty} t^{n - 1}e^{-pt}dt</math> ããã³ <math>p\int_0^{\infty} t^0 e^{-pt}dt = 1</math> ãã
<math>t^n \mapsto \frac{n!}{p^n}</math>ïŒ<br />
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.16|(1.16)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®å®æ#eq:1.17|(1.17)]]ã«ã€ããŠã¯ïŒ<br/>
<math>I_1 = p\int_0^{\infty}\sin\omega t\ e^{-pt}dt,\quad I_2 = p\int_0^{\infty}\cos\omega t\ e^{-pt}dt</math> ãšçœ®ããšãïŒ<br />
<math>I_1 = \omega\int_0^{\infty}\cos\omega t\ e^{-pt}dt</math>âŠâ ïŒ
<math>I_2 = 1 - \omega\int_0^{\infty}\sin\omega t\ e^{-pt}dt</math>âŠâ¡<br />
â â¡ãã <math>I_1 = \frac{\omega}{p}\left(1 - \frac{\omega}{p}I_1\right)</math>ïŒ<br />
ããªãã¡ <math>\sin\omega t \mapsto I_1 = \frac{\omega p}{p^2 + \omega^2}</math><br />
ãŸã <math>\cos\omega t \mapsto I_2 = 1 - \frac{\omega}{p}I_1 = \frac{p^2}{p^2 + \omega^2}</math><br />
</ref>ïŒ
ã€ãŸãïŒå€æåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.19|(1.19)]] ã«ãã£ãŠ <math>t</math> ã®é¢æ°ã <math>p</math> ã®é¢æ°ã«å€æããã°ïŒ
<math>t</math> ã®é åã§ã®åŸ®åãç©åãïŒ<math>p</math> ã®é åã§ã¯ <math>p</math> ãä¹é€ããããšã«å¯Ÿå¿ããããšã蚌æãããã®ã§ããïŒ
ããã§ã¯ <math>p</math> ã¯æ°ã§ããããïŒ<math>p</math> ã«é¢ããæŒç®ã«ä¿ãããã ããŸãã¯æ°·è§£ããã®ã§ããïŒ
ãã®ããã«ããŠïŒå°ãªããšãïŒ1930 幎é ãŸã§ã«ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\tilde{F}(p) = p\int_0^\infty f(t)e^{-pt}dt</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = \frac{1}{2\pi i}\int_{c - i\infty}^{c + i\infty}\frac{\tilde{F}(p)}{p}e^{pt}dp</math>}}
ãªãé¢ä¿åŒãèŠåºã ããïŒæŒç®åæ³ã®åçåã宿ããã®ã§ããïŒãããçŸåšã§ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(s) = \int_0^\infty f(t)e^{-st}dt</math>|tag=(1.22)|label=eq:1.22}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = \frac{1}{2\pi i}\int_{c - i\infty}^{c + i\infty}F(s)e^{st}ds</math>|tag=(1.23)|label=eq:1.23}}
ãçšããããŠããïŒãã®æ¹ãéšååæ°åè§£ãªã©ãè¡ãéã®èšç®ã楜ã«ãªãã®ã§ããïŒ
ãã®åŒã¯ïŒãããã以åã« [[w:%E3%83%94%E3%82%A8%E3%83%BC%E3%83%AB%EF%BC%9D%E3%82%B7%E3%83%A2%E3%83%B3%E3%83%BB%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9|Laplace (1749-1827)]] ã«ãã£ãŠçšããããŠããã®ã§ïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.22|(1.22)]] ã [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ïŒLaplace ç©åïŒïŒ
åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.23|(1.23)]] ã Laplace ã®é倿ïŒBromwich ç©å, ãŸã㯠Laplace ç©åã®å転å
¬åŒïŒãšåŒãã§ããïŒ
ãã®å¯Ÿå¿ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) \sqsupset F(s)</math>}}
ãããã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f(t)] = F(s)</math>}}
ãªã©ãšèšãïŒãã®å¯Ÿå¿ïŒå€æïŒã«ããïŒåŸ®åã»ç©åãïŒ<math>s</math> ã®ä¹ã»é€ãšããä»£æ°æŒç®ã«å€æããïŒããã«äŒŽãåŸ®åæ¹çšåŒãä»£æ°æ¹çšåŒãšãªãïŒãããŠïŒ
ãã®åçã«ãã£ãŠïŒåŸ®åæ¹çšåŒãè§£ãããšãã§ããã®ã§ããïŒãã®ãããªæ¹æ³ã§ïŒããçš®ã®ç©åæ¹çšåŒã差忹çšåŒãè§£ãããšãã§ããïŒ
ãã®ãããªèãæ¹ã¯ïŒç¹ã«æ°å¥ãªãã®ã§ã¯ãªãïŒãããšé¡äŒŒã®æŒç®ææ³ã¯ãã§ã«çµéšæžã¿ã§ããïŒ
察æ°ããšãããšã«ãã£ãŠïŒæãç®ãè¶³ãç®ã«å€ãããã®ææ³ãæãåºãã°ããã®ã§ããïŒ
<references /> | null | 2019-12-24T06:13:01Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95%E3%81%AE%E8%AA%95%E7%94%9F/%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95%E3%81%AE%E5%90%88%E7%90%86%E5%8C%96 |
24,955 | ã²ã¹ã¿ã»ããŒããŒããŒã«ã /å
å®¹çŽ¹ä» | ãã²ã¹ã¿ã»ããŒããŒããŒã«ã ããæ¥æ¬ã«ç޹ä»ããå§ããææ²»ã»å€§æ£æã«æ¬æžã«æ³šç®ããŠããæäººã«ã¯ è¥å·éŸä¹ä» (1892-1927)ããããåœŒã®æªå®ã®é·ç·šå°èª¬ ãè·¯äžã ã«ãããŠãæ¬æžã玹ä»ãããŠããã以äžã«è©²åœç®æãåŒçšãã(é空æåº«çãã)ã
ããã®éã®åã®å°èª¬ã¯ã倧ãžãé¢çœãæèŠããŸããããããã¯äœããææãåã£ããã§ãããã ãããã§ãããããã¯ã²ã¹ã¿ã»ãããã«ã ã§ããã ãã¯ããã²ã¹ã¿ã»ãããã«ã ã§ãããã æž
æ°Žã¯ããããªé¡ãããªããããã奜ãå æžãªè¿äºããããšããã£ãããéè±ã®ç
管ã§ããªèãå»ã¿ãå¹ãããŠãã倧äºããååã®äžãžé ¬æãã€ããŠã ãäœã ãããã®ã²ã¹ã¿ã»ãããã«ã ã£ãŠãã€ã¯?ããšãç¡é æ
®ãªåãæãã€ããã åäž ãäžäžã®äŒèª¬ãéããæ¬ã§ããŠããååäºäžçŽã®éã«åºæ¥ããã®ãªãã§ãããäœååæãã²ã©ãçŸ
çžãªãã§ââã ãåã«ãèªããªããããã ããŸããã©ãã«ãã§ãããåèã«ããé£èš³ããããããããŸãããã ââäœã§ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ããããããææãæ¡ã£ããã ããã§ããã§ãããã²ã¹ã¿ã»ãããã«ã ã ã£ãŠãäžã
è«è¿Šã«ã¯åºæ¥ãŸããããã ãããåã¯å°ããšãææã ãã¯ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ãšè©ã䞊ã¹ãŠãããšäºã次第ã ããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã²ã¹ã¿ã»ããŒããŒããŒã«ã ããæ¥æ¬ã«ç޹ä»ããå§ããææ²»ã»å€§æ£æã«æ¬æžã«æ³šç®ããŠããæäººã«ã¯ è¥å·éŸä¹ä» (1892-1927)ããããåœŒã®æªå®ã®é·ç·šå°èª¬ ãè·¯äžã ã«ãããŠãæ¬æžã玹ä»ãããŠããã以äžã«è©²åœç®æãåŒçšãã(é空æåº«çãã)ã",
"title": "è¥å·éŸä¹ä»ã«ãã玹ä»"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã®éã®åã®å°èª¬ã¯ã倧ãžãé¢çœãæèŠããŸããããããã¯äœããææãåã£ããã§ãããã ãããã§ãããããã¯ã²ã¹ã¿ã»ãããã«ã ã§ããã ãã¯ããã²ã¹ã¿ã»ãããã«ã ã§ãããã æž
æ°Žã¯ããããªé¡ãããªããããã奜ãå æžãªè¿äºããããšããã£ãããéè±ã®ç
管ã§ããªèãå»ã¿ãå¹ãããŠãã倧äºããååã®äžãžé ¬æãã€ããŠã ãäœã ãããã®ã²ã¹ã¿ã»ãããã«ã ã£ãŠãã€ã¯?ããšãç¡é æ
®ãªåãæãã€ããã åäž ãäžäžã®äŒèª¬ãéããæ¬ã§ããŠããååäºäžçŽã®éã«åºæ¥ããã®ãªãã§ãããäœååæãã²ã©ãçŸ
çžãªãã§ââã ãåã«ãèªããªããããã ããŸããã©ãã«ãã§ãããåèã«ããé£èš³ããããããããŸãããã ââäœã§ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ããããããææãæ¡ã£ããã ããã§ããã§ãããã²ã¹ã¿ã»ãããã«ã ã ã£ãŠãäžã
è«è¿Šã«ã¯åºæ¥ãŸããããã ãããåã¯å°ããšãææã ãã¯ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ãšè©ã䞊ã¹ãŠãããšäºã次第ã ããã",
"title": "è¥å·éŸä¹ä»ã«ãã玹ä»"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "è¥å·éŸä¹ä»ã«ãã玹ä»"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "è¥å·éŸä¹ä»ã«ãã玹ä»"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "è¥å·éŸä¹ä»ã«ãã玹ä»"
}
]
| null | <div style="font-family:Monotype Corsiva;font-style:italic;font-size:50pt;color:#990033;text-align:center;">ð²ðððð ðœðððððððð</div>
== ã¯ããã« ==
== è¥å·éŸä¹ä»ã«ããçŽ¹ä» ==
ãã²ã¹ã¿ã»ããŒããŒããŒã«ã ããæ¥æ¬ã«ç޹ä»ããå§ããææ²»ã»å€§æ£æã«æ¬æžã«æ³šç®ããŠããæäººã«ã¯ [[w:è¥å·éŸä¹ä»|è¥å·éŸä¹ä»]] ïŒ1892-1927ïŒããããåœŒã®æªå®ã®é·ç·šå°èª¬ ãè·¯äžã ã«ãããŠãæ¬æžã玹ä»ãããŠããã以äžã«è©²åœç®æãåŒçšããïŒ[https://www.aozora.gr.jp/cards/000879/files/132_15264.html é空æåº«ç]ããïŒã
<div style="background-color:#ffffbb;">
<br>ãããã®éã®åã®å°èª¬ã¯ã倧ãžãé¢çœãæèŠããŸããããããã¯äœããææãåã£ããã§ãããã<br>ããããã§ãããããã¯'''ã²ã¹ã¿ã»ãããã«ã '''ã§ããã<br>ããã¯ãã'''ã²ã¹ã¿ã»ãããã«ã '''ã§ãããã<br>ã
ãæž
æ°Žã¯ããããªé¡ãããªããããã奜ãå æžãªè¿äºããããšããã£ããã<ruby><rb>éè±</rb><rp>ïŒ</rp><rt>ãªããŸã</rt><rp>ïŒ</rp></ruby>ã®<ruby><rb>ç
管</rb><rp>ïŒ</rp><rt>ããã</rt><rp>ïŒ</rp></ruby>ã§ããª<ruby><rb>è</rb><rp>ïŒ</rp><rt>ãã</rt><rp>ïŒ</rp></ruby>ã<ruby><rb>å»</rb><rp>ïŒ</rp><rt>ãã</rt><rp>ïŒ</rp></ruby>ã¿ãå¹ãããŠãã倧äºãã<ruby><rb>åå</rb><rp>ïŒ</rp><rt>ããšãã«</rt><rp>ïŒ</rp></ruby>ã®äžãžé ¬æãã€ããŠã<br>ããäœã ãããã®'''ã²ã¹ã¿ã»ãããã«ã '''ã£ãŠãã€ã¯ïŒããšãç¡é æ
®ãªåã<ruby><rb>æ</rb><rp>ïŒ</rp><rt>ã»ã</rt><rp>ïŒ</rp></ruby>ãã€ããã<br><br>ããããããããåäž<br><br>ããäžäžã®äŒèª¬ãéããæ¬ã§ããŠããååäºäžçŽã®<ruby><rb>é</rb><rp>ïŒ</rp><rt>ããã </rt><rp>ïŒ</rp></ruby>ã«åºæ¥ããã®ãªãã§ããã<ruby><rb>äœå</rb><rp>ïŒ</rp><rt>ãªã«ã¶ã</rt><rp>ïŒ</rp></ruby><span style="color:#f00">åæãã²ã©ã<ruby><rb>çŸ
çž</rb><rp>ïŒ</rp><rt>ã©ãã³</rt><rp>ïŒ</rp></ruby></span>ãªãã§ââã<br>ããåã«ãèªããªããããã<br>ãããŸããã©ãã«ãã§ãããåèã«ãã<ruby><rb>é£èš³</rb><rp>ïŒ</rp><rt>ã»ããã</rt><rp>ïŒ</rp></ruby>ããããããããŸãããã<br>ãââäœã§ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ããããããææã<ruby><rb>æ¡</rb><rp>ïŒ</rp><rt>ãš</rt><rp>ïŒ</rp></ruby>ã£ããã ããã§ããã§ããã'''ã²ã¹ã¿ã»ãããã«ã '''ã ã£ãŠãäžã
<ruby><rb>è«è¿Š</rb><rp>ïŒ</rp><rt>ã°ã</rt><rp>ïŒ</rp></ruby>ã«ã¯åºæ¥ãŸããããã<br>ããããåã¯å°ããšãææã ãã¯ããã§ãªãµã¢ãã·ã§ã¯ã¹ãã€ã¢ãšè©ã䞊ã¹ãŠãããšäºã次第ã ããã<br>
</div>
<!--
<ruby><rb>âæŒ¢å</rb><rp>ïŒ</rp><rt>âããã</rt><rp>ïŒ</rp></ruby>
-->
== èæ³š ==
<references />
== åèæç® ==
[[Category:ã²ã¹ã¿ã»ããŒããŒããŒã«ã |**]] | null | 2019-01-30T12:59:08Z | []
| https://ja.wikibooks.org/wiki/%E3%82%B2%E3%82%B9%E3%82%BF%E3%83%BB%E3%83%AD%E3%83%BC%E3%83%9E%E3%83%BC%E3%83%8E%E3%83%BC%E3%83%AB%E3%83%A0/%E5%86%85%E5%AE%B9%E7%B4%B9%E4%BB%8B |
24,960 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/MikusiÅski ã®æŒç®åæ³ | Heaviside ã®æŒç®åæ³ã¯ Laplace 倿ã«ãã£ãŠæ£åœåãããã,ãã®åé¢å€±ããããã®ãå°ãªããªã. æŒç®åæ³ã®çåœãšãããã¹ã簡䟿ããæãªãããã®ã§ãã.äŸãã°,
ã®äž¡è
ãæ¯ã¹ãŠã¿ãã°ãã.äžåŒãçå·ã§æç«ããŠããã®ã«,äžåŒã¯ç©å倿åŒ(1.19)ã§ãã. ãã®äž Laplace 倿ãå³å¯ã«åãæ±ãããšãããš,è€çŽ é¢æ°è«ã®ç¥èãå¿
èŠãšãªã,ãããããããå¢å ãã.
ãã®æ¬ é¥ãå
æãããã,1951 幎ããŒã©ã³ãã® MikusiÅski ã¯æ°ããæŒç®åæ³ãåµãäžãã. ããã¯åæç©
ãåºç€ã«ãããã®ã§ãã.ãã®åŒã«ãã㊠f ( t ) = 1 {\displaystyle f(t)=1} ãšããã°
ãšãªã.ã€ãŸã,åæç©ã®æå³ã§ 1 {\displaystyle 1} ãæãããšããããšã¯,ç©åãæå³ãã. ãã®éããªãã¡, 1 {\displaystyle 1} ã§å²ã(åæç©ã®æå³ã§)ããšã埮åãæå³ããã§ããã. ããã§,
ãªã 2 çš®ã®æŒç®ãå«ã代æ°ç³»ãèãã.ãããšããã¯æŽæ°ãšåæ§ã«å æžä¹ã® 3 æŒç®ãèªç±ã«ã§ããããšãåãã. ããã§,ãã®ä»£æ°ç³»ã®äžã§å²ãç®ãèªç±ã«ã§ããããã«,åæ°ãå°å
¥ãã.ãããæŒç®åãšèããã®ã§ãã.ããªãã¡
ãšããã° Heaviside ã®ç²Ÿç¥ãã»ãŒå®å
šã«ãããããããšã«ãªãã®ã§ãã. MikusiÅski ã®æŒç®åæ³ã¯ããã§ã¯ãã以äžã¯è¿œæ±ããããããã«æ¬¡ç« 以é,Laplace 倿ãšç·åœ¢åŸ®åæ¹çšåŒã MikusiÅski ã®ç²Ÿç¥ã§ç޹ä»ãã.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "Heaviside ã®æŒç®åæ³ã¯ Laplace 倿ã«ãã£ãŠæ£åœåãããã,ãã®åé¢å€±ããããã®ãå°ãªããªã. æŒç®åæ³ã®çåœãšãããã¹ã簡䟿ããæãªãããã®ã§ãã.äŸãã°,",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã®äž¡è
ãæ¯ã¹ãŠã¿ãã°ãã.äžåŒãçå·ã§æç«ããŠããã®ã«,äžåŒã¯ç©å倿åŒ(1.19)ã§ãã. ãã®äž Laplace 倿ãå³å¯ã«åãæ±ãããšãããš,è€çŽ é¢æ°è«ã®ç¥èãå¿
èŠãšãªã,ãããããããå¢å ãã.",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®æ¬ é¥ãå
æãããã,1951 幎ããŒã©ã³ãã® MikusiÅski ã¯æ°ããæŒç®åæ³ãåµãäžãã. ããã¯åæç©",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãåºç€ã«ãããã®ã§ãã.ãã®åŒã«ãã㊠f ( t ) = 1 {\\displaystyle f(t)=1} ãšããã°",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãªã.ã€ãŸã,åæç©ã®æå³ã§ 1 {\\displaystyle 1} ãæãããšããããšã¯,ç©åãæå³ãã. ãã®éããªãã¡, 1 {\\displaystyle 1} ã§å²ã(åæç©ã®æå³ã§)ããšã埮åãæå³ããã§ããã. ããã§,",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªã 2 çš®ã®æŒç®ãå«ã代æ°ç³»ãèãã.ãããšããã¯æŽæ°ãšåæ§ã«å æžä¹ã® 3 æŒç®ãèªç±ã«ã§ããããšãåãã. ããã§,ãã®ä»£æ°ç³»ã®äžã§å²ãç®ãèªç±ã«ã§ããããã«,åæ°ãå°å
¥ãã.ãããæŒç®åãšèããã®ã§ãã.ããªãã¡",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšããã° Heaviside ã®ç²Ÿç¥ãã»ãŒå®å
šã«ãããããããšã«ãªãã®ã§ãã. MikusiÅski ã®æŒç®åæ³ã¯ããã§ã¯ãã以äžã¯è¿œæ±ããããããã«æ¬¡ç« 以é,Laplace 倿ãšç·åœ¢åŸ®åæ¹çšåŒã MikusiÅski ã®ç²Ÿç¥ã§ç޹ä»ãã.",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": ""
}
]
| Heaviside ã®æŒç®åæ³ã¯
Laplace 倿ã«ãã£ãŠæ£åœåããããïŒãã®åé¢å€±ããããã®ãå°ãªããªãïŒ
æŒç®åæ³ã®çåœãšãããã¹ã簡䟿ããæãªãããã®ã§ããïŒäŸãã°ïŒ ã®äž¡è
ãæ¯ã¹ãŠã¿ãã°ããïŒäžåŒãçå·ã§æç«ããŠããã®ã«ïŒäžåŒã¯ç©å倿åŒïŒ1.19ïŒã§ããïŒ
ãã®äž Laplace 倿ãå³å¯ã«åãæ±ãããšãããšïŒè€çŽ é¢æ°è«ã®ç¥èãå¿
èŠãšãªãïŒãããããããå¢å ããïŒ ãã®æ¬ é¥ãå
æããããïŒ1951 幎ããŒã©ã³ãã® MikusiÅski ã¯æ°ããæŒç®åæ³ãåµãäžããïŒ
ããã¯åæç© ãåºç€ã«ãããã®ã§ããïŒãã®åŒã«ãã㊠f = 1 ãšããã° ãšãªãïŒã€ãŸãïŒåæç©ã®æå³ã§ 1 ãæãããšããããšã¯ïŒç©åãæå³ããïŒ
ãã®éããªãã¡ïŒ 1 ã§å²ãïŒåæç©ã®æå³ã§ïŒããšã埮åãæå³ããã§ãããïŒ
ããã§ïŒ ãªã 2 çš®ã®æŒç®ãå«ã代æ°ç³»ãèããïŒãããšããã¯æŽæ°ãšåæ§ã«å æžä¹ã® 3 æŒç®ãèªç±ã«ã§ããããšãåããïŒ
ããã§ïŒãã®ä»£æ°ç³»ã®äžã§å²ãç®ãèªç±ã«ã§ããããã«ïŒåæ°ãå°å
¥ããïŒãããæŒç®åãšèããã®ã§ããïŒããªãã¡ ãšããã° Heaviside ã®ç²Ÿç¥ãã»ãŒå®å
šã«ãããããããšã«ãªãã®ã§ããïŒ
MikusiÅski ã®æŒç®åæ³ã¯ããã§ã¯ãã以äžã¯è¿œæ±ããããããã«æ¬¡ç« 以éïŒLaplace 倿ãšç·åœ¢åŸ®åæ¹çšåŒã MikusiÅski ã®ç²Ÿç¥ã§ç޹ä»ããïŒ â â | [[w:%E3%82%AA%E3%83%AA%E3%83%B4%E3%82%A1%E3%83%BC%E3%83%BB%E3%83%98%E3%83%B4%E3%82%A3%E3%82%B5%E3%82%A4%E3%83%89|Heaviside]] ã®[[w:%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95|æŒç®åæ³]]ã¯
[[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ã«ãã£ãŠæ£åœåããããïŒãã®åé¢å€±ããããã®ãå°ãªããªãïŒ
æŒç®åæ³ã®çåœãšãããã¹ã簡䟿ããæãªãããã®ã§ããïŒäŸãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{at} = \frac{p}{p - a}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{at} \mapsto \frac{p}{p - a}</math>}}
ã®äž¡è
ãæ¯ã¹ãŠã¿ãã°ããïŒäžåŒãçå·ã§æç«ããŠããã®ã«ïŒäžåŒã¯ç©å倿åŒïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.19|1.19]]ïŒã§ããïŒ
ãã®äž Laplace 倿ãå³å¯ã«åãæ±ãããšãããšïŒè€çŽ é¢æ°è«ã®ç¥èãå¿
èŠãšãªã<ref>Bromwich ã®ç©ååŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/æŒç®åæ³ã®èªç/æŒç®åæ³ã®åçå#eq:1.23|(1.23)]] ãèŠãã°æ³åã§ããïŒ</ref>ïŒãããããããå¢å ããïŒ
ãã®æ¬ é¥ãå
æããããïŒ1951 幎ããŒã©ã³ãã® [[w:%E3%83%A4%E3%83%B3%E3%83%BB%E3%83%9F%E3%82%AF%E3%82%B7%E3%83%B3%E3%82%B9%E3%82%AD%E3%83%BC|MikusiÅski]] ã¯æ°ããæŒç®åæ³ãåµãäžããïŒ
ããã¯[[w:%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF|åæç©]]
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f * g := \int_0^t f(t-\tau)g(\tau)d\tau</math>}}
ãåºç€ã«ãããã®ã§ããïŒãã®åŒã«ãã㊠<math>f(t) = 1</math> ãšããã°
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>1 * g = \int_0^t g(\tau)d\tau</math>}}
ãšãªãïŒã€ãŸãïŒåæç©ã®æå³ã§ <math>1</math> ãæãããšããããšã¯ïŒç©åãæå³ããïŒ
ãã®éããªãã¡ïŒ<math>1</math> ã§å²ãïŒåæç©ã®æå³ã§ïŒããšã埮åãæå³ããã§ãããïŒ
ããã§ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f + g := f(t) + g(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f * g := \int_0^t f(t-\tau)g(\tau)d\tau</math>}}
ãªã 2 çš®ã®æŒç®ãå«ã代æ°ç³»ãèããïŒãããšããã¯æŽæ°ãšåæ§ã«å æžä¹ã® 3 æŒç®ãèªç±ã«ã§ããããšãåããïŒ
ããã§ïŒãã®ä»£æ°ç³»ã®äžã§å²ãç®ãèªç±ã«ã§ããããã«ïŒåæ°ãå°å
¥ããïŒãããæŒç®åãšèããã®ã§ããïŒããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>1 * g = \frac{1}{p}g(t)</math> ããã㯠<math>\frac{1}{s}g(t)</math>}}
ãšããã° Heaviside ã®ç²Ÿç¥ãã»ãŒå®å
šã«ããããã<ref>[https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1044-8.htm ãã¯ã·ã³ã¹ããŒïŒæŒç®åæ³ïŒäžã»äžïŒæŸæè±ä¹ã»æŸæµŠéæŠèš³ïŒè£³è¯æ¿ïŒ1985幎3æ]</ref>ããšã«ãªãã®ã§ããïŒ
[[w:%E3%83%9F%E3%82%AF%E3%82%B7%E3%83%B3%E3%82%B9%E3%82%AD%E3%83%BC%E3%81%AE%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95|MikusiÅski ã®æŒç®åæ³]]ã¯ããã§ã¯ãã以äžã¯è¿œæ±ããããããã«æ¬¡ç« 以éïŒLaplace 倿ãšç·åœ¢åŸ®åæ¹çšåŒã MikusiÅski ã®ç²Ÿç¥ã§ç޹ä»ããïŒ
<references />
[[ã«ããŽãª:åŸ®åæ¹çšåŒ]] | null | 2022-11-23T17:00:08Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95%E3%81%AE%E8%AA%95%E7%94%9F/Mikusi%C5%84ski_%E3%81%AE%E6%BC%94%E7%AE%97%E5%AD%90%E6%B3%95 |
24,962 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª | 以äžããŸãšãããš Laplace 倿 ã®åºæ¬çæ§è³ªãšããŠ,
ãåŸã.ä»åŸã¯ãããããšã«ããŠè°è«ãé²ãã.äžã®äžã€ã®æ§è³ªãæããæŒç®å L {\displaystyle {\mathcal {L}}} ã Laplace 倿ã§ãããšèã,ãã®å®çŸ©ãå¿ããŠã,å®çšäžããã»ã©äžéœåã¯ãªã. | [
{
"paragraph_id": 0,
"tag": "p",
"text": "以äžããŸãšãããš Laplace 倿 ã®åºæ¬çæ§è³ªãšããŠ,",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãåŸã.ä»åŸã¯ãããããšã«ããŠè°è«ãé²ãã.äžã®äžã€ã®æ§è³ªãæããæŒç®å L {\\displaystyle {\\mathcal {L}}} ã Laplace 倿ã§ãããšèã,ãã®å®çŸ©ãå¿ããŠã,å®çšäžããã»ã©äžéœåã¯ãªã.",
"title": ""
}
]
| å®çŸ©
Laplace 倿ã®ç·åœ¢æ§
åæç©ã® Laplace 倿 以äžããŸãšãããš Laplace 倿 ã®åºæ¬çæ§è³ªãšããŠïŒ ãåŸãïŒä»åŸã¯ãããããšã«ããŠè°è«ãé²ããïŒäžã®äžã€ã®æ§è³ªãæããæŒç®å L ã Laplace 倿ã§ãããšèãïŒãã®å®çŸ©ãå¿ããŠãïŒå®çšäžããã»ã©äžéœåã¯ãªãïŒ | *[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/å®çŸ©|å®çŸ©]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/Laplace 倿ã®ç·åœ¢æ§|Laplace 倿ã®ç·åœ¢æ§]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/åæç©ã® Laplace 倿|åæç©ã® Laplace 倿]]
以äžããŸãšãããš [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]] ã®åºæ¬çæ§è³ªãšããŠïŒ
#{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[1] = \frac{1}{s}</math>|label=eq:2.5.1}}
#{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[af + bg] = a\mathcal{L}[f] + b\mathcal{L}[g]</math>|label=eq:2.5.2}}
#{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \mathcal{L}[f]\cdot\mathcal{L}[g]</math>|tag=(2.5)|label=eq:2.5.3}}
ãåŸãïŒä»åŸã¯ãããããšã«ããŠè°è«ãé²ããïŒäžã®äžã€ã®æ§è³ªãæããæŒç®å <math>\mathcal{L}</math> ã Laplace 倿ã§ãããšèãïŒãã®å®çŸ©ãå¿ããŠãïŒå®çšäžããã»ã©äžéœåã¯ãªãïŒ
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:23:56Z | []
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%81%A8%E3%81%9D%E3%81%AE%E5%9F%BA%E6%9C%AC%E7%9A%84%E6%80%A7%E8%B3%AA |
24,963 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/å®çŸ© | f ( t ) {\displaystyle f(t)} ãå®å€æ°ã®å®æ°å€é¢æ°ã s {\displaystyle s} ã宿°ãšãããšã,
ã§å®çŸ©ããã s {\displaystyle s} ã®é¢æ° F ( s ) {\displaystyle F(s)} ã f ( t ) {\displaystyle f(t)} ã® Laplace 倿ãšãã,
ãšè¡šã.ãã®ãšã F ( s ) {\displaystyle F(s)} ã Laplace 倿ã®å, f ( t ) {\displaystyle f(t)} ããã®ååãšåŒã¶. ⢠{\displaystyle \diamondsuit }
äžè¬ã«ã¯ f ( t ) {\displaystyle f(t)} ã¯å®å€æ°ã®è€çŽ æ°å€é¢æ°ã§ããã, s {\displaystyle s} ãè€çŽ æ°ãšããã,åœå,äžã®ããã«å®æ°ã®ç¯å²ã§èããŠãã.
ããŠç¡éç©å åŒ (2.1) ã®æå³ã¯,ãã¡ãã
ã§ãã,å s {\displaystyle s} ã«å¯ŸããŠå³èŸºã®æ¥µéãååšããã°,ãã㯠s {\displaystyle s} ã®é¢æ°ãå®çŸ©ããã®ã§,ããã F ( s ) {\displaystyle F(s)} ãšããã®ã§ãã. ãã£ãšã,ããã§, f ( t ) {\displaystyle f(t)} ã¯ä»»æã®æéåºéã§ç©åã§ãããšããŠãã.æã
ã®ç®çã¯åŸ®åæ¹çšåŒã差忹çšåŒãè§£ãããšã«ããã®ã ãã, å€ãã®å Žå f ( t ) {\displaystyle f(t)} ã¯åŸ®åå¯èœãªé¢æ°ã§,ããããåºåçã«é£ç¶ãªé¢æ°ã§ãã.ãã®ãšãã¯,ãã®æ¡ä»¶ãæºãããŠãã.
äŸ16 {\displaystyle \quad }
ãã£ãŠ, s > 0 {\displaystyle s>0} ãªãã°,
ãšãªããã,çµå±,
ãšãªã. ⢠{\displaystyle \diamondsuit }
äŸ17 {\displaystyle \quad }
ã瀺ã.
è§£çäŸ {\displaystyle \quad }
⢠{\displaystyle \diamondsuit }
Laplace ç©åã®å®çŸ©ããåããéã, f ( t ) {\displaystyle f(t)} ã® t < 0 {\displaystyle t<0} ã®éšåã§ã®å€ã¯ç©åã«ã¯åœ±é¿ããªã.
ãããã,Heaviside ã®é¢æ°:
ã«å¯ŸããŠã,
ã§ã.ãããã£ãŠ t < 0 {\displaystyle t<0} ã®éšåãèãããš, f ( t ) {\displaystyle f(t)} ãš F ( s ) {\displaystyle F(s)} ãšã¯ 1 察 1 ã«å¯Ÿå¿ããªãããšã«ãªã. t < 0 {\displaystyle t<0} ã®éšåãé¢ä¿ããŠããå Žå,ããšãã° f ( t â α ) , α > 0 {\displaystyle f(t-\alpha ),\alpha >0} ã® Laplace 倿ãèãããšããªã©ã¯,
ãšçŽæããŠãã.ãããããšå®è³ªçã« f ( t ) {\displaystyle f(t)} ãš F ( s ) {\displaystyle F(s)} 㯠1 察 1 ã«å¯Ÿå¿ãã. âå®è³ªçã«âãšããã®ã¯,äžé£ç¶ç¹ãªã©ã®äŸå€ç¹ãé€ããŠããšããæå³ã§ãã. ãã®çŽæã¯åœåå¿
èŠã§ãªãã,差忹çšåŒãåãæ±ããšããªã©ã«éèŠãšãªã.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "f ( t ) {\\displaystyle f(t)} ãå®å€æ°ã®å®æ°å€é¢æ°ã s {\\displaystyle s} ã宿°ãšãããšã,",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã§å®çŸ©ããã s {\\displaystyle s} ã®é¢æ° F ( s ) {\\displaystyle F(s)} ã f ( t ) {\\displaystyle f(t)} ã® Laplace 倿ãšãã,",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšè¡šã.ãã®ãšã F ( s ) {\\displaystyle F(s)} ã Laplace 倿ã®å, f ( t ) {\\displaystyle f(t)} ããã®ååãšåŒã¶. ⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžè¬ã«ã¯ f ( t ) {\\displaystyle f(t)} ã¯å®å€æ°ã®è€çŽ æ°å€é¢æ°ã§ããã, s {\\displaystyle s} ãè€çŽ æ°ãšããã,åœå,äžã®ããã«å®æ°ã®ç¯å²ã§èããŠãã.",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããŠç¡éç©å åŒ (2.1) ã®æå³ã¯,ãã¡ãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã§ãã,å s {\\displaystyle s} ã«å¯ŸããŠå³èŸºã®æ¥µéãååšããã°,ãã㯠s {\\displaystyle s} ã®é¢æ°ãå®çŸ©ããã®ã§,ããã F ( s ) {\\displaystyle F(s)} ãšããã®ã§ãã. ãã£ãšã,ããã§, f ( t ) {\\displaystyle f(t)} ã¯ä»»æã®æéåºéã§ç©åã§ãããšããŠãã.æã
ã®ç®çã¯åŸ®åæ¹çšåŒã差忹çšåŒãè§£ãããšã«ããã®ã ãã, å€ãã®å Žå f ( t ) {\\displaystyle f(t)} ã¯åŸ®åå¯èœãªé¢æ°ã§,ããããåºåçã«é£ç¶ãªé¢æ°ã§ãã.ãã®ãšãã¯,ãã®æ¡ä»¶ãæºãããŠãã.",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äŸ16 {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã£ãŠ, s > 0 {\\displaystyle s>0} ãªãã°,",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªããã,çµå±,",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšãªã. ⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äŸ17 {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ã瀺ã.",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Laplace ç©åã®å®çŸ©ããåããéã, f ( t ) {\\displaystyle f(t)} ã® t < 0 {\\displaystyle t<0} ã®éšåã§ã®å€ã¯ç©åã«ã¯åœ±é¿ããªã.",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãããã,Heaviside ã®é¢æ°:",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ã«å¯ŸããŠã,",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ã§ã.ãããã£ãŠ t < 0 {\\displaystyle t<0} ã®éšåãèãããš, f ( t ) {\\displaystyle f(t)} ãš F ( s ) {\\displaystyle F(s)} ãšã¯ 1 察 1 ã«å¯Ÿå¿ããªãããšã«ãªã. t < 0 {\\displaystyle t<0} ã®éšåãé¢ä¿ããŠããå Žå,ããšãã° f ( t â α ) , α > 0 {\\displaystyle f(t-\\alpha ),\\alpha >0} ã® Laplace 倿ãèãããšããªã©ã¯,",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãšçŽæããŠãã.ãããããšå®è³ªçã« f ( t ) {\\displaystyle f(t)} ãš F ( s ) {\\displaystyle F(s)} 㯠1 察 1 ã«å¯Ÿå¿ãã. âå®è³ªçã«âãšããã®ã¯,äžé£ç¶ç¹ãªã©ã®äŸå€ç¹ãé€ããŠããšããæå³ã§ãã. ãã®çŽæã¯åœåå¿
èŠã§ãªãã,差忹çšåŒãåãæ±ããšããªã©ã«éèŠãšãªã.",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "",
"title": ""
}
]
| f ãå®å€æ°ã®å®æ°å€é¢æ°ã s ã宿°ãšãããšãïŒ ã§å®çŸ©ããã s ã®é¢æ° F ã f ã® Laplace 倿ãšããïŒ ãšè¡šãïŒãã®ãšã F ã Laplace 倿ã®åïŒ f ããã®ååãšåŒã¶ïŒ ⢠äžè¬ã«ã¯ f ã¯å®å€æ°ã®è€çŽ æ°å€é¢æ°ã§ãããïŒ s ãè€çŽ æ°ãšãããïŒåœåïŒäžã®ããã«å®æ°ã®ç¯å²ã§èããŠããïŒ ããŠç¡éç©å åŒ (2.1) ã®æå³ã¯ïŒãã¡ãã ã§ããïŒå s ã«å¯ŸããŠå³èŸºã®æ¥µéãååšããã°ïŒãã㯠s ã®é¢æ°ãå®çŸ©ããã®ã§ïŒããã F ãšããã®ã§ããïŒ
ãã£ãšãïŒããã§ïŒ f ã¯ä»»æã®æéåºéã§ç©åã§ãããšããŠããïŒæã
ã®ç®çã¯åŸ®åæ¹çšåŒã差忹çšåŒãè§£ãããšã«ããã®ã ããïŒ
å€ãã®å Žå f ã¯åŸ®åå¯èœãªé¢æ°ã§ïŒããããåºåçã«é£ç¶ãªé¢æ°ã§ããïŒãã®ãšãã¯ïŒãã®æ¡ä»¶ãæºãããŠããïŒ | <math>f(t)</math> ãå®å€æ°ã®å®æ°å€é¢æ°ã<math>s</math> ã宿°ãšãããšãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(s) := \int_0^\infty f(t)e^{-st}dt</math>|tag=(2.1)|label=eq:2.1}}
ã§å®çŸ©ããã <math>s</math> ã®é¢æ° <math>F(s)</math> ã <math>f(t)</math> ã® [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ãšããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(s) = \mathcal{L}[f(t)]</math> ãŸã㯠<math>F(s) \sqsubset f(t)</math>}}
ãšè¡šãïŒãã®ãšã <math>F(s)</math> ã Laplace 倿ã®åïŒ<math>f(t)</math> ããã®ååãšåŒã¶ïŒ
<math>\diamondsuit</math>
äžè¬ã«ã¯ <math>f(t)</math> ã¯å®å€æ°ã®è€çŽ æ°å€é¢æ°ã§ãããïŒ<math>s</math> ãè€çŽ æ°ãšãããïŒåœåïŒäžã®ããã«å®æ°ã®ç¯å²ã§èããŠããïŒ
ããŠç¡éç©å åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/å®çŸ©#eq:2.1|(2.1)]] ã®æå³ã¯ïŒãã¡ãã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>F(s) := \lim_{T \to \infty} \int_0^T f(t)e^{-st}dt</math>}}
ã§ããïŒå <math>s</math> ã«å¯ŸããŠå³èŸºã®æ¥µéãååšããã°ïŒãã㯠<math>s</math> ã®é¢æ°ãå®çŸ©ããã®ã§ïŒããã <math>F(s)</math> ãšããã®ã§ããïŒ
ãã£ãšãïŒããã§ïŒ<math>f(t)</math> ã¯ä»»æã®æéåºéã§ç©åã§ãããšããŠããïŒæã
ã®ç®çã¯åŸ®åæ¹çšåŒã差忹çšåŒãè§£ãããšã«ããã®ã ããïŒ
å€ãã®å Žå <math>f(t)</math> ã¯åŸ®åå¯èœãªé¢æ°ã§ïŒããããåºåçã«é£ç¶ãªé¢æ°ã§ããïŒãã®ãšãã¯ïŒãã®æ¡ä»¶ãæºãããŠããïŒ
<!-- ex:016:start-->
<div id="ex:16">
<strong>äŸ16</strong><math>\quad</math>
:<math>f(t) = 1</math> ã® Laplace å€æãæ±ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T 1\cdot e^{-st}dt </math><math>= \left[ -\frac{e^{-st}}{s} \right]_0^T = \frac{1}{s} - \frac{e^{-sT}}{s}</math>}}
ãã£ãŠïŒ<math>s > 0</math> ãªãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T 1\cdot e^{-st}dt \to \frac{1}{s} \quad (T \to \infty)</math>}}
ãšãªãããïŒçµå±ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[1] = \frac{1}{s}</math> ãŸã㯠<math>1 \sqsupset \frac{1}{s}</math>}}
ãšãªãïŒ
<math>\diamondsuit</math>
<!-- ex:016:end-->
<!-- ex:017:start-->
<div id="ex:17">
<strong>äŸ17</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t} \sqsupset \frac{1}{s - \alpha} \quad (s > \alpha)</math>}}
ã瀺ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t} \sqsupset \int_0^\infty e^{\alpha t}\cdot e^{-st}dt = \int_0^\infty e^{(\alpha - s)t}dt = \frac{1}{\alpha - s} \left[ e^{(\alpha - s)t} \right]_0^\infty = \frac{1}{s - \alpha}. \quad (s > \alpha)</math>}}
<math>\diamondsuit</math>
<!-- ex:017:end-->
Laplace ç©å<ref>Laplace 倿ã®å®çŸ©åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/å®çŸ©#eq:2.1|(2.1)]] ã®å³èŸºã Laplace ç©åãšããïŒ</ref>ã®å®çŸ©ããåããéãïŒ<math>f(t)</math> ã® <math>t < 0</math> ã®éšåã§ã®å€ã¯ç©åã«ã¯åœ±é¿ããªãïŒ
ããããïŒ[[w:%E3%83%98%E3%83%B4%E3%82%A3%E3%82%B5%E3%82%A4%E3%83%89%E3%81%AE%E9%9A%8E%E6%AE%B5%E9%96%A2%E6%95%B0|Heaviside ã®é¢æ°]]ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>H(t) = \begin{cases}
1 & (t > 0) \\
0 & (t < 0)
\end{cases}</math>}}
ã«å¯ŸããŠãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>H(t) \sqsupset \frac{1}{s}</math>}}
ã§ãïŒãããã£ãŠ <math>t<0</math> ã®éšåãèãããšïŒ<math>f(t)</math> ãš <math>F(s)</math> ãšã¯ 1 察 1 ã«å¯Ÿå¿ããªãããšã«ãªãïŒ
<math>t<0</math> ã®éšåãé¢ä¿ããŠããå ŽåïŒããšãã° <math>f(t - \alpha), \alpha > 0</math> ã® Laplace 倿ãèãããšããªã©ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = 0 \quad (t < 0)</math>}}
ãšçŽæããŠããïŒãããããšå®è³ªçã« <math>f(t)</math> ãš <math>F(s)</math> 㯠1 察 1 ã«å¯Ÿå¿ããïŒ
âå®è³ªçã«âãšããã®ã¯ïŒäžé£ç¶ç¹ãªã©ã®äŸå€ç¹ãé€ããŠããšããæå³ã§ããïŒ
ãã®çŽæã¯åœåå¿
èŠã§ãªããïŒå·®åæ¹çšåŒãåãæ±ããšããªã©ã«éèŠãšãªãïŒ
<references />
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:24:09Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%81%A8%E3%81%9D%E3%81%AE%E5%9F%BA%E6%9C%AC%E7%9A%84%E6%80%A7%E8%B3%AA/%E5%AE%9A%E7%BE%A9 |
24,965 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/Laplace 倿ã®ç·åœ¢æ§ | f ( t ) {\displaystyle f(t)} ãš g ( t ) {\displaystyle g(t)} ã® Laplace 倿ãååšã, a {\displaystyle a} ã¯å®æ°ãšãã.ãã®ãšã,
ããã³
ãæç«ãã.ããã¯èšŒæãããŸã§ããªãæããã§ããã.ããã 2 åŒãäžã€ã«ãŸãšã,èšå· L {\displaystyle {\mathcal {L}}} ãçšããŠæžãã°,
ãšãªã.ããã« a , b {\displaystyle a,b} ã¯å®æ°ã§ãã.åŒ (2.2) 㯠L {\displaystyle {\mathcal {L}}} ã§è¡šãããæŒç®åã,ç·åœ¢æŒç®åã§ããããšã瀺ããŠãã. | [
{
"paragraph_id": 0,
"tag": "p",
"text": "f ( t ) {\\displaystyle f(t)} ãš g ( t ) {\\displaystyle g(t)} ã® Laplace 倿ãååšã, a {\\displaystyle a} ã¯å®æ°ãšãã.ãã®ãšã,",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã³",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãæç«ãã.ããã¯èšŒæãããŸã§ããªãæããã§ããã.ããã 2 åŒãäžã€ã«ãŸãšã,èšå· L {\\displaystyle {\\mathcal {L}}} ãçšããŠæžãã°,",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãšãªã.ããã« a , b {\\displaystyle a,b} ã¯å®æ°ã§ãã.åŒ (2.2) 㯠L {\\displaystyle {\\mathcal {L}}} ã§è¡šãããæŒç®åã,ç·åœ¢æŒç®åã§ããããšã瀺ããŠãã.",
"title": ""
}
]
| f ãš g ã® Laplace 倿ãååšãïŒ a ã¯å®æ°ãšããïŒãã®ãšãïŒ ããã³ ãæç«ããïŒããã¯èšŒæãããŸã§ããªãæããã§ãããïŒããã 2 åŒãäžã€ã«ãŸãšãïŒèšå· L ãçšããŠæžãã°ïŒ ãšãªãïŒããã« a , b ã¯å®æ°ã§ããïŒåŒ (2.2) 㯠L ã§è¡šãããæŒç®åãïŒç·åœ¢æŒç®åã§ããããšã瀺ããŠããïŒ | <math>f(t)</math> ãš <math>g(t)</math> ã® [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ãååšãïŒ<math>a</math> ã¯å®æ°ãšããïŒãã®ãšãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^\infty af(t)e^{-st}dt = a\int_0^\infty f(t)e^{-st}dt</math>}}
ããã³
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^\infty \{f(t) + g(t)\}e^{-st}dt = \int_0^\infty f(t)e^{-st}dt + \int_0^\infty g(t)e^{-st}dt</math>}}
ãæç«ããïŒããã¯èšŒæãããŸã§ããªãæããã§ãããïŒããã 2 åŒãäžã€ã«ãŸãšãïŒèšå· <math>\mathcal{L}</math> ãçšããŠæžãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)]</math>|tag=(2.2)|label=eq:2.2}}
ãšãªãïŒããã« <math>a, b</math> ã¯å®æ°ã§ããïŒåŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/Laplace 倿ã®ç·åœ¢æ§#eq:2.2|(2.2)]] 㯠<math>\mathcal{L}</math> ã§è¡šãããæŒç®åãïŒç·åœ¢æŒç®åã§ããããšã瀺ããŠããïŒ
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:23:59Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%81%A8%E3%81%9D%E3%81%AE%E5%9F%BA%E6%9C%AC%E7%9A%84%E6%80%A7%E8%B3%AA/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AE%E7%B7%9A%E5%BD%A2%E6%80%A7 |
24,966 | çæææ³/æ¥æ¬èª | ãçŸä»£æ¥æ¬èªã®ææ³ããšèšãæã«ã¯ãææ³ãã«äºã€ã®çšæ³ããããäžã€ã«ã¯äžè¬ã«äœ¿ãããããã«ãçŸä»£æ¥æ¬èª(æŒ ç¶ãšæããŠ)ã®èŠåãç¶²çŸ
ããŠããçšæ³ã§ãããããäžã€ã¯ãåå¥èšèªã§ããçŸä»£æ¥æ¬èªã®æ¯èªè©±è
ã®ç¥èãããèªäœãæãçšæ³ã§ãããããã§ã¯åŸè
ãèšè¿°ãããã®ããçµ±èªè«ããšåŒã¶ã
çµ±èªè«ã¯ããã®æ¯èªè©±è
ãæé»ã«çè§£ããäºã«äŸåãããæé»ã®ç¥è tacit knowledge ãå
šãŠæžãåºããªããã°ãªããªããæ¬¡ãèããŠã¿ããã
ãããäºã€ã®æã«ã€ããŠå
ãã©ã®ãããªããšã芳å¯ã§ããã ããããæ¯èªè©±è
ã¯ãããã®æãçŸåšèªã®æã§ããããªããããããªãšããšããªããšå€æ judge ãããæ¬¡ã®æãšæ¯ã¹ãŠã¿ããã
æ¯èªè©±è
ã¯ãããã®æã¯çŸä»£èªã®æãšããŠãããããçŸä»£èªã®æã§ã¯ãªãããšå€æãããèšãæãããšã(1a-e) ã®æã¯å®¹èªå¯èœ acceptable ã§ããã®ã«å¯Ÿãã(2a, b) ã®æã¯å®¹èªäžå¯èœ unacceptable ã§ããããšããã
ããŠãæ¯èªè©±è
ã¯ã©ã®ããã«ããŠãããã£ã倿ã瀺ãã®ã§ãããããäžã€ã®ä»®èª¬ãšããŠãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãå®¹èªæ§ acceptability ã®å€æãäžãããã®ãšãããããã§çŸä»£èªçµ±èªè«ãšåŒãã§ãããã®ã¯ããã®ä»®èª¬ãåãå
¥ãã倿ã®åºç€ãšãªã£ãŠããçµ±èªçãªç¥èãæžãåºãããšããã®ã§ããã
çŸä»£æ¥æ¬èªã®çµ±èªçãªç¥èã¯ã©ã®ãããªãã®ã§æ§æãããŠããã®ã ãããã(1) ã«çŸãããçç²ããæã瀺ãç©ã«ã€ããŠèããŠã¿ãããããèãããšäžäœäœãæããŠããã®ã ããããçç²(ã³ãŒããŒ)ãæ§æããé³é» /koRhiR/ ã¯é£²ã¿ç©ãæå³ããããããæ¶²äœã¯ãã®ãŸãŸã§ããŒãã«ã®äžã«çœ®ãããšãã§ãããã®ã§ã¯ãªã(溢ãããé¶ãããæäººã錻ã«å²ã箞ãçªã£èŸŒãã§æã£ãã®ã§ç¬ã£ãŠå¹ãåºãããçã®å Žåã¯å¥ã®æã䜿ãã¯ã)ãæã瀺ãããŠããã®ã¯ã³ãŒããŒãåšã«å
¥ã£ãç¶æ
ã®ãã®ãã³ãŒããŒè±ã容åšã«å
¥ã£ãç¶æ
ã®ãã®ãçã§ãããããçç²ãããããã£ãç©ãæãã®ã¯ã¡ããã㌠metonymy ãšåŒã°ãããã®ã§ãèšèªã®éèŠãªç¥èã§ããããããçµ±èªè«çãªç¥èã¯ãããã£ããã®ã¯å«ãŸãªãã
(1a) ãš (2a) ãæ¯ã¹ãŠã¿ãããéãã¯ãããŒãã«ã®äžããšãããŒãã«ãããã§å©è©ããããããªãããã§ããããããŒãã«äž (ããã)ããšããã°å®¹èªå¯èœãšãªãããããã§ã¯ãã®åé¡ã¯æªããèšèªã«ãã£ãŠã¯ããç°å¢ã§å©è©ãã«å¯Ÿå¿ãããã®ãèªç±ã«è±èœããããæ¥æ¬èªã®çŸä»£èªã§ã¯èš±ãããªããã€ãŸããããŒãã«ããšãäžããçµ±èªè«çãªãŸãšãŸãããæ§æçŽ constituentãããã«ã¯å©è©ããå¿
èŠãšãªãããããŒãã«ããšãäžãã¯åŠæ ¡ã®åœææ³ã®åè©ã§ãããããããããªãæ§æçŽ ãåè©ã§ããããããã£ãåè©ã®æ§æçŽ ã¯æŽã«æã®äžéšãšãªãããæãæãç«ãããæ§æçŽ ã®ããã®æ§æã®ä»æ¹ã«é¢ããç¥èã§ããå©è©ãã®å¿
é æ§ã¯çµ±èªè«çãªç¥èã§ããã
ç¶ã㊠(1d, e) ãš (2b) ãæ¯ã¹ãŠã¿ããã(1d, e) ã®æç fragment ãåãåºãããã®ã次ã§ããã
ããã§ã¯ãããŒãã«ã®äžã«ããšãçç²ããã®é åºãå
¥ãæ¿ãã£ãŠããããæ¥æ¬èªã¯èªé ãèªç±ã§ããããšããèšãããããäžã®äºæã¯ãããäŸç€ºããŠãããæŽã«
ã® (4b) ã®ããã«ãçç²ã¯ããè¿°éšã®åŸã«çœ®ãããšãå¯èœã§ãããããããèŠããšçŸä»£èªã§ã¯
ãšããããã«æ¥µããŠèªé ãèªç±ã§ããããã«èŠãããå ããŠ
ã®ããã«è¿°éšãåã«çœ®ãããå Žåããã
ãšããããã«ãèªé ã¯å®å
šã«èªç±ã§ãããšèãããããããããªãã
è±èªã®èªé 㯠SVO ã§ããã®ã«å¯ŸããŠæ¥æ¬èªã¯ SOV ã§ãã(ã ãããã³ãã«ã³ã)ããšèšãããããšããããäžã®èгå¯ãèæ
®ã«å
¥ããå ŽåãSVO èªé ãããã° VS èªé ããããããããæ¥æ¬èªã«é¢ããŠèªé ã«èšåããããšã¯ç¡æå³ã ãšãã人ãå±
ãŠãããããªãã
ãããããã§ (2b) ãèŠãŠã¿ãããäžã«åæ²ããã
(2) b.*ããŒãã«ã®äžã«ããçç²ãããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
ãã®æã¯å®¹èªäžå¯èœã§ããããã¡ãããã®æç
(8) ããŒãã«ã®äžã«ããçç²ã
ã¯çŸä»£èªãšããŠåé¡ããªãæçã§ããããã ããã®æçã¯ãçç²ããšããåè©ããããŒãã«ã®äžã«ããããé£äœä¿®é£ŸããŠãããã®ã§ãããã§åé¡ãšããããšããŠãããã®ãšã¯ç°ãªããå¥ã®æç
(9) ããŒãã«ã®äžã«ããçç²ãããšã«
ã¯äžé©æ Œãªæçã§ãããåæ§ã«
(10)
a.*ããããªãã€ã³ãã«ãšã³ã¶ã«ããã«ããããšææŽããæ¬ ãããã«è¡ã£ãŠãã
b.*ææ¥ã¯è¯ãããã倩æ°ãããå¯äžæ°Žæ³³ã«åºãããã
ã容èªäžå¯èœã§ããã
å®å
šã«å®¹èªå¯èœãªç¯å²ã®èªé ã®å
¥ãæ¿ããšã容èªäžå¯èœã«ãªãèªé ã®å
¥ãæ¿ãã®ç°å¢ã®éãã¯äœã ããããè¿°éšã®åŸã«äž»èªãªã©ãçŸããã®ã¯äž»ç¯ã«ãããŠã§ãããåŸå±ç¯ã§ã¯å¿
ãè¿°éšãæ«å°Ÿã«çŸããªããã°ãªããªããã€ãŸããèªç±èªé ã¯äž»ç¯ã«ã®ã¿èŠãããçŸè±¡ã§ãçŸä»£èªã®ãããããšããã«èŠãããçŸè±¡ã§ã¯ãªãããšããããšã«ãªãã
ã§ã¯ä»ã®èªç±èªé ãããªãã¡è¿°éšã®åã«æ¥ãèŠçŽ ã¯å¶éãªãèªç±ãªã®ã§ãããããè±èªã®ãã㪠SVO ããã¢ã€ã«ã©ã³ãèªãã¿ã¬ãã°èªã®ãã㪠VSO ã§ã¯ãªããšããŠãè¿°éšãæåŸã«ããããã°èªé ã«èŠåæ§ããåºæ¬èªé ã®ãããªãã®ã¯ãªãã®ã ãããã
ãããŸã§åè©ãèŠæ±ããæ§æçŽ ããé
argumentãã®ã¿ãæ±ã£ãŠããããããã§é
ã§ã¯ãªãå¯è©ãªã©ã®æ§æçŽ ã§ãããä»å è© adjunctããåãäžããŠèããŠã¿ããã
(11â)
a. 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåãæšæ¥åã«å¢ãã]ãšåŸæ¥å¡ã«åãã
b. *æšæ¥i 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåã ti åã«å¢ãã]ãšåŸæ¥å¡ã«åãã
äžè¬ã«ãä»å è©ã¯åŸå±ç¯ã®äžããåãåºããŠäž»ç¯ã«çœ®ãããšãã§ããªããšèšãããŠãããç¯å¢çãè¶ããæ»ãæ··ã scrambling ã¯ãé·è·é¢æ»ãæ··ã long-distance scramblingããšåŒã°ããŠãããäžã¯ãã®äžäŸã ããäž»ç¯ã«æéå¯è©ãäºã€ããããã«ããã§é¢ä¿ä»ããŠè§£éããããããšãæªããããŠããã«ãããããªããã€ãŸããèªç±èªé çŸè±¡ãšã¯ã²ãšãŸãé¢ä¿ã®ãªãçŸè±¡ã ãšèšããããããããªãã
次ã«äžã®ãããªäŸãèããŠã¿ããã
(12)
a. å
ã¯æšæ¥çŽäŒåå±ãžåèæžãè²·ãã«è¡ã£ã
b. å
ã¯åèæžãè²·ãã«æšæ¥çŽäŒåå±ãžè¡ã£ã
ãããäºã€ã®æã¯ã次ã®äºã€ã®ç¯ãçµã¿åãããŠããããäžæã«ããŠããã
(13)
a. å
ã¯æšæ¥çŽäŒåå±ãžè¡ã£ã
b. å
ãåèæžãè²·ã
åé¡ã®äºã€ã®æã®éãã¯ã(13b) ããäœã£ãç®çç¯ãäž»ç¯è¿°éšãè¡ã£ããã«é£æ¥ããŠãããåŠãã§ãããããã§ãçŽäŒåå±ãžãã®èªé ãå
¥ãæ¿ããŠã¿ããã
(14)
a. å
ã¯æšæ¥åèæžãçŽäŒåå±ãžè²·ãã«è¡ã£ã
b.*å
ã¯åèæžãçŽäŒåå±ãžè²·ãã«æšæ¥è¡ã£ã
åè©ã«ç®çç¯ã飿¥ããŠããªã (14b) ã¯å®¹èªäžå¯èœããããŠäžèªç¶ããšå€æãããã¯ãã§ããã
æããäºã€ã®ã±ãŒã¹ã¯è€æã§ããããŠãè€æã§ã¯æå±ããç¯ããæ§æçŽ ãç§»ãããšã¯èªç±ãšã¯èšããªãããšããããšããè¿°ã¹ãŠããªããããã§æ¬¡ã«åæãåãäžããŠèå¯ãããã
ãŽãŒã«ãæç¢ºã«ããããã«ãããèšããããæ¥æ¬èªã¯ SOV èªé ã§ãããã«ããããŠåé¡èšå®ããŠã¿ãããããã§çŸä»£èªã«ã¯ãåºæ¬èªé basic word-orderãããã
(15)
a. NP-ga NP-o V
b. NP-o NP-ga V
ã®ããããã§ãããããããã¯ãåºæ¬èªé ã¯ãªããåæã§ã¯é
ã¯èªç±èªé ã§ããããã確ããããã
æ¬¡ã®æãèãããã
(16)
a. ã©ã®èгå
客ãäœãåŒåœãè²·ã£ã
b. 芳å
客ã®èª°ããã©ã®åŒåœãè²·ã£ã
ããã§ (16a) ã¯1ãã©ã®èгå
客ãåãäžããŠããããããè²·ã£ãåŒåœãæäœäžã€ããããšããè§£é(åé
è§£éãšåŒã¶ãéååã®äœçšåã¯â>â)ãæã€ããŸãã2ãåŒåœã«ã€ããŠã芳å
客ã®ãããããã®ãè²·ã£ãåŒåœãååšããããšããè§£é(ååšè§£éãéååã®äœçšåã¯â>â)ãšããèªé ãšã¯éã«ãªãäœçšå inverse scope ãæã€ããã«èŠãããããã (16b) ã¯ååšè§£éã®3ã芳å
客ã®åäœã«ã€ããŠãåŒåœãšããåäœã®ãã¹ãŠãè²·ã£ã芳å
客ãååšããããšããè§£éãæã€ãã4ãåŒåœã®ã©ã®åäœãåãäžããŠãããããããããè²·ã£ã芳å
客ãæäœäžäººããããšããåé
è§£éã¯æã£ãŠããªããè±èªã§ã¯ãã®å Žåãèªé ãšã¯éã«ãªãäœçšåã®è§£éãæã¡ãâSome woman loves every manâ ãšããæã§ã¯ãSome woman loves every man, and her name is Edith. ãšããååšè§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£é Some woman loves every man, because Edith loves Harold, Deirdre loves Tom and Anne loves Andy. ãšããåé
è§£é(è§£éã®äŸã¯ Koeneman and Zeijlstra, Introducing Syntax ãã)ã®ãšå¯Ÿç
§çã§ããããããè±èªã§ âEvery woman loves some manâ ã¯ç¢ºãã«èªé ãšã¯éã«ãªãäœçšåã®è§£éã«èŠãããã®ã¯ããããããã¯åé
è§£éã®ç¹æ®äŸã§ãããããæããç·ãå¶ç¶äžèŽãããšãããã®ã§ãããçŸä»£èªã§ã¯è¡šé¢ã®èªé ãšäœçšåã®åºçã¯å³å¯ã«å¯Ÿå¿ãããšèšãããŠãã(Kuroda, âRemarks on the notion of subject with special reference to the words like also, even, and onlyâ ãªã©)ã4ã®æ¬ åŠãå å³ãããšãäžã®2ã®è§£éã¯è±èªã®å Žåãšåæ§ã«1ã®ç¹æ®äŸãšèããããšãã§ããçŸä»£èªã¯èªé ãšäœçšåãå³å¯ã«å¯Ÿå¿ãããšèããããã
(16) ã®èªé ãå
¥ãæ¿ããŠã¿ããã
(17)
a. äœãåŒåœãã©ã®èгå
客ãè²·ã£ã
b. ã©ã®åŒåœã芳å
客ã®èª°ããè²·ã£ã
ãã®èªé 㯠OSV ãšããèªé ã§ããããã®èªé ã§ SOV ãšåãæ§åŒã§è«ççè§£éããããããããªãã°ãçŸä»£èªã«åºæ¬èªé ã¯ãªãããšããäžã€ã®èšŒæ ã«ãªãããããã(17a) ã¯1ã®åé
è§£éãš2ã®ååšè§£éãæã¡ã(17b) ã¯3ã®ååšãš4ã®åé
è§£éãæã€ãã€ãŸããããããèªé éãã®äœçšåã®è§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£éã§å€çŸ©çãšãªããSOV ãšã¯è§£éã®å€æ§æ§ãšããç¹ã§ç°ãªãã®ã§ããããã®äžã€ã§ããèªé ãšã¯éã«ãªãäœçšåã®è§£é㯠SOV ãšåãè§£éãä¿åãããã®ã§ãããããäžã€ã§ããèªé éãã®äœçšåã®è§£é㯠OSV ãšããèªé ã§æ°ãã«åŸããããã®ã§ãããããåºæ¬èªé ããªããäžããããèªé ã§äœçšåã®è§£éãå®ãŸãã®ã§ããã°ã(17a, b) ã¯èªé ãšéã«ãªãäœçšåãåããªãã¯ããªã®ã§ããããã®èгå¯ã¯çŸä»£èªã«åºæ¬èªé ããããšããããšã®åºç€ã®äžã€ãšãªããã€ãŸãçŸä»£èªã«ã€ããŠä»¥äžãæãç«ã€:
(18) åºæ¬èªé 1
NP-ga NP-o V
ååšæã®åºæ¬èªé ã«ã€ããŠã¯ä¹
éæ²ã®è©³çްãªç ç©¶ããã (Linguistic Inquiry è«æããæ¥æ¬ææ³ç ç©¶ããªã©)ãåºæ¬èªé ã¯æ¬¡ã®ããã«èããããŠããã
(19) åºæ¬èªé 2
NP-ni NP-ga ar
ããã§æåã®äŸã«æ»ã£ãŠã¿ããã
(20)
a. çç²ã¯ããŒãã«ã®äžã«ãã
b. ããŒãã«ã®äžã«ã¯çç²ããã
c. ããŒãã«ã®äžã«ã¯çç²ãããã®ã
ããã㯠(1d) ã®æçã§ãã (21) ããäœãããŠããã
(21) ããŒãã«ã®äžã«çç²ããã (= 3a)
ãããš (20b) ã®éãã¯ãããŒãã«ã®äžã«ãã®åŸã«ãã¯ããããããªãããã ãã§ããããã¯ããšã¯ãªãã ããããåŠæ ¡ã®åœææ³ã§ã¯ãä¿å©è©ããšããåè©ã«åé¡ãããŠãããä¿å©è©ãšã¯ãå€å
žèªã®ææ³ã§ã¯è¿°éšã®çµã³ã決å®ãããããªå©è©ã®ããšãæããŠããã®ãèŠããŠããã ãããäŸãã°ãããã®çµã³ã¯é£äœåœ¢ã§ãããããã®çµã³ã¯å·²ç¶åœ¢ã§ããããªãã°ãã¯ã?ããã¯çµæ¢åœ¢ã§çµã¶ãã®ãšããŠä¿å©è©ãšåé¡ãããŠããã®ã§ããã
ããã§ãããããã®ãšãªããã®ã®éããèããŠã¿ãããããã§ãâ
ãã¯ãã«å¯Ÿå¿ãããã®ãç¡ãããšã衚ããŠããã
(22)
a. ããŒãã«ã®äžã« â
çç²ããã
b. ããŒãã«ã®äžã« ã çç²ããã 䜿ãããç¶æ³ãæèãæäžã®ç°å¢ã«æ³šæããŠäœ¿ãããã©ãããèŠãŠã¿ããã
次ã®ãããªç¶æ³ãèããŠã¿ãã:ä»äºããåž°å®
ããŠãããã³ã«å
¥ããšããè«ããããããµãšããŒãã«ã«ãã£ãæã«
(23) ã!ããŒãã«ã®äžã« â
çç²ããã! ãšããçºè©±ã¯å¯èœã§ãããäžæ¹
(24) ã!ããŒãã«ã®äžã« ã çç²ããã!
ãšããçºè©±ã¯äžå¯èœã§ãããããã ã
(25) ã!ããŒãã«ã®äžã« ã çç²ãããããã¬ã¹ã¬ã³ãžã®äžã« ã ãã³ã±ãŒãããã!(åå±
äººãæ°ãå©ããŠããªãã»ã»ã»)
ã®ããã«ãããšå¯èœã«ãªããããã®å Žåã®ãã¯ã察æ¯ããšåŒã°ãããã®ã§ãããã§ã¯è§Šããªãã
ä»åºŠã¯
(26) ãããããŒãã«ã®äžã«äœãããã®? ãšè³ªåããããšããã
(27) ããŒãã«ã®äžã« ã çç²ããã(ã)
ãšçããã®ã¯å¯èœã§ãããã
(28) ããŒãã«ã®äžã« â
çç²ããã(ã)
ãšçããããšã¯ã§ããªãã質åã§ã
(29) ã¡ãã£ãšäŒæ©ã«ããŠãè¶ã«ããªã?
ã®ãããªå Žåã«ã¯å¯èœã§ãããããã®å Žåå矩éãã«ã¯ããããããã¡ãã£ãš...ããªã©çã§çããã¿ã€ãã®çåæã§ããã®çãã¯èªçšè«ç嫿ããããã(èªåã§ãªããšããããããªã©)ã
ããã¹ãã«ãããåºçŸãèããŠã¿ãããæ¬¡ã®ãããªããã¹ããèããã
(30) æäººããã¡ãåºãŠããããäžå¹Žã«ãªããæ©ãå¿ããæ¹ããããã ããããããã€ã«ãããªã«ãé Œãåã£ãŠããã®ããæ²ãããªãæ¯æ¥ã ã£ãããããªæ¥ã
ã«ãçªç¶æäººãã LINE ãå±ããããè¿ããã¡ã«æ»ã£ãŠããã?ã......èžãé«é³Žãã仿¥ãã仿¥ããšå®¶è·¯ã«æ¥ãããããŠ......
ç· ãæ¬ãã«ã¯ (22) ã®ã©ã¡ããçžå¿ããã ãããã
倿ãèªãã§ãã ãã£ãŠããæ¹ã
ã«å§ããŠ(éãã)æäžã§ã®ç°å¢ã«æ³šæãç§»ããããæ¡ä»¶ç¯ã«ã¯ (22) ã®ã©ã¡ããåºçŸå¯èœã ãããã
(31) ___ã°èª°ãã飲ãã«éããªã
次ã®ããã« (22a) ã«å¯Ÿå¿ãã圢åŒã¯åºçŸå¯èœã§ããã®æå
šäœã¯å®¹èªå¯èœã§ããã
(32) ããŒãã«ã®äžã« â
çç²ãããã°èª°ãã飲ãã«éããªã
ããã«å¯Ÿã (22b) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã容èªäžå¯èœãšãªãã
(33) *ããŒãã«ã®äžã« ã çç²ãããã°èª°ãã飲ãã«éããªã
ããã ãã§ã¯ãªãã(20a) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã«ã容èªäžå¯èœãšãªãã
(34) * çç² ã ããŒãã«ã®äžã«ããã°èª°ãã飲ãã«éããªã
ãã®æ®µèœã®èгå¯ã§ã¯ååã«ç€ºããŠããªãããããã§åãäžããŠããçšæ³ã®ãã¯äž»ç¯ã«çŸãããã®ãšäžå¿èŠãªããããšã«ãªãã
仿«ãããã«ã€ããŠå°ã詳ããèããŠã¿ããããã¯ãä»ã®ä¿å©è©ãšåæ§ã«ã次ã®äœçœ®ã«çŸããã
(35) NP-Case-___
ãããããå©è©ã«åŸç¶ããå Žåã«ã¯ãå
è¡ããå©è©ãçŸããŠã¯ãªããªãã
(36) NP-â
-___
çŸããŠã¯ãªããªãå©è©ã¯ã¬ãšã²ã§ããããã®åŸæ¥ã«ãã£ãŠçèµ·åºæ¥ãªãã¬ã¯è»¢çœ®ã«ãã£ãŠçŸããã
(37)
a. ã¢ã¡ãªã«å€§çµ±é â
ãããã«ãã»ãã©ã³ãæ°ã
b. ããã«ãã»ãã©ã³ãæ°ã¬ã¢ã¡ãªã«å€§çµ±é ã
ãããäžäžç« ã¯ãææ ŒããšåŒãã (ãçŸä»£èªæ³åºèª¬ã)ãããã«å¯Ÿã
(38)
a. ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒ â
ãç«ã
b.*ç«ã¬ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒã ã®ããã«è»¢çœ®ã§ã¬ãåºããªããã®ããããäžäžã¯ããããç¡æ ŒããšåŒãã (äžæ²æž)ãã€ãŸãããã¯åžžã«æ Œã䌎ãåè©å¥ãšãšãã«çšããããèš³ã§ã¯ãªãããšããããšã§ãããã§ã¯ãã®æå³ã»æ©èœãšã¯ãªãã ãããã
åç¯åãããæ(ããã£!ãããç«!ãã®ãããªãã®ã§ã¯ãªãæ)ã«ã€ããŠããããŸã§ãã䌎ãå¥ããäž»é¡ topicããæã€æãšæããªãæã«åãããããšèããããŠãããäž»é¡ãæã€æãæŸäžå€§äžéã¯ãæé¡çæææå®ã(ãæšæºæ¥æ¬ææ³ã)ãé»ç°æå¹žã¯ categorical judgment (double judgment è€å倿ãThe (W)hole of Doughnuts)ã衚çŸããæã§ãããšããŠããããããŠäž»é¡ãæããªãæãæŸäžã¯ãç¡é¡çå®å
šæææ§æå®ããé»ç°ã¯ thetic judgment (simple judgment åçŽå€æ)ã衚çŸããæã§ãããšããŠããã
以åŸãäž»é¡ãå«ãæããæé¡æããå«ãŸãªãæããç¡é¡æããšåŒã¶ãç¡é¡æã¯
(23) ã!ããŒãã«ã®äžã« â
çç²ããã!
ã®ããã«ãããåºæ¥äºã«ã€ããŠããããã²ãšãŸãšãŸãã®å€æãšããŠåºãæãã«è¿°ã¹ã(èšãæãããšãè«è©±ãæèãªãã«ç®åã®åºæ¥äºãè¿°ã¹ã)䜿ããæ¹ããããååšåè©æä»¥å€ã§ã¯
(39)
a. ã»ã!ãŠãã®åãèµ°ã£ãŠã!
b. èŠãŠ!çœãã€ãéåè»ãåŸ
ã£ãŠã!
ã®ãããªèªåè©æãä»åè©æã§ç¡é¡æãšãªããã®ããããäžæ¹ã察å¿ããæé¡æ
(40)
a. ãŠãã®åã¯èµ°ã£ãŠãã
b. çœãã€ã¯éåè»ãåŸ
ã£ãŠãã
ã§ã¯ç°ãªã䜿ããæ¹ãã
(41)
a. ã¢ã³ã¿ããšãã®åã©ã...? -ãŠãã®å(ã¯)ããèµ°ã£ãŠãã£ãŠ!
b. ã¹ããŒãéåã«ã¯æ°ãä»ããŠãçœãã€ã¯éåè»ãåŸ
ã£ãŠãããã... ã® (41a) ã®ããã«ãå
è¡ããçºè©±ãæ¿ããŠãããŠãã®åããšãã倿ãè¡ããããã«å¥ã®å€æãããèµ°ã£ãŠãããçµåãããŠæ
å ±ãäŒãããã(41b) ã®ãããªãç·ç§°æ generic sentenceãã§ãã¹ããŒãéåã®åãç· ãŸããã飿³ããããçœãã€ããšãã倿ã«ãéåè»ãåŸ
ã£ãŠããããšãã倿ãçµåãããŠããåŸãç¶æ³ãäŒããŠæ³šæãåèµ·ãããããã
ãªãã(39) ãš (41) ã察æ¯ããããšãã¬ã䌎ãåè©å¥ãšãã䌎ãåè©å¥ã察ç
§çã§ããããããã°ãã°ãäž»èªã®ããšã¬ã¯ã©ãéããããšããåé¡èšå®ããªãããããããååšåè©æã§èŠãããã«ããä»ããããŠäž»é¡ã«ãªãã®ã¯ã¬ã䌎ãåè©å¥ã«éãããããã䌎ãåè©å¥ããä»ã«ã¯ã²ã䌎ãåè©å¥ãã«ã©ã䌎ãåè©å¥ããªã©ãšå¯Ÿç
§ãããã¹ãã§ãããã€ãŸãããäž»èªã®ããšã¬ã¯ã©ãéããããšããã®ã¯èª€ã£ãåé¡èšå®ã§ãããããã«ææ³¥ããããã«ä»ã®éèŠãªçŸè±¡ããæ³šæãéžããããŠããŸããšããããšã§ã誀ã£ãåé¡èšå®ãèŸããŠéèŠãªçŸè±¡ã«åãçµãã¹ãã§ãããšããŠäžäžç« ããäž»èªå»æ¢è«ãã匷ã説ããããšã¯æåã§ãã(æ¥æ¬èªã«ãã©ããªå®çŸ©ãã¯çœ®ããŠãäž»èªã¯ãªãããšäž»åŒµããŠããããã§ã¯ãªããäžäžã¯ãäž»èªããšããçšèªãé¿ããŠãäž»æ ŒããšåŒã³ã€ã€ãäž»æ Œã®åªäœæ§ã¯åŒ·èª¿ããŠãã)ã
æé¡æãšç¡é¡æã®æå³ã»æ©èœã«ã€ããŠã¯ãŸãæ¹ããŠè§Šããããšã«ãããããã§ã¯ãããã®çµ±èªè«çæ§è³ªã«æ»ãããšã«ããã(1a, b) ã®æé¡æ
(42)
a. çç² ã ããŒãã«ã®äžã«ãã
b. ããŒãã«ã®äžã« ã çç²ããã ã«å¯Ÿå¿ããç¡é¡æã¯
(43) ããŒãã«ã®äžã«çç²ããã
ã§ãããåºæ¬èªé ãæã€ (43) ãšäžŠã¹ãŠèгå¯ãããšã(42b) ã¯åºæ¬èªé ã®ãŸãŸã§ããã®ã«å¯Ÿãã (42a) ã¯ãçç²ããå«ãäž»é¡ã¯æé ãŸã§åé²ããŠããããããåºæ¬èªé ã®ãŸãŸã®æé¡æã«ãããš
(44) ããŒãã«ã®äžã«çç² ã ãã
ãšãªããããã®å Žåãçç²ã¯ãã¯å¯Ÿæ¯ã®è§£éã§æ¬¡ã®ãããªæãè«è©±ã®æç
(45)
a. ããŒãã«ã®äžã«çç²ã¯ããã麊é
ã¯ãªã
b. ããŒãã«ã®äžã«çç²ã¯ãããã§ãèå¿ã®ããŒã¹ããŒã±ãŒãã¯ãªãããã!
ãšã¯ãªããããäž»é¡ãšã¯è§£éã§ããªããæåŠçããã¹ãã«
(46) å³»å³ãã衚æ
ãæã
ã«èŠããéå³°ã®äžè
¹ã«ç®æã寺é¢ã¯ãã
ã®ãããªäŸãèŠãããããç Žæ Œãšãã¹ããåŠãäžæã§ããã®è¡šçŸå¹æãæ°ã«ãªããããã§ã¯ãããã£ãäŸã®ã¹ããŒã¿ã¹ã«ã€ããŠã¯ä¿çã«ãããã
ãããããšãåºæ¬èªé ãšãã芳ç¹ããã(42b) ã¯äž»é¡ãå
ã®äœçœ®ã«çãŸã£ãŠããã®ã«å¯Ÿãã (42a) ã§ã¯äž»é¡ãæé ã«è»¢äœãããŠããããšèšã£ãŠå·®ãæ¯ããªããå³åŒçã«ç€ºããš
(46)
a. [áŽáŽ NP-ni wa ...
b. [áŽáŽ NP-â
wa NP-ni ____ ...
ã§ãããããã§ âCPâ ã¯ãããŸãã«ãæããšããã«ããŽãªãŒã ãšçè§£ããããã
å
ã«ãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãæã®å®¹èªæ§å€æãäžããããšè¿°ã¹ããçºè©±ããåŽããèŠãå Žåãæ¯èªè©±è
ã¯çºè©±ããæãçŸä»£èªã®ç¥èãåç
§ããŠå®çŸ©ããããã®ãããªçŸä»£èªã®çµ±èªçç¥èãæ§æãããã®ããèŠåããšåŒãŒãã
ãããŸã§èŠãŠããããšããèããŠãçŸä»£èªæ¯èªè©±è
ã®çµ±èªçç¥èã«ã¯æ¬¡ã®ãããªèŠåãå«ãŸããŠããªããã°ãªããªãã
(48) åºæ¬èªé
NP-ga NP-o V
NP-ga Vi
NP-ni NP-ga Ve
(49) äž»é¡æã®èªé
[áŽáŽ [áŽáŽáŽ NP-case wa]i X0 â
i Y0]
ãããã«å ããŠæ¬¡ã®èŠåãå¿
èŠãšãªãã
(50) åºæ¬èªé ãšäž»é¡æã®èªé ã®é¢ä¿ãå®çŸ©ããèŠå
話ãå
ã«é²ããããã«ãæã®è¿°éšãæ§æããåè©ã圢容è©ãªã©ã®æ§è³ªã«ã€ããŠç°¡åã«èŠãŠã¿ãããšæããŸãã
åŠæ ¡ã®ææ³ãè¿°éšã«ãªãããšæããã®ã¯çšèšã®åè©ã圢容è©ã圢容åè©ãšãäœèšã®åè©ã»ä»£åè©ã«æå®ã®å©åè©ãã¢ã«(ãããã¹)ãä»å±ãããã®ã§ããäžäžç« ã®äŸ
ã»ãããªããšãããšãã³ã¬(ãããã€ãèŠããªãã)ã ã
ãšããã®ããããæç€ºè©ãããçŸå®äžçã®ãã®ã鿥çã«äœèšã®ããã«ã§ããŸãã
è¿°éšã¯ãããã«å©åè©ãçµå©è©ãä»å±ããŠæ¡åŒµããããšãã§ããŸããããã§ã¯æ¡åŒµããªã裞ã®è¿°èªãèŠãŠã¿ãŸãããã
è¿°èªã¯å€§ããåããŠåè©ãšãã以å€ã«åé¡ã§ããŸãã
<åè©>
ã»çç²ã飲ã
ã»å¯ã
ã»ãã
<圢容è©>
ã»å¯ã
<圢容åè©>
ã»éãã
<åè©+æå®ã®å©åè©>
ã»å€±æ¥è
ã
ãããã¯æ¬¡ã®ã¹ããŒãã«åœãŠã¯ãŸããšãæåºãããåè©ã§äºåãããŸãã
ã»___ã___ã±ã¬ãã¢
<åè©>
ã»çç²ã飲ã¿ãããã±ã¬ãã¢
ã»å¯ãããã±ã¬ãã¢
ã»ãããããã±ã¬ãã¢
<圢容è©>
ã»å¯ããããã±ã¬ãã¢
<圢容åè©>
ã»éãã§ãããã±ã¬ãã¢
<åè©+æå®ã®å©åè©>
ã»å€±æ¥è
ã§ãããã±ã¬ãã¢
ã€ãŸããæåºãããåè©ãã¹ã«ã§ãããã®ãšã¢ã«ã§ãããã®ããããŸããåè
ãã¹ã«åãåŸè
ãã¢ã«åãšåŒã¶ããšã«ããŸã(åè©ããããèªäœã¯ã¹ã«åã§ã)ã
ãããããäž»èªãã«é¢ããŠãã¹ã«åãšã¢ã«åã«ã¯æ¬¡ã®ãããªéãããããŸãã
ã¹ã«åã§ã¯
ã»ç¶ã¬çç²ã飲ãã§ãã
ã§ãã¬ã䌎ãåè©å¥ãç¹æ®µç¹æ®ãªè§£éãæã€ããšã¯ãããŸãã(æŸäžã®ç¡é¡çå®å
šæææ§æå®ãé»ç°ã® thetic judgment)ã
äžæ¹ãã¢ã«åã§ã¯çºé³äžåç«ãèŠããããç·èš exhaustive listingãã®è§£éãç¡æšã§ãã
ã»ãã®éšå±ã¬å¯ã
ã»ç°èã¬éãã
ã»1.7%ã¬å€±æ¥è
ã
ã¢ã«åããªããã®ãããªè§£éãåããã®ãã«ã€ããŠã¯æé¡ã»ç¡é¡ãã¢ã¹ãã¯ããšé¢ä¿ä»ããŠå¥ã«ãã€ãŒãããããšæããŸãã
ããã§ã¯ã¹ã«åã§ããåè©ã®æ§è³ªã«ã€ããŠèããŸãããã
åè©ã¯æéã®ããŒã¯ã³ã§ããããšããèãããããŸã(éå亚ãèšèªã®æé衚çŸã)ãæéã¯äœãç¬ç«ã«ååšãããã®ã§ã¯ãªããã€ãã³ã(åºæ¥äº)ã®é£ãªãã§ãããšèšãããšãã§ããŸããç§éãæå»ãæéãç¥ãã®ã¯ç¬ç«ã«ååšããæéãåç
§ããŠããããã§ã¯ãããŸããã
䞊è¡ããŠèµ·ãã£ãŠããã€ãã³ãã®äžã€ãåºæºã«ããŠ(äžççãªæéã®åäœã¯ã»ã·ãŠã 133ã®é·ç§»ã«åºã¥ããŠãã)ãæŠããããšåãããã«å€åãããã®(è
æèšãªã©)ãèŠãŠæå»ãç¥ã£ãããæéãæž¬ã£ããããŸãã
åè©ã¯ãã®ãããªã€ãã³ãã®é£ãªãã§ããæéã®äžéšã«ååãä»ãããã®ã§ããåèªå埩ã®ããã«ãªããŸãããããããŠåè©ã¯ã€ãã³ããæç€ºå¯Ÿè±¡ãšããŸãã
èšèªãé¢ããŠã€ãã³ããèããããšã¯é£ããå ŽåããããŸãããèããŠã¿ãŸãã
ã€ãã³ãã¯äœããèµ·ããå ŽåããããŸããããªã«ããªãèµ·ããå ŽåããããŸããäŸãã°ããªã¢å
ãççºãããã§ã¯ãã®äœãã¯ããªã¢å
ãã§ãããæéšãããã®ã¯ç¹ã«äœãããã£ãŠèµ·ããããã§ã¯ãããŸããã
ããã§ãççºãããã¯ããªã¢å
ããåŒãèµ·ãããã®ã§ãèšèªçã«ã¯ããã®åè©ã¯åäžã®åè©å¥ãå¿
èŠãšããŸããããã¯1é
åè©ã§ãäžè¬ã«ãèªåè©ããšåŒã°ããŸãããæéšãããã¯0é
åè©ã§ãã
ãããããèªåè©ããšãä»åè©ããšå¯Ÿå¿ããããšã次ã®ããã«ãªããŸãã
<èªåè©>
0é
åè©ã1é
åè©
<ä»åè©>
2é
åè©ã3é
åè©
æ¥æ¬èªæ¯èªè©±è
ã®çµ±èªçç¥èãèããäžã§ããããã£ãæ
å ±ã§ååã§ãããã?å
åãã«ãªããŸããããã€ã¹ãšã¢ã¹ãã¯ãã®èгç¹ããããã«äžã®ãããªæ§æ Œä»ããå¿
èŠã§ãã
1é
åè©ã®äžã«ã¯ãã¯ãããããã®å身ããšããæãäœãããã®ãšäœããªããã®ããããŸãã
ã»ããªãã«å±
ããããšå°ã
ã»éšã«éãããŠãã¶æ¿¡ãã«ãªã£ã
ã»*ãããã *èŠããã
äœããªãã¿ã€ãã®åè©ãäžäžç« ã¯ãæåè©ããšåä»ããŸããã
æ¢ã«èŠãããã«1é
åè©ã«ã¯å¯Ÿå¿ããä»åè©ãæã€ãã®ããããã·ãã€ã«ã®åœ¢ã§çµæã®åç¶ã®è§£éãæã¡ãŸãã
ã»ããŒã«ãå·ããŠãã
ã»ã¢ãããèµ°ã£ãŠãã(é²è¡/*çµæåç¶)
ãŸããå©åè©ç¡ãã§å¯èœã®æå³ãæ
ãåŸãŸãã
ã»ãã®æã¯ç°¡åã«éããªã
ãã®ã¿ã€ãã¯ãéå¯Ÿæ Œåè©ããšåŒã°ããŸãã
2é
åè©ã§ãããæ®Žããã§ãèªåãã®å
è¡è©ã«é¢ããŠèª¿ã¹ããš
ã»ç°äžéšé·iãèªåiã®éšäžã殎ã£ã
(äžä»ãã® âiâ ã¯åã人)
ã§ã¯ãç°äžéšé·ãããèªåãã®å
è¡è©ã«ãªããŸãã
ã»*èªåiã®äžåžãæ± ç°iãæ®Žã£ã
ã§ã¯äžå¯èœã§ããããã«å¯Ÿã
ã»èªåiã®éå»ããªãŒãŠã§ã³iãèŠããã
ã¯å¯èœã§ãã
ãã®ãããªãå
è¡è©ãéã®äœçœ®ã«ãªããããªã¯ã©ã¹ã®åè©ããå¿çåè© psych verbããšãããŸãã
åè©ä»¥å€ã§ã¯
ã»èªåiã®åšãçæŸiã®èªãã
ã®ãããªãã®ããããŸã(äžå®
ç¥å®ãèšèªåŠäŒçºè¡š)ã
ãŸãšãããš
0 é
åè© å¹éªããæéšãã
éå¯Ÿæ Œåè© èãããæãã
éèœæ Œåè© èµ°ããæ³³ã__________èªåè©
æåè© ãããããã
____________________ä»åè©
æå¯Ÿä»åè© èãããæã
ç¡å¯Ÿä»åè© é£ã¹ã
ç§»ååè© è¡ããæ¥ã
å¿çåè© èŠããã
è€ä»åè© æž¡ããããã
(1) NP-ga Vi NP-ni NP-ga Ve NP-ga NP-o V
(2) NP-ga ã®å Žåãæ¬¡ã®ç¶æ
ã®åè£ã (3) {NP-ga, NP-o, NP-ni, V, â
, ...} ã§ãããããã確çã«ãã£ãŠ (4) NP-gaâNP-o ãéžã°ããŸãã
(5) {NP-ga, NP-o, NP-ni, V, â
, ...} ãšããåè£ãã確çã«ãã£ãŠ (6) NP-gaâNP-oâV ãéžã°ããŸããç¶æ
é·ç§»ã¯äºåºŠã®é·ç§» (7) ç¶æ
1âç¶æ
2âç¶æ
3 ã§çµäºãããã®ãšããããã§æã宿ããŸãã
(8) a. ç¶æ
1 b. ç¶æ
1âç¶æ
2 c. ç¶æ
1âç¶æ
2âç¶æ
3 d. ç¶æ
1âç¶æ
2âç¶æ
3âç¶æ
4 ã®å¯èœæ§ããã(é
ã®åæ°ã 0 ã 3 ãšããŠ)ãæçµã®ç¶æ
ããç¶æ
eããšãããš (9) ç¶æ
10â ... âç¶æ
eâ10âç¶æ
e ã®ããã«äžè¬çã«è¿°ã¹ãŠããå¿
èŠããããŸãããããŠç¶æ
eã§ããåè©ã«ãã£ãŠæ¡çšããç¶æ
ã®æ°ã決ãŸãããšããŠãããªããã°ãªããŸãã(ããã§ãç¶æ
0ãã¯ç¶æ
ã 0 以äžã§ããããšã衚ãããšã«ããŸã)ã ææ³ã¯ãæãåŒ±çæ weakly generate ããæ§é èšè¿°ãåŒ·çæ strongly generate ããã(Noam Chomsky _Aspects of the Theory of Syntax_)ãã®ã§ããæãã¯è¡šé¢çãªèªã®äžŠã³ãæããŸã(ãæ§é èšè¿°ãã«ã€ããŠã¯åŸçš)ã匱çæèœåããæããªãæéç¶æ
ææ³ãæ¥æ¬èªæ¯èªè©±è
ã®ç¥èãèšè¿°ããããšã¯äžå¯èœã§ãã ããã§ç·åœ¢é åº(匱çæåãæã€ç¥èã§å®çŸ©ããã)ã§ã¯ãªããæ§é èšè¿° structural description ã«æ³šæãåããããšã«ããŸããããæ§é èšè¿°ãšã¯ãæã®è¡šé¢ã«çŸãããèŠããã»èããã圢åŒã®èåŸã«ããããŸãšãŸã(æ§æçŽ æ§)ãªã©ã®ããšã§ãã ãŸãšãŸããšããã®ã¯æ©æ¬é²åã®é£æç¯ãææèª èšã®å
¥ãåãã¢ã¡ãªã«æ§é 䞻矩èšèªåŠã® IC åæã®æ§æçŽ ã®ããšã§ããäŸãæããŠèããŠã¿ãŸããããäŸãæç¯ã«åããŠç€ºããŸã (10) |ããããª|ãããããã®|æŽæ| äžã®æã¯å€çŸ©çã§ããäžã€ã¯ãããããªã®ã¯ãããããããšããè§£éã§ãã ãã®è§£éã§ã®ç¬¬äžã®é£æç¯ã âââ ã䜿ã£ãŠç€ºããŸãã (11) |ããããªâãããããã®|æŽæ| ãããããªâãããããããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããæ¬¡ã®é£æç¯ã瀺ããš (12) |第äžé£æç¯âæŽæ| ãšãªããŸãã æ¬¡ã«ããäžã€ã®è§£éãèããŸãããããããªã®ã¯æŽæããšããè§£éã§ããã第äžé£æç¯ã¯ (13) |ããããª|ãããããã®âæŽæ| ãšãªããŸããããããããã®âæŽæããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããŠæ¬¡ã®é£æç¯æ§é ã瀺ããš (14) |ããããªâ第äžé£æç¯| ãšãªããŸãã 以äžãæ§æçŽ ãšåŒã³ãã¿ã€ãã®äŸ¿å®äžãæ¬åŒ§ã§æ§æçŽ ã瀺ããŸãã (15) a.|ããããª|ãããããã®|æŽæ| b.|ããããªâãããããã®| c.|ãããããã®âæŽæ| ã¯ãããã (16) a. [ããããª][ãããããã®][æŽæ] b. [[ããããª][ãããããã®]] c. ãããããã®æŽæ ãšåãã§ãã åºæ¬èªé ãæã€åæã®åé¡ã«æ»ããŸããããæ¬¡ã®æãèããŸãã (18) 姪ãçªãéãã ããã«çŸããã姪ãããçªãããéããããšããäžè
ã®éã®é¢ä¿ã¯å¯Ÿçã§ã¯ãããŸããããçªãéããããšããçµã¿åããã䜿ã£ãŠäœã (19) [çªãéããŠ] ãã ã®ãããªæã¯ãã£ãŠãã姪ãéãããã«ã¯ãããŸããã ãŸã (20) NP㬠NPã² éã±ã« ã«ã¯å¯Ÿå¿ãã (21) NP㬠é㯠ãããããæå³ã§ãã®éå¯Ÿæ Œåè©ã®ã䜿圹åããšèšããŸããèªä»å¯Ÿå¿ã¯åœ¢æ
è«ã®åé¡ãšããä»åè©æãšäœ¿åœ¹ææ³ã®éãã¯åŸåãã«ããŠãããããæ§æçŽ æ§é ãæç¢ºã«ãããš (22) a. [NP ga é] b. [NP ga [NP o é] 䜿] ã§ãã ããã§çåãçããŸããäžç·ã«å©è©ã®ã¬ãã²ãç¥ã£ãŠããå¿
èŠãããããã§ãã0 é
åè©ãé€ãã»ãšãã©ã®åæã¯ä¿å©è©ãå¯å©è©ã§çœ®ãæãããªããã°æäœäžã€ã¬ã䌎ãåè©å¥ãçŸããŸãã詳ããã¯åŸã«ããŠèªä»å¯Ÿå¿ãããã¯ã©ã¹ã Vunacc ãšãããš (10) a. [NP1 Vunacc] b. [NP2 [NP1 Vunacc] CAUS] åæ§ã®ããšã¯ç¡å¯Ÿä»åè©ã«ãèšããã§ããããããé£ã¹ãããåãäžããŸãã (11) ããã€ãã¬ãåºãé£ã¹ããããªããã°... ããã§ (12) a. ã¬ãåºãé£ã¹ããããã€ãããªããã°... b.*ããã€ãé£ã¹ããã¬ãåºãããªããã°... ã®å¯Ÿæ¯ãããæ¬¡ã®ããã«èããããŸãã (13) [NP2 [NP1-o Vacc]] ãã®è°è«ã¯ Hoji, Miyagawa and Tada. 1989. NP-movement in Japanese, ms. ã«äŸããŸãã ãããŸã§ (14) [NP2 [NP1-o V] α] ãšããæ§é ã確èªããŸãããèªé ãšã®å¯Ÿå¿ã¯ (15) [NP2 [NP1-o V] α] æ§é
ã«ãªããŸãã éã«ååšæã§ã¯ (16)
[NP2-ni [NP1 V] α] ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãçŸä»£æ¥æ¬èªã®ææ³ããšèšãæã«ã¯ãææ³ãã«äºã€ã®çšæ³ããããäžã€ã«ã¯äžè¬ã«äœ¿ãããããã«ãçŸä»£æ¥æ¬èª(æŒ ç¶ãšæããŠ)ã®èŠåãç¶²çŸ
ããŠããçšæ³ã§ãããããäžã€ã¯ãåå¥èšèªã§ããçŸä»£æ¥æ¬èªã®æ¯èªè©±è
ã®ç¥èãããèªäœãæãçšæ³ã§ãããããã§ã¯åŸè
ãèšè¿°ãããã®ããçµ±èªè«ããšåŒã¶ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çµ±èªè«ã¯ããã®æ¯èªè©±è
ãæé»ã«çè§£ããäºã«äŸåãããæé»ã®ç¥è tacit knowledge ãå
šãŠæžãåºããªããã°ãªããªããæ¬¡ãèããŠã¿ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããäºã€ã®æã«ã€ããŠå
ãã©ã®ãããªããšã芳å¯ã§ããã ããããæ¯èªè©±è
ã¯ãããã®æãçŸåšèªã®æã§ããããªããããããªãšããšããªããšå€æ judge ãããæ¬¡ã®æãšæ¯ã¹ãŠã¿ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ¯èªè©±è
ã¯ãããã®æã¯çŸä»£èªã®æãšããŠãããããçŸä»£èªã®æã§ã¯ãªãããšå€æãããèšãæãããšã(1a-e) ã®æã¯å®¹èªå¯èœ acceptable ã§ããã®ã«å¯Ÿãã(2a, b) ã®æã¯å®¹èªäžå¯èœ unacceptable ã§ããããšããã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããŠãæ¯èªè©±è
ã¯ã©ã®ããã«ããŠãããã£ã倿ã瀺ãã®ã§ãããããäžã€ã®ä»®èª¬ãšããŠãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãå®¹èªæ§ acceptability ã®å€æãäžãããã®ãšãããããã§çŸä»£èªçµ±èªè«ãšåŒãã§ãããã®ã¯ããã®ä»®èª¬ãåãå
¥ãã倿ã®åºç€ãšãªã£ãŠããçµ±èªçãªç¥èãæžãåºãããšããã®ã§ããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "çŸä»£æ¥æ¬èªã®çµ±èªçãªç¥èã¯ã©ã®ãããªãã®ã§æ§æãããŠããã®ã ãããã(1) ã«çŸãããçç²ããæã瀺ãç©ã«ã€ããŠèããŠã¿ãããããèãããšäžäœäœãæããŠããã®ã ããããçç²(ã³ãŒããŒ)ãæ§æããé³é» /koRhiR/ ã¯é£²ã¿ç©ãæå³ããããããæ¶²äœã¯ãã®ãŸãŸã§ããŒãã«ã®äžã«çœ®ãããšãã§ãããã®ã§ã¯ãªã(溢ãããé¶ãããæäººã錻ã«å²ã箞ãçªã£èŸŒãã§æã£ãã®ã§ç¬ã£ãŠå¹ãåºãããçã®å Žåã¯å¥ã®æã䜿ãã¯ã)ãæã瀺ãããŠããã®ã¯ã³ãŒããŒãåšã«å
¥ã£ãç¶æ
ã®ãã®ãã³ãŒããŒè±ã容åšã«å
¥ã£ãç¶æ
ã®ãã®ãçã§ãããããçç²ãããããã£ãç©ãæãã®ã¯ã¡ããã㌠metonymy ãšåŒã°ãããã®ã§ãèšèªã®éèŠãªç¥èã§ããããããçµ±èªè«çãªç¥èã¯ãããã£ããã®ã¯å«ãŸãªãã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "(1a) ãš (2a) ãæ¯ã¹ãŠã¿ãããéãã¯ãããŒãã«ã®äžããšãããŒãã«ãããã§å©è©ããããããªãããã§ããããããŒãã«äž (ããã)ããšããã°å®¹èªå¯èœãšãªãããããã§ã¯ãã®åé¡ã¯æªããèšèªã«ãã£ãŠã¯ããç°å¢ã§å©è©ãã«å¯Ÿå¿ãããã®ãèªç±ã«è±èœããããæ¥æ¬èªã®çŸä»£èªã§ã¯èš±ãããªããã€ãŸããããŒãã«ããšãäžããçµ±èªè«çãªãŸãšãŸãããæ§æçŽ constituentãããã«ã¯å©è©ããå¿
èŠãšãªãããããŒãã«ããšãäžãã¯åŠæ ¡ã®åœææ³ã®åè©ã§ãããããããããªãæ§æçŽ ãåè©ã§ããããããã£ãåè©ã®æ§æçŽ ã¯æŽã«æã®äžéšãšãªãããæãæãç«ãããæ§æçŽ ã®ããã®æ§æã®ä»æ¹ã«é¢ããç¥èã§ããå©è©ãã®å¿
é æ§ã¯çµ±èªè«çãªç¥èã§ããã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ç¶ã㊠(1d, e) ãš (2b) ãæ¯ã¹ãŠã¿ããã(1d, e) ã®æç fragment ãåãåºãããã®ã次ã§ããã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã§ã¯ãããŒãã«ã®äžã«ããšãçç²ããã®é åºãå
¥ãæ¿ãã£ãŠããããæ¥æ¬èªã¯èªé ãèªç±ã§ããããšããèšãããããäžã®äºæã¯ãããäŸç€ºããŠãããæŽã«",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã® (4b) ã®ããã«ãçç²ã¯ããè¿°éšã®åŸã«çœ®ãããšãå¯èœã§ãããããããèŠããšçŸä»£èªã§ã¯",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšããããã«æ¥µããŠèªé ãèªç±ã§ããããã«èŠãããå ããŠ",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã®ããã«è¿°éšãåã«çœ®ãããå Žåããã",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšããããã«ãèªé ã¯å®å
šã«èªç±ã§ãããšèãããããããããªãã",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "è±èªã®èªé 㯠SVO ã§ããã®ã«å¯ŸããŠæ¥æ¬èªã¯ SOV ã§ãã(ã ãããã³ãã«ã³ã)ããšèšãããããšããããäžã®èгå¯ãèæ
®ã«å
¥ããå ŽåãSVO èªé ãããã° VS èªé ããããããããæ¥æ¬èªã«é¢ããŠèªé ã«èšåããããšã¯ç¡æå³ã ãšãã人ãå±
ãŠãããããªãã",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãããããã§ (2b) ãèŠãŠã¿ãããäžã«åæ²ããã",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "(2) b.*ããŒãã«ã®äžã«ããçç²ãããšã«ããã€ã¯æ°ä»ããŠããªãã®ã",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã®æã¯å®¹èªäžå¯èœã§ããããã¡ãããã®æç",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "(8) ããŒãã«ã®äžã«ããçç²ã",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã¯çŸä»£èªãšããŠåé¡ããªãæçã§ããããã ããã®æçã¯ãçç²ããšããåè©ããããŒãã«ã®äžã«ããããé£äœä¿®é£ŸããŠãããã®ã§ãããã§åé¡ãšããããšããŠãããã®ãšã¯ç°ãªããå¥ã®æç",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "(9) ããŒãã«ã®äžã«ããçç²ãããšã«",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ã¯äžé©æ Œãªæçã§ãããåæ§ã«",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "(10)",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "a.*ããããªãã€ã³ãã«ãšã³ã¶ã«ããã«ããããšææŽããæ¬ ãããã«è¡ã£ãŠãã",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "b.*ææ¥ã¯è¯ãããã倩æ°ãããå¯äžæ°Žæ³³ã«åºãããã",
"title": ""
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ã容èªäžå¯èœã§ããã",
"title": ""
},
{
"paragraph_id": 25,
"tag": "p",
"text": "å®å
šã«å®¹èªå¯èœãªç¯å²ã®èªé ã®å
¥ãæ¿ããšã容èªäžå¯èœã«ãªãèªé ã®å
¥ãæ¿ãã®ç°å¢ã®éãã¯äœã ããããè¿°éšã®åŸã«äž»èªãªã©ãçŸããã®ã¯äž»ç¯ã«ãããŠã§ãããåŸå±ç¯ã§ã¯å¿
ãè¿°éšãæ«å°Ÿã«çŸããªããã°ãªããªããã€ãŸããèªç±èªé ã¯äž»ç¯ã«ã®ã¿èŠãããçŸè±¡ã§ãçŸä»£èªã®ãããããšããã«èŠãããçŸè±¡ã§ã¯ãªãããšããããšã«ãªãã",
"title": ""
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã§ã¯ä»ã®èªç±èªé ãããªãã¡è¿°éšã®åã«æ¥ãèŠçŽ ã¯å¶éãªãèªç±ãªã®ã§ãããããè±èªã®ãã㪠SVO ããã¢ã€ã«ã©ã³ãèªãã¿ã¬ãã°èªã®ãã㪠VSO ã§ã¯ãªããšããŠãè¿°éšãæåŸã«ããããã°èªé ã«èŠåæ§ããåºæ¬èªé ã®ãããªãã®ã¯ãªãã®ã ãããã",
"title": ""
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãããŸã§åè©ãèŠæ±ããæ§æçŽ ããé
argumentãã®ã¿ãæ±ã£ãŠããããããã§é
ã§ã¯ãªãå¯è©ãªã©ã®æ§æçŽ ã§ãããä»å è© adjunctããåãäžããŠèããŠã¿ããã",
"title": ""
},
{
"paragraph_id": 28,
"tag": "p",
"text": "(11â)",
"title": ""
},
{
"paragraph_id": 29,
"tag": "p",
"text": "a. 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåãæšæ¥åã«å¢ãã]ãšåŸæ¥å¡ã«åãã",
"title": ""
},
{
"paragraph_id": 30,
"tag": "p",
"text": "b. *æšæ¥i 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåã ti åã«å¢ãã]ãšåŸæ¥å¡ã«åãã",
"title": ""
},
{
"paragraph_id": 31,
"tag": "p",
"text": "äžè¬ã«ãä»å è©ã¯åŸå±ç¯ã®äžããåãåºããŠäž»ç¯ã«çœ®ãããšãã§ããªããšèšãããŠãããç¯å¢çãè¶ããæ»ãæ··ã scrambling ã¯ãé·è·é¢æ»ãæ··ã long-distance scramblingããšåŒã°ããŠãããäžã¯ãã®äžäŸã ããäž»ç¯ã«æéå¯è©ãäºã€ããããã«ããã§é¢ä¿ä»ããŠè§£éããããããšãæªããããŠããã«ãããããªããã€ãŸããèªç±èªé çŸè±¡ãšã¯ã²ãšãŸãé¢ä¿ã®ãªãçŸè±¡ã ãšèšããããããããªãã",
"title": ""
},
{
"paragraph_id": 32,
"tag": "p",
"text": "次ã«äžã®ãããªäŸãèããŠã¿ããã",
"title": ""
},
{
"paragraph_id": 33,
"tag": "p",
"text": "(12)",
"title": ""
},
{
"paragraph_id": 34,
"tag": "p",
"text": "a. å
ã¯æšæ¥çŽäŒåå±ãžåèæžãè²·ãã«è¡ã£ã",
"title": ""
},
{
"paragraph_id": 35,
"tag": "p",
"text": "b. å
ã¯åèæžãè²·ãã«æšæ¥çŽäŒåå±ãžè¡ã£ã",
"title": ""
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãããäºã€ã®æã¯ã次ã®äºã€ã®ç¯ãçµã¿åãããŠããããäžæã«ããŠããã",
"title": ""
},
{
"paragraph_id": 37,
"tag": "p",
"text": "(13)",
"title": ""
},
{
"paragraph_id": 38,
"tag": "p",
"text": "a. å
ã¯æšæ¥çŽäŒåå±ãžè¡ã£ã",
"title": ""
},
{
"paragraph_id": 39,
"tag": "p",
"text": "b. å
ãåèæžãè²·ã",
"title": ""
},
{
"paragraph_id": 40,
"tag": "p",
"text": "åé¡ã®äºã€ã®æã®éãã¯ã(13b) ããäœã£ãç®çç¯ãäž»ç¯è¿°éšãè¡ã£ããã«é£æ¥ããŠãããåŠãã§ãããããã§ãçŽäŒåå±ãžãã®èªé ãå
¥ãæ¿ããŠã¿ããã",
"title": ""
},
{
"paragraph_id": 41,
"tag": "p",
"text": "(14)",
"title": ""
},
{
"paragraph_id": 42,
"tag": "p",
"text": "a. å
ã¯æšæ¥åèæžãçŽäŒåå±ãžè²·ãã«è¡ã£ã",
"title": ""
},
{
"paragraph_id": 43,
"tag": "p",
"text": "b.*å
ã¯åèæžãçŽäŒåå±ãžè²·ãã«æšæ¥è¡ã£ã",
"title": ""
},
{
"paragraph_id": 44,
"tag": "p",
"text": "åè©ã«ç®çç¯ã飿¥ããŠããªã (14b) ã¯å®¹èªäžå¯èœããããŠäžèªç¶ããšå€æãããã¯ãã§ããã",
"title": ""
},
{
"paragraph_id": 45,
"tag": "p",
"text": "æããäºã€ã®ã±ãŒã¹ã¯è€æã§ããããŠãè€æã§ã¯æå±ããç¯ããæ§æçŽ ãç§»ãããšã¯èªç±ãšã¯èšããªãããšããããšããè¿°ã¹ãŠããªããããã§æ¬¡ã«åæãåãäžããŠèå¯ãããã",
"title": ""
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãŽãŒã«ãæç¢ºã«ããããã«ãããèšããããæ¥æ¬èªã¯ SOV èªé ã§ãããã«ããããŠåé¡èšå®ããŠã¿ãããããã§çŸä»£èªã«ã¯ãåºæ¬èªé basic word-orderãããã",
"title": ""
},
{
"paragraph_id": 47,
"tag": "p",
"text": "(15)",
"title": ""
},
{
"paragraph_id": 48,
"tag": "p",
"text": "a. NP-ga NP-o V",
"title": ""
},
{
"paragraph_id": 49,
"tag": "p",
"text": "b. NP-o NP-ga V",
"title": ""
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ã®ããããã§ãããããããã¯ãåºæ¬èªé ã¯ãªããåæã§ã¯é
ã¯èªç±èªé ã§ããããã確ããããã",
"title": ""
},
{
"paragraph_id": 51,
"tag": "p",
"text": "æ¬¡ã®æãèãããã",
"title": ""
},
{
"paragraph_id": 52,
"tag": "p",
"text": "(16)",
"title": ""
},
{
"paragraph_id": 53,
"tag": "p",
"text": "a. ã©ã®èгå
客ãäœãåŒåœãè²·ã£ã",
"title": ""
},
{
"paragraph_id": 54,
"tag": "p",
"text": "b. 芳å
客ã®èª°ããã©ã®åŒåœãè²·ã£ã",
"title": ""
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããã§ (16a) ã¯1ãã©ã®èгå
客ãåãäžããŠããããããè²·ã£ãåŒåœãæäœäžã€ããããšããè§£é(åé
è§£éãšåŒã¶ãéååã®äœçšåã¯â>â)ãæã€ããŸãã2ãåŒåœã«ã€ããŠã芳å
客ã®ãããããã®ãè²·ã£ãåŒåœãååšããããšããè§£é(ååšè§£éãéååã®äœçšåã¯â>â)ãšããèªé ãšã¯éã«ãªãäœçšå inverse scope ãæã€ããã«èŠãããããã (16b) ã¯ååšè§£éã®3ã芳å
客ã®åäœã«ã€ããŠãåŒåœãšããåäœã®ãã¹ãŠãè²·ã£ã芳å
客ãååšããããšããè§£éãæã€ãã4ãåŒåœã®ã©ã®åäœãåãäžããŠãããããããããè²·ã£ã芳å
客ãæäœäžäººããããšããåé
è§£éã¯æã£ãŠããªããè±èªã§ã¯ãã®å Žåãèªé ãšã¯éã«ãªãäœçšåã®è§£éãæã¡ãâSome woman loves every manâ ãšããæã§ã¯ãSome woman loves every man, and her name is Edith. ãšããååšè§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£é Some woman loves every man, because Edith loves Harold, Deirdre loves Tom and Anne loves Andy. ãšããåé
è§£é(è§£éã®äŸã¯ Koeneman and Zeijlstra, Introducing Syntax ãã)ã®ãšå¯Ÿç
§çã§ããããããè±èªã§ âEvery woman loves some manâ ã¯ç¢ºãã«èªé ãšã¯éã«ãªãäœçšåã®è§£éã«èŠãããã®ã¯ããããããã¯åé
è§£éã®ç¹æ®äŸã§ãããããæããç·ãå¶ç¶äžèŽãããšãããã®ã§ãããçŸä»£èªã§ã¯è¡šé¢ã®èªé ãšäœçšåã®åºçã¯å³å¯ã«å¯Ÿå¿ãããšèšãããŠãã(Kuroda, âRemarks on the notion of subject with special reference to the words like also, even, and onlyâ ãªã©)ã4ã®æ¬ åŠãå å³ãããšãäžã®2ã®è§£éã¯è±èªã®å Žåãšåæ§ã«1ã®ç¹æ®äŸãšèããããšãã§ããçŸä»£èªã¯èªé ãšäœçšåãå³å¯ã«å¯Ÿå¿ãããšèããããã",
"title": ""
},
{
"paragraph_id": 56,
"tag": "p",
"text": "(16) ã®èªé ãå
¥ãæ¿ããŠã¿ããã",
"title": ""
},
{
"paragraph_id": 57,
"tag": "p",
"text": "(17)",
"title": ""
},
{
"paragraph_id": 58,
"tag": "p",
"text": "a. äœãåŒåœãã©ã®èгå
客ãè²·ã£ã",
"title": ""
},
{
"paragraph_id": 59,
"tag": "p",
"text": "b. ã©ã®åŒåœã芳å
客ã®èª°ããè²·ã£ã",
"title": ""
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãã®èªé 㯠OSV ãšããèªé ã§ããããã®èªé ã§ SOV ãšåãæ§åŒã§è«ççè§£éããããããããªãã°ãçŸä»£èªã«åºæ¬èªé ã¯ãªãããšããäžã€ã®èšŒæ ã«ãªãããããã(17a) ã¯1ã®åé
è§£éãš2ã®ååšè§£éãæã¡ã(17b) ã¯3ã®ååšãš4ã®åé
è§£éãæã€ãã€ãŸããããããèªé éãã®äœçšåã®è§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£éã§å€çŸ©çãšãªããSOV ãšã¯è§£éã®å€æ§æ§ãšããç¹ã§ç°ãªãã®ã§ããããã®äžã€ã§ããèªé ãšã¯éã«ãªãäœçšåã®è§£é㯠SOV ãšåãè§£éãä¿åãããã®ã§ãããããäžã€ã§ããèªé éãã®äœçšåã®è§£é㯠OSV ãšããèªé ã§æ°ãã«åŸããããã®ã§ãããããåºæ¬èªé ããªããäžããããèªé ã§äœçšåã®è§£éãå®ãŸãã®ã§ããã°ã(17a, b) ã¯èªé ãšéã«ãªãäœçšåãåããªãã¯ããªã®ã§ããããã®èгå¯ã¯çŸä»£èªã«åºæ¬èªé ããããšããããšã®åºç€ã®äžã€ãšãªããã€ãŸãçŸä»£èªã«ã€ããŠä»¥äžãæãç«ã€:",
"title": ""
},
{
"paragraph_id": 61,
"tag": "p",
"text": "(18) åºæ¬èªé 1",
"title": ""
},
{
"paragraph_id": 62,
"tag": "p",
"text": "NP-ga NP-o V",
"title": ""
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ååšæã®åºæ¬èªé ã«ã€ããŠã¯ä¹
éæ²ã®è©³çްãªç ç©¶ããã (Linguistic Inquiry è«æããæ¥æ¬ææ³ç ç©¶ããªã©)ãåºæ¬èªé ã¯æ¬¡ã®ããã«èããããŠããã",
"title": ""
},
{
"paragraph_id": 64,
"tag": "p",
"text": "(19) åºæ¬èªé 2",
"title": ""
},
{
"paragraph_id": 65,
"tag": "p",
"text": "NP-ni NP-ga ar",
"title": ""
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ããã§æåã®äŸã«æ»ã£ãŠã¿ããã",
"title": ""
},
{
"paragraph_id": 67,
"tag": "p",
"text": "(20)",
"title": ""
},
{
"paragraph_id": 68,
"tag": "p",
"text": "a. çç²ã¯ããŒãã«ã®äžã«ãã",
"title": ""
},
{
"paragraph_id": 69,
"tag": "p",
"text": "b. ããŒãã«ã®äžã«ã¯çç²ããã",
"title": ""
},
{
"paragraph_id": 70,
"tag": "p",
"text": "c. ããŒãã«ã®äžã«ã¯çç²ãããã®ã",
"title": ""
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã㯠(1d) ã®æçã§ãã (21) ããäœãããŠããã",
"title": ""
},
{
"paragraph_id": 72,
"tag": "p",
"text": "(21) ããŒãã«ã®äžã«çç²ããã (= 3a)",
"title": ""
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãããš (20b) ã®éãã¯ãããŒãã«ã®äžã«ãã®åŸã«ãã¯ããããããªãããã ãã§ããããã¯ããšã¯ãªãã ããããåŠæ ¡ã®åœææ³ã§ã¯ãä¿å©è©ããšããåè©ã«åé¡ãããŠãããä¿å©è©ãšã¯ãå€å
žèªã®ææ³ã§ã¯è¿°éšã®çµã³ã決å®ãããããªå©è©ã®ããšãæããŠããã®ãèŠããŠããã ãããäŸãã°ãããã®çµã³ã¯é£äœåœ¢ã§ãããããã®çµã³ã¯å·²ç¶åœ¢ã§ããããªãã°ãã¯ã?ããã¯çµæ¢åœ¢ã§çµã¶ãã®ãšããŠä¿å©è©ãšåé¡ãããŠããã®ã§ããã",
"title": ""
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ããã§ãããããã®ãšãªããã®ã®éããèããŠã¿ãããããã§ãâ
ãã¯ãã«å¯Ÿå¿ãããã®ãç¡ãããšã衚ããŠããã",
"title": ""
},
{
"paragraph_id": 75,
"tag": "p",
"text": "(22)",
"title": ""
},
{
"paragraph_id": 76,
"tag": "p",
"text": "a. ããŒãã«ã®äžã« â
çç²ããã",
"title": ""
},
{
"paragraph_id": 77,
"tag": "p",
"text": "b. ããŒãã«ã®äžã« ã çç²ããã 䜿ãããç¶æ³ãæèãæäžã®ç°å¢ã«æ³šæããŠäœ¿ãããã©ãããèŠãŠã¿ããã",
"title": ""
},
{
"paragraph_id": 78,
"tag": "p",
"text": "次ã®ãããªç¶æ³ãèããŠã¿ãã:ä»äºããåž°å®
ããŠãããã³ã«å
¥ããšããè«ããããããµãšããŒãã«ã«ãã£ãæã«",
"title": ""
},
{
"paragraph_id": 79,
"tag": "p",
"text": "(23) ã!ããŒãã«ã®äžã« â
çç²ããã! ãšããçºè©±ã¯å¯èœã§ãããäžæ¹",
"title": ""
},
{
"paragraph_id": 80,
"tag": "p",
"text": "(24) ã!ããŒãã«ã®äžã« ã çç²ããã!",
"title": ""
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãšããçºè©±ã¯äžå¯èœã§ãããããã ã",
"title": ""
},
{
"paragraph_id": 82,
"tag": "p",
"text": "(25) ã!ããŒãã«ã®äžã« ã çç²ãããããã¬ã¹ã¬ã³ãžã®äžã« ã ãã³ã±ãŒãããã!(åå±
äººãæ°ãå©ããŠããªãã»ã»ã»)",
"title": ""
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã®ããã«ãããšå¯èœã«ãªããããã®å Žåã®ãã¯ã察æ¯ããšåŒã°ãããã®ã§ãããã§ã¯è§Šããªãã",
"title": ""
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ä»åºŠã¯",
"title": ""
},
{
"paragraph_id": 85,
"tag": "p",
"text": "(26) ãããããŒãã«ã®äžã«äœãããã®? ãšè³ªåããããšããã",
"title": ""
},
{
"paragraph_id": 86,
"tag": "p",
"text": "(27) ããŒãã«ã®äžã« ã çç²ããã(ã)",
"title": ""
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãšçããã®ã¯å¯èœã§ãããã",
"title": ""
},
{
"paragraph_id": 88,
"tag": "p",
"text": "(28) ããŒãã«ã®äžã« â
çç²ããã(ã)",
"title": ""
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãšçããããšã¯ã§ããªãã質åã§ã",
"title": ""
},
{
"paragraph_id": 90,
"tag": "p",
"text": "(29) ã¡ãã£ãšäŒæ©ã«ããŠãè¶ã«ããªã?",
"title": ""
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ã®ãããªå Žåã«ã¯å¯èœã§ãããããã®å Žåå矩éãã«ã¯ããããããã¡ãã£ãš...ããªã©çã§çããã¿ã€ãã®çåæã§ããã®çãã¯èªçšè«ç嫿ããããã(èªåã§ãªããšããããããªã©)ã",
"title": ""
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ããã¹ãã«ãããåºçŸãèããŠã¿ãããæ¬¡ã®ãããªããã¹ããèããã",
"title": ""
},
{
"paragraph_id": 93,
"tag": "p",
"text": "(30) æäººããã¡ãåºãŠããããäžå¹Žã«ãªããæ©ãå¿ããæ¹ããããã ããããããã€ã«ãããªã«ãé Œãåã£ãŠããã®ããæ²ãããªãæ¯æ¥ã ã£ãããããªæ¥ã
ã«ãçªç¶æäººãã LINE ãå±ããããè¿ããã¡ã«æ»ã£ãŠããã?ã......èžãé«é³Žãã仿¥ãã仿¥ããšå®¶è·¯ã«æ¥ãããããŠ......",
"title": ""
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ç· ãæ¬ãã«ã¯ (22) ã®ã©ã¡ããçžå¿ããã ãããã",
"title": ""
},
{
"paragraph_id": 95,
"tag": "p",
"text": "倿ãèªãã§ãã ãã£ãŠããæ¹ã
ã«å§ããŠ(éãã)æäžã§ã®ç°å¢ã«æ³šæãç§»ããããæ¡ä»¶ç¯ã«ã¯ (22) ã®ã©ã¡ããåºçŸå¯èœã ãããã",
"title": ""
},
{
"paragraph_id": 96,
"tag": "p",
"text": "(31) ___ã°èª°ãã飲ãã«éããªã",
"title": ""
},
{
"paragraph_id": 97,
"tag": "p",
"text": "次ã®ããã« (22a) ã«å¯Ÿå¿ãã圢åŒã¯åºçŸå¯èœã§ããã®æå
šäœã¯å®¹èªå¯èœã§ããã",
"title": ""
},
{
"paragraph_id": 98,
"tag": "p",
"text": "(32) ããŒãã«ã®äžã« â
çç²ãããã°èª°ãã飲ãã«éããªã",
"title": ""
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ããã«å¯Ÿã (22b) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã容èªäžå¯èœãšãªãã",
"title": ""
},
{
"paragraph_id": 100,
"tag": "p",
"text": "(33) *ããŒãã«ã®äžã« ã çç²ãããã°èª°ãã飲ãã«éããªã",
"title": ""
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ããã ãã§ã¯ãªãã(20a) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã«ã容èªäžå¯èœãšãªãã",
"title": ""
},
{
"paragraph_id": 102,
"tag": "p",
"text": "(34) * çç² ã ããŒãã«ã®äžã«ããã°èª°ãã飲ãã«éããªã",
"title": ""
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãã®æ®µèœã®èгå¯ã§ã¯ååã«ç€ºããŠããªãããããã§åãäžããŠããçšæ³ã®ãã¯äž»ç¯ã«çŸãããã®ãšäžå¿èŠãªããããšã«ãªãã",
"title": ""
},
{
"paragraph_id": 104,
"tag": "p",
"text": "仿«ãããã«ã€ããŠå°ã詳ããèããŠã¿ããããã¯ãä»ã®ä¿å©è©ãšåæ§ã«ã次ã®äœçœ®ã«çŸããã",
"title": ""
},
{
"paragraph_id": 105,
"tag": "p",
"text": "(35) NP-Case-___",
"title": ""
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãããããå©è©ã«åŸç¶ããå Žåã«ã¯ãå
è¡ããå©è©ãçŸããŠã¯ãªããªãã",
"title": ""
},
{
"paragraph_id": 107,
"tag": "p",
"text": "(36) NP-â
-___",
"title": ""
},
{
"paragraph_id": 108,
"tag": "p",
"text": "çŸããŠã¯ãªããªãå©è©ã¯ã¬ãšã²ã§ããããã®åŸæ¥ã«ãã£ãŠçèµ·åºæ¥ãªãã¬ã¯è»¢çœ®ã«ãã£ãŠçŸããã",
"title": ""
},
{
"paragraph_id": 109,
"tag": "p",
"text": "(37)",
"title": ""
},
{
"paragraph_id": 110,
"tag": "p",
"text": "a. ã¢ã¡ãªã«å€§çµ±é â
ãããã«ãã»ãã©ã³ãæ°ã ",
"title": ""
},
{
"paragraph_id": 111,
"tag": "p",
"text": "b. ããã«ãã»ãã©ã³ãæ°ã¬ã¢ã¡ãªã«å€§çµ±é ã ",
"title": ""
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãããäžäžç« ã¯ãææ ŒããšåŒãã (ãçŸä»£èªæ³åºèª¬ã)ãããã«å¯Ÿã",
"title": ""
},
{
"paragraph_id": 113,
"tag": "p",
"text": "(38)",
"title": ""
},
{
"paragraph_id": 114,
"tag": "p",
"text": "a. ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒ â
ãç«ã ",
"title": ""
},
{
"paragraph_id": 115,
"tag": "p",
"text": "b.*ç«ã¬ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒã ã®ããã«è»¢çœ®ã§ã¬ãåºããªããã®ããããäžäžã¯ããããç¡æ ŒããšåŒãã (äžæ²æž)ãã€ãŸãããã¯åžžã«æ Œã䌎ãåè©å¥ãšãšãã«çšããããèš³ã§ã¯ãªãããšããããšã§ãããã§ã¯ãã®æå³ã»æ©èœãšã¯ãªãã ãããã",
"title": ""
},
{
"paragraph_id": 116,
"tag": "p",
"text": "åç¯åãããæ(ããã£!ãããç«!ãã®ãããªãã®ã§ã¯ãªãæ)ã«ã€ããŠããããŸã§ãã䌎ãå¥ããäž»é¡ topicããæã€æãšæããªãæã«åãããããšèããããŠãããäž»é¡ãæã€æãæŸäžå€§äžéã¯ãæé¡çæææå®ã(ãæšæºæ¥æ¬ææ³ã)ãé»ç°æå¹žã¯ categorical judgment (double judgment è€å倿ãThe (W)hole of Doughnuts)ã衚çŸããæã§ãããšããŠããããããŠäž»é¡ãæããªãæãæŸäžã¯ãç¡é¡çå®å
šæææ§æå®ããé»ç°ã¯ thetic judgment (simple judgment åçŽå€æ)ã衚çŸããæã§ãããšããŠããã",
"title": ""
},
{
"paragraph_id": 117,
"tag": "p",
"text": "以åŸãäž»é¡ãå«ãæããæé¡æããå«ãŸãªãæããç¡é¡æããšåŒã¶ãç¡é¡æã¯",
"title": ""
},
{
"paragraph_id": 118,
"tag": "p",
"text": "(23) ã!ããŒãã«ã®äžã« â
çç²ããã!",
"title": ""
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ã®ããã«ãããåºæ¥äºã«ã€ããŠããããã²ãšãŸãšãŸãã®å€æãšããŠåºãæãã«è¿°ã¹ã(èšãæãããšãè«è©±ãæèãªãã«ç®åã®åºæ¥äºãè¿°ã¹ã)䜿ããæ¹ããããååšåè©æä»¥å€ã§ã¯",
"title": ""
},
{
"paragraph_id": 120,
"tag": "p",
"text": "(39)",
"title": ""
},
{
"paragraph_id": 121,
"tag": "p",
"text": "a. ã»ã!ãŠãã®åãèµ°ã£ãŠã!",
"title": ""
},
{
"paragraph_id": 122,
"tag": "p",
"text": "b. èŠãŠ!çœãã€ãéåè»ãåŸ
ã£ãŠã!",
"title": ""
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ã®ãããªèªåè©æãä»åè©æã§ç¡é¡æãšãªããã®ããããäžæ¹ã察å¿ããæé¡æ",
"title": ""
},
{
"paragraph_id": 124,
"tag": "p",
"text": "(40)",
"title": ""
},
{
"paragraph_id": 125,
"tag": "p",
"text": "a. ãŠãã®åã¯èµ°ã£ãŠãã",
"title": ""
},
{
"paragraph_id": 126,
"tag": "p",
"text": "b. çœãã€ã¯éåè»ãåŸ
ã£ãŠãã",
"title": ""
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ã§ã¯ç°ãªã䜿ããæ¹ãã",
"title": ""
},
{
"paragraph_id": 128,
"tag": "p",
"text": "(41)",
"title": ""
},
{
"paragraph_id": 129,
"tag": "p",
"text": "a. ã¢ã³ã¿ããšãã®åã©ã...? -ãŠãã®å(ã¯)ããèµ°ã£ãŠãã£ãŠ!",
"title": ""
},
{
"paragraph_id": 130,
"tag": "p",
"text": "b. ã¹ããŒãéåã«ã¯æ°ãä»ããŠãçœãã€ã¯éåè»ãåŸ
ã£ãŠãããã... ã® (41a) ã®ããã«ãå
è¡ããçºè©±ãæ¿ããŠãããŠãã®åããšãã倿ãè¡ããããã«å¥ã®å€æãããèµ°ã£ãŠãããçµåãããŠæ
å ±ãäŒãããã(41b) ã®ãããªãç·ç§°æ generic sentenceãã§ãã¹ããŒãéåã®åãç· ãŸããã飿³ããããçœãã€ããšãã倿ã«ãéåè»ãåŸ
ã£ãŠããããšãã倿ãçµåãããŠããåŸãç¶æ³ãäŒããŠæ³šæãåèµ·ãããããã",
"title": ""
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãªãã(39) ãš (41) ã察æ¯ããããšãã¬ã䌎ãåè©å¥ãšãã䌎ãåè©å¥ã察ç
§çã§ããããããã°ãã°ãäž»èªã®ããšã¬ã¯ã©ãéããããšããåé¡èšå®ããªãããããããååšåè©æã§èŠãããã«ããä»ããããŠäž»é¡ã«ãªãã®ã¯ã¬ã䌎ãåè©å¥ã«éãããããã䌎ãåè©å¥ããä»ã«ã¯ã²ã䌎ãåè©å¥ãã«ã©ã䌎ãåè©å¥ããªã©ãšå¯Ÿç
§ãããã¹ãã§ãããã€ãŸãããäž»èªã®ããšã¬ã¯ã©ãéããããšããã®ã¯èª€ã£ãåé¡èšå®ã§ãããããã«ææ³¥ããããã«ä»ã®éèŠãªçŸè±¡ããæ³šæãéžããããŠããŸããšããããšã§ã誀ã£ãåé¡èšå®ãèŸããŠéèŠãªçŸè±¡ã«åãçµãã¹ãã§ãããšããŠäžäžç« ããäž»èªå»æ¢è«ãã匷ã説ããããšã¯æåã§ãã(æ¥æ¬èªã«ãã©ããªå®çŸ©ãã¯çœ®ããŠãäž»èªã¯ãªãããšäž»åŒµããŠããããã§ã¯ãªããäžäžã¯ãäž»èªããšããçšèªãé¿ããŠãäž»æ ŒããšåŒã³ã€ã€ãäž»æ Œã®åªäœæ§ã¯åŒ·èª¿ããŠãã)ã",
"title": ""
},
{
"paragraph_id": 132,
"tag": "p",
"text": "æé¡æãšç¡é¡æã®æå³ã»æ©èœã«ã€ããŠã¯ãŸãæ¹ããŠè§Šããããšã«ãããããã§ã¯ãããã®çµ±èªè«çæ§è³ªã«æ»ãããšã«ããã(1a, b) ã®æé¡æ",
"title": ""
},
{
"paragraph_id": 133,
"tag": "p",
"text": "(42)",
"title": ""
},
{
"paragraph_id": 134,
"tag": "p",
"text": "a. çç² ã ããŒãã«ã®äžã«ãã",
"title": ""
},
{
"paragraph_id": 135,
"tag": "p",
"text": "b. ããŒãã«ã®äžã« ã çç²ããã ã«å¯Ÿå¿ããç¡é¡æã¯",
"title": ""
},
{
"paragraph_id": 136,
"tag": "p",
"text": "(43) ããŒãã«ã®äžã«çç²ããã",
"title": ""
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ã§ãããåºæ¬èªé ãæã€ (43) ãšäžŠã¹ãŠèгå¯ãããšã(42b) ã¯åºæ¬èªé ã®ãŸãŸã§ããã®ã«å¯Ÿãã (42a) ã¯ãçç²ããå«ãäž»é¡ã¯æé ãŸã§åé²ããŠããããããåºæ¬èªé ã®ãŸãŸã®æé¡æã«ãããš",
"title": ""
},
{
"paragraph_id": 138,
"tag": "p",
"text": "(44) ããŒãã«ã®äžã«çç² ã ãã",
"title": ""
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ãšãªããããã®å Žåãçç²ã¯ãã¯å¯Ÿæ¯ã®è§£éã§æ¬¡ã®ãããªæãè«è©±ã®æç",
"title": ""
},
{
"paragraph_id": 140,
"tag": "p",
"text": "(45)",
"title": ""
},
{
"paragraph_id": 141,
"tag": "p",
"text": "a. ããŒãã«ã®äžã«çç²ã¯ããã麊é
ã¯ãªã",
"title": ""
},
{
"paragraph_id": 142,
"tag": "p",
"text": "b. ããŒãã«ã®äžã«çç²ã¯ãããã§ãèå¿ã®ããŒã¹ããŒã±ãŒãã¯ãªãããã!",
"title": ""
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ãšã¯ãªããããäž»é¡ãšã¯è§£éã§ããªããæåŠçããã¹ãã«",
"title": ""
},
{
"paragraph_id": 144,
"tag": "p",
"text": "(46) å³»å³ãã衚æ
ãæã
ã«èŠããéå³°ã®äžè
¹ã«ç®æã寺é¢ã¯ãã",
"title": ""
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ã®ãããªäŸãèŠãããããç Žæ Œãšãã¹ããåŠãäžæã§ããã®è¡šçŸå¹æãæ°ã«ãªããããã§ã¯ãããã£ãäŸã®ã¹ããŒã¿ã¹ã«ã€ããŠã¯ä¿çã«ãããã",
"title": ""
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãããããšãåºæ¬èªé ãšãã芳ç¹ããã(42b) ã¯äž»é¡ãå
ã®äœçœ®ã«çãŸã£ãŠããã®ã«å¯Ÿãã (42a) ã§ã¯äž»é¡ãæé ã«è»¢äœãããŠããããšèšã£ãŠå·®ãæ¯ããªããå³åŒçã«ç€ºããš",
"title": ""
},
{
"paragraph_id": 147,
"tag": "p",
"text": "(46)",
"title": ""
},
{
"paragraph_id": 148,
"tag": "p",
"text": "a. [áŽáŽ NP-ni wa ...",
"title": ""
},
{
"paragraph_id": 149,
"tag": "p",
"text": "b. [áŽáŽ NP-â
wa NP-ni ____ ...",
"title": ""
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ã§ãããããã§ âCPâ ã¯ãããŸãã«ãæããšããã«ããŽãªãŒã ãšçè§£ããããã",
"title": ""
},
{
"paragraph_id": 151,
"tag": "p",
"text": "å
ã«ãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãæã®å®¹èªæ§å€æãäžããããšè¿°ã¹ããçºè©±ããåŽããèŠãå Žåãæ¯èªè©±è
ã¯çºè©±ããæãçŸä»£èªã®ç¥èãåç
§ããŠå®çŸ©ããããã®ãããªçŸä»£èªã®çµ±èªçç¥èãæ§æãããã®ããèŠåããšåŒãŒãã",
"title": ""
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ãããŸã§èŠãŠããããšããèããŠãçŸä»£èªæ¯èªè©±è
ã®çµ±èªçç¥èã«ã¯æ¬¡ã®ãããªèŠåãå«ãŸããŠããªããã°ãªããªãã",
"title": ""
},
{
"paragraph_id": 153,
"tag": "p",
"text": "(48) åºæ¬èªé ",
"title": ""
},
{
"paragraph_id": 154,
"tag": "p",
"text": "NP-ga NP-o V",
"title": ""
},
{
"paragraph_id": 155,
"tag": "p",
"text": "NP-ga Vi",
"title": ""
},
{
"paragraph_id": 156,
"tag": "p",
"text": "NP-ni NP-ga Ve",
"title": ""
},
{
"paragraph_id": 157,
"tag": "p",
"text": "(49) äž»é¡æã®èªé ",
"title": ""
},
{
"paragraph_id": 158,
"tag": "p",
"text": "[áŽáŽ [áŽáŽáŽ NP-case wa]i X0 â
i Y0]",
"title": ""
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ãããã«å ããŠæ¬¡ã®èŠåãå¿
èŠãšãªãã",
"title": ""
},
{
"paragraph_id": 160,
"tag": "p",
"text": "(50) åºæ¬èªé ãšäž»é¡æã®èªé ã®é¢ä¿ãå®çŸ©ããèŠå",
"title": ""
},
{
"paragraph_id": 161,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 162,
"tag": "p",
"text": "話ãå
ã«é²ããããã«ãæã®è¿°éšãæ§æããåè©ã圢容è©ãªã©ã®æ§è³ªã«ã€ããŠç°¡åã«èŠãŠã¿ãããšæããŸãã",
"title": ""
},
{
"paragraph_id": 163,
"tag": "p",
"text": "åŠæ ¡ã®ææ³ãè¿°éšã«ãªãããšæããã®ã¯çšèšã®åè©ã圢容è©ã圢容åè©ãšãäœèšã®åè©ã»ä»£åè©ã«æå®ã®å©åè©ãã¢ã«(ãããã¹)ãä»å±ãããã®ã§ããäžäžç« ã®äŸ",
"title": ""
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ã»ãããªããšãããšãã³ã¬(ãããã€ãèŠããªãã)ã ã",
"title": ""
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãšããã®ããããæç€ºè©ãããçŸå®äžçã®ãã®ã鿥çã«äœèšã®ããã«ã§ããŸãã",
"title": ""
},
{
"paragraph_id": 166,
"tag": "p",
"text": "è¿°éšã¯ãããã«å©åè©ãçµå©è©ãä»å±ããŠæ¡åŒµããããšãã§ããŸããããã§ã¯æ¡åŒµããªã裞ã®è¿°èªãèŠãŠã¿ãŸãããã",
"title": ""
},
{
"paragraph_id": 167,
"tag": "p",
"text": "è¿°èªã¯å€§ããåããŠåè©ãšãã以å€ã«åé¡ã§ããŸãã",
"title": ""
},
{
"paragraph_id": 168,
"tag": "p",
"text": "<åè©>",
"title": ""
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ã»çç²ã飲ã",
"title": ""
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ã»å¯ã",
"title": ""
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ã»ãã",
"title": ""
},
{
"paragraph_id": 172,
"tag": "p",
"text": "<圢容è©>",
"title": ""
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ã»å¯ã",
"title": ""
},
{
"paragraph_id": 174,
"tag": "p",
"text": "<圢容åè©>",
"title": ""
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã»éãã ",
"title": ""
},
{
"paragraph_id": 176,
"tag": "p",
"text": "<åè©+æå®ã®å©åè©>",
"title": ""
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ã»å€±æ¥è
ã ",
"title": ""
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ãããã¯æ¬¡ã®ã¹ããŒãã«åœãŠã¯ãŸããšãæåºãããåè©ã§äºåãããŸãã",
"title": ""
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ã»___ã___ã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 180,
"tag": "p",
"text": "<åè©>",
"title": ""
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ã»çç²ã飲ã¿ãããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ã»å¯ãããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ã»ãããããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 184,
"tag": "p",
"text": "<圢容è©>",
"title": ""
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ã»å¯ããããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 186,
"tag": "p",
"text": "<圢容åè©>",
"title": ""
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ã»éãã§ãããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 188,
"tag": "p",
"text": "<åè©+æå®ã®å©åè©>",
"title": ""
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ã»å€±æ¥è
ã§ãããã±ã¬ãã¢",
"title": ""
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ã€ãŸããæåºãããåè©ãã¹ã«ã§ãããã®ãšã¢ã«ã§ãããã®ããããŸããåè
ãã¹ã«åãåŸè
ãã¢ã«åãšåŒã¶ããšã«ããŸã(åè©ããããèªäœã¯ã¹ã«åã§ã)ã",
"title": ""
},
{
"paragraph_id": 191,
"tag": "p",
"text": "ãããããäž»èªãã«é¢ããŠãã¹ã«åãšã¢ã«åã«ã¯æ¬¡ã®ãããªéãããããŸãã",
"title": ""
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ã¹ã«åã§ã¯",
"title": ""
},
{
"paragraph_id": 193,
"tag": "p",
"text": "ã»ç¶ã¬çç²ã飲ãã§ãã",
"title": ""
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ã§ãã¬ã䌎ãåè©å¥ãç¹æ®µç¹æ®ãªè§£éãæã€ããšã¯ãããŸãã(æŸäžã®ç¡é¡çå®å
šæææ§æå®ãé»ç°ã® thetic judgment)ã",
"title": ""
},
{
"paragraph_id": 195,
"tag": "p",
"text": "äžæ¹ãã¢ã«åã§ã¯çºé³äžåç«ãèŠããããç·èš exhaustive listingãã®è§£éãç¡æšã§ãã",
"title": ""
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ã»ãã®éšå±ã¬å¯ã",
"title": ""
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ã»ç°èã¬éãã ",
"title": ""
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ã»1.7%ã¬å€±æ¥è
ã ",
"title": ""
},
{
"paragraph_id": 199,
"tag": "p",
"text": "ã¢ã«åããªããã®ãããªè§£éãåããã®ãã«ã€ããŠã¯æé¡ã»ç¡é¡ãã¢ã¹ãã¯ããšé¢ä¿ä»ããŠå¥ã«ãã€ãŒãããããšæããŸãã",
"title": ""
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ããã§ã¯ã¹ã«åã§ããåè©ã®æ§è³ªã«ã€ããŠèããŸãããã",
"title": ""
},
{
"paragraph_id": 201,
"tag": "p",
"text": "åè©ã¯æéã®ããŒã¯ã³ã§ããããšããèãããããŸã(éå亚ãèšèªã®æé衚çŸã)ãæéã¯äœãç¬ç«ã«ååšãããã®ã§ã¯ãªããã€ãã³ã(åºæ¥äº)ã®é£ãªãã§ãããšèšãããšãã§ããŸããç§éãæå»ãæéãç¥ãã®ã¯ç¬ç«ã«ååšããæéãåç
§ããŠããããã§ã¯ãããŸããã",
"title": ""
},
{
"paragraph_id": 202,
"tag": "p",
"text": "䞊è¡ããŠèµ·ãã£ãŠããã€ãã³ãã®äžã€ãåºæºã«ããŠ(äžççãªæéã®åäœã¯ã»ã·ãŠã 133ã®é·ç§»ã«åºã¥ããŠãã)ãæŠããããšåãããã«å€åãããã®(è
æèšãªã©)ãèŠãŠæå»ãç¥ã£ãããæéãæž¬ã£ããããŸãã",
"title": ""
},
{
"paragraph_id": 203,
"tag": "p",
"text": "åè©ã¯ãã®ãããªã€ãã³ãã®é£ãªãã§ããæéã®äžéšã«ååãä»ãããã®ã§ããåèªå埩ã®ããã«ãªããŸãããããããŠåè©ã¯ã€ãã³ããæç€ºå¯Ÿè±¡ãšããŸãã",
"title": ""
},
{
"paragraph_id": 204,
"tag": "p",
"text": "èšèªãé¢ããŠã€ãã³ããèããããšã¯é£ããå ŽåããããŸãããèããŠã¿ãŸãã",
"title": ""
},
{
"paragraph_id": 205,
"tag": "p",
"text": "ã€ãã³ãã¯äœããèµ·ããå ŽåããããŸããããªã«ããªãèµ·ããå ŽåããããŸããäŸãã°ããªã¢å
ãççºãããã§ã¯ãã®äœãã¯ããªã¢å
ãã§ãããæéšãããã®ã¯ç¹ã«äœãããã£ãŠèµ·ããããã§ã¯ãããŸããã",
"title": ""
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ããã§ãççºãããã¯ããªã¢å
ããåŒãèµ·ãããã®ã§ãèšèªçã«ã¯ããã®åè©ã¯åäžã®åè©å¥ãå¿
èŠãšããŸããããã¯1é
åè©ã§ãäžè¬ã«ãèªåè©ããšåŒã°ããŸãããæéšãããã¯0é
åè©ã§ãã",
"title": ""
},
{
"paragraph_id": 207,
"tag": "p",
"text": "ãããããèªåè©ããšãä»åè©ããšå¯Ÿå¿ããããšã次ã®ããã«ãªããŸãã",
"title": ""
},
{
"paragraph_id": 208,
"tag": "p",
"text": "<èªåè©>",
"title": ""
},
{
"paragraph_id": 209,
"tag": "p",
"text": "0é
åè©ã1é
åè©",
"title": ""
},
{
"paragraph_id": 210,
"tag": "p",
"text": "<ä»åè©>",
"title": ""
},
{
"paragraph_id": 211,
"tag": "p",
"text": "2é
åè©ã3é
åè©",
"title": ""
},
{
"paragraph_id": 212,
"tag": "p",
"text": "æ¥æ¬èªæ¯èªè©±è
ã®çµ±èªçç¥èãèããäžã§ããããã£ãæ
å ±ã§ååã§ãããã?å
åãã«ãªããŸããããã€ã¹ãšã¢ã¹ãã¯ãã®èгç¹ããããã«äžã®ãããªæ§æ Œä»ããå¿
èŠã§ãã",
"title": ""
},
{
"paragraph_id": 213,
"tag": "p",
"text": "1é
åè©ã®äžã«ã¯ãã¯ãããããã®å身ããšããæãäœãããã®ãšäœããªããã®ããããŸãã",
"title": ""
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ã»ããªãã«å±
ããããšå°ã",
"title": ""
},
{
"paragraph_id": 215,
"tag": "p",
"text": "ã»éšã«éãããŠãã¶æ¿¡ãã«ãªã£ã",
"title": ""
},
{
"paragraph_id": 216,
"tag": "p",
"text": "ã»*ãããã *èŠããã",
"title": ""
},
{
"paragraph_id": 217,
"tag": "p",
"text": "äœããªãã¿ã€ãã®åè©ãäžäžç« ã¯ãæåè©ããšåä»ããŸããã",
"title": ""
},
{
"paragraph_id": 218,
"tag": "p",
"text": "æ¢ã«èŠãããã«1é
åè©ã«ã¯å¯Ÿå¿ããä»åè©ãæã€ãã®ããããã·ãã€ã«ã®åœ¢ã§çµæã®åç¶ã®è§£éãæã¡ãŸãã",
"title": ""
},
{
"paragraph_id": 219,
"tag": "p",
"text": "ã»ããŒã«ãå·ããŠãã",
"title": ""
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ã»ã¢ãããèµ°ã£ãŠãã(é²è¡/*çµæåç¶)",
"title": ""
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ãŸããå©åè©ç¡ãã§å¯èœã®æå³ãæ
ãåŸãŸãã",
"title": ""
},
{
"paragraph_id": 222,
"tag": "p",
"text": "ã»ãã®æã¯ç°¡åã«éããªã",
"title": ""
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ãã®ã¿ã€ãã¯ãéå¯Ÿæ Œåè©ããšåŒã°ããŸãã",
"title": ""
},
{
"paragraph_id": 224,
"tag": "p",
"text": "2é
åè©ã§ãããæ®Žããã§ãèªåãã®å
è¡è©ã«é¢ããŠèª¿ã¹ããš",
"title": ""
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ã»ç°äžéšé·iãèªåiã®éšäžã殎ã£ã",
"title": ""
},
{
"paragraph_id": 226,
"tag": "p",
"text": "(äžä»ãã® âiâ ã¯åã人)",
"title": ""
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ã§ã¯ãç°äžéšé·ãããèªåãã®å
è¡è©ã«ãªããŸãã",
"title": ""
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ã»*èªåiã®äžåžãæ± ç°iãæ®Žã£ã",
"title": ""
},
{
"paragraph_id": 229,
"tag": "p",
"text": "ã§ã¯äžå¯èœã§ããããã«å¯Ÿã",
"title": ""
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ã»èªåiã®éå»ããªãŒãŠã§ã³iãèŠããã",
"title": ""
},
{
"paragraph_id": 231,
"tag": "p",
"text": "ã¯å¯èœã§ãã",
"title": ""
},
{
"paragraph_id": 232,
"tag": "p",
"text": "ãã®ãããªãå
è¡è©ãéã®äœçœ®ã«ãªããããªã¯ã©ã¹ã®åè©ããå¿çåè© psych verbããšãããŸãã",
"title": ""
},
{
"paragraph_id": 233,
"tag": "p",
"text": "åè©ä»¥å€ã§ã¯",
"title": ""
},
{
"paragraph_id": 234,
"tag": "p",
"text": "ã»èªåiã®åšãçæŸiã®èªãã ",
"title": ""
},
{
"paragraph_id": 235,
"tag": "p",
"text": "ã®ãããªãã®ããããŸã(äžå®
ç¥å®ãèšèªåŠäŒçºè¡š)ã",
"title": ""
},
{
"paragraph_id": 236,
"tag": "p",
"text": "ãŸãšãããš",
"title": ""
},
{
"paragraph_id": 237,
"tag": "p",
"text": "0 é
åè© å¹éªããæéšãã",
"title": ""
},
{
"paragraph_id": 238,
"tag": "p",
"text": "éå¯Ÿæ Œåè© èãããæãã",
"title": ""
},
{
"paragraph_id": 239,
"tag": "p",
"text": "éèœæ Œåè© èµ°ããæ³³ã__________èªåè©",
"title": ""
},
{
"paragraph_id": 240,
"tag": "p",
"text": "æåè© ãããããã",
"title": ""
},
{
"paragraph_id": 241,
"tag": "p",
"text": "____________________ä»åè©",
"title": ""
},
{
"paragraph_id": 242,
"tag": "p",
"text": "æå¯Ÿä»åè© èãããæã",
"title": ""
},
{
"paragraph_id": 243,
"tag": "p",
"text": "ç¡å¯Ÿä»åè© é£ã¹ã",
"title": ""
},
{
"paragraph_id": 244,
"tag": "p",
"text": "ç§»ååè© è¡ããæ¥ã",
"title": ""
},
{
"paragraph_id": 245,
"tag": "p",
"text": "å¿çåè© èŠããã",
"title": ""
},
{
"paragraph_id": 246,
"tag": "p",
"text": "è€ä»åè© æž¡ããããã",
"title": ""
},
{
"paragraph_id": 247,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 248,
"tag": "p",
"text": "(1) NP-ga Vi NP-ni NP-ga Ve NP-ga NP-o V",
"title": ""
},
{
"paragraph_id": 249,
"tag": "p",
"text": "(2) NP-ga ã®å Žåãæ¬¡ã®ç¶æ
ã®åè£ã (3) {NP-ga, NP-o, NP-ni, V, â
, ...} ã§ãããããã確çã«ãã£ãŠ (4) NP-gaâNP-o ãéžã°ããŸãã",
"title": ""
},
{
"paragraph_id": 250,
"tag": "p",
"text": "(5) {NP-ga, NP-o, NP-ni, V, â
, ...} ãšããåè£ãã確çã«ãã£ãŠ (6) NP-gaâNP-oâV ãéžã°ããŸããç¶æ
é·ç§»ã¯äºåºŠã®é·ç§» (7) ç¶æ
1âç¶æ
2âç¶æ
3 ã§çµäºãããã®ãšããããã§æã宿ããŸãã",
"title": ""
},
{
"paragraph_id": 251,
"tag": "p",
"text": "(8) a. ç¶æ
1 b. ç¶æ
1âç¶æ
2 c. ç¶æ
1âç¶æ
2âç¶æ
3 d. ç¶æ
1âç¶æ
2âç¶æ
3âç¶æ
4 ã®å¯èœæ§ããã(é
ã®åæ°ã 0 ã 3 ãšããŠ)ãæçµã®ç¶æ
ããç¶æ
eããšãããš (9) ç¶æ
10â ... âç¶æ
eâ10âç¶æ
e ã®ããã«äžè¬çã«è¿°ã¹ãŠããå¿
èŠããããŸãããããŠç¶æ
eã§ããåè©ã«ãã£ãŠæ¡çšããç¶æ
ã®æ°ã決ãŸãããšããŠãããªããã°ãªããŸãã(ããã§ãç¶æ
0ãã¯ç¶æ
ã 0 以äžã§ããããšã衚ãããšã«ããŸã)ã ææ³ã¯ãæãåŒ±çæ weakly generate ããæ§é èšè¿°ãåŒ·çæ strongly generate ããã(Noam Chomsky _Aspects of the Theory of Syntax_)ãã®ã§ããæãã¯è¡šé¢çãªèªã®äžŠã³ãæããŸã(ãæ§é èšè¿°ãã«ã€ããŠã¯åŸçš)ã匱çæèœåããæããªãæéç¶æ
ææ³ãæ¥æ¬èªæ¯èªè©±è
ã®ç¥èãèšè¿°ããããšã¯äžå¯èœã§ãã ããã§ç·åœ¢é åº(匱çæåãæã€ç¥èã§å®çŸ©ããã)ã§ã¯ãªããæ§é èšè¿° structural description ã«æ³šæãåããããšã«ããŸããããæ§é èšè¿°ãšã¯ãæã®è¡šé¢ã«çŸãããèŠããã»èããã圢åŒã®èåŸã«ããããŸãšãŸã(æ§æçŽ æ§)ãªã©ã®ããšã§ãã ãŸãšãŸããšããã®ã¯æ©æ¬é²åã®é£æç¯ãææèª èšã®å
¥ãåãã¢ã¡ãªã«æ§é 䞻矩èšèªåŠã® IC åæã®æ§æçŽ ã®ããšã§ããäŸãæããŠèããŠã¿ãŸããããäŸãæç¯ã«åããŠç€ºããŸã (10) |ããããª|ãããããã®|æŽæ| äžã®æã¯å€çŸ©çã§ããäžã€ã¯ãããããªã®ã¯ãããããããšããè§£éã§ãã ãã®è§£éã§ã®ç¬¬äžã®é£æç¯ã âââ ã䜿ã£ãŠç€ºããŸãã (11) |ããããªâãããããã®|æŽæ| ãããããªâãããããããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããæ¬¡ã®é£æç¯ã瀺ããš (12) |第äžé£æç¯âæŽæ| ãšãªããŸãã æ¬¡ã«ããäžã€ã®è§£éãèããŸãããããããªã®ã¯æŽæããšããè§£éã§ããã第äžé£æç¯ã¯ (13) |ããããª|ãããããã®âæŽæ| ãšãªããŸããããããããã®âæŽæããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããŠæ¬¡ã®é£æç¯æ§é ã瀺ããš (14) |ããããªâ第äžé£æç¯| ãšãªããŸãã 以äžãæ§æçŽ ãšåŒã³ãã¿ã€ãã®äŸ¿å®äžãæ¬åŒ§ã§æ§æçŽ ã瀺ããŸãã (15) a.|ããããª|ãããããã®|æŽæ| b.|ããããªâãããããã®| c.|ãããããã®âæŽæ| ã¯ãããã (16) a. [ããããª][ãããããã®][æŽæ] b. [[ããããª][ãããããã®]] c. ãããããã®æŽæ ãšåãã§ãã åºæ¬èªé ãæã€åæã®åé¡ã«æ»ããŸããããæ¬¡ã®æãèããŸãã (18) 姪ãçªãéãã ããã«çŸããã姪ãããçªãããéããããšããäžè
ã®éã®é¢ä¿ã¯å¯Ÿçã§ã¯ãããŸããããçªãéããããšããçµã¿åããã䜿ã£ãŠäœã (19) [çªãéããŠ] ãã ã®ãããªæã¯ãã£ãŠãã姪ãéãããã«ã¯ãããŸããã ãŸã (20) NP㬠NPã² éã±ã« ã«ã¯å¯Ÿå¿ãã (21) NP㬠é㯠ãããããæå³ã§ãã®éå¯Ÿæ Œåè©ã®ã䜿圹åããšèšããŸããèªä»å¯Ÿå¿ã¯åœ¢æ
è«ã®åé¡ãšããä»åè©æãšäœ¿åœ¹ææ³ã®éãã¯åŸåãã«ããŠãããããæ§æçŽ æ§é ãæç¢ºã«ãããš (22) a. [NP ga é] b. [NP ga [NP o é] 䜿] ã§ãã ããã§çåãçããŸããäžç·ã«å©è©ã®ã¬ãã²ãç¥ã£ãŠããå¿
èŠãããããã§ãã0 é
åè©ãé€ãã»ãšãã©ã®åæã¯ä¿å©è©ãå¯å©è©ã§çœ®ãæãããªããã°æäœäžã€ã¬ã䌎ãåè©å¥ãçŸããŸãã詳ããã¯åŸã«ããŠèªä»å¯Ÿå¿ãããã¯ã©ã¹ã Vunacc ãšãããš (10) a. [NP1 Vunacc] b. [NP2 [NP1 Vunacc] CAUS] åæ§ã®ããšã¯ç¡å¯Ÿä»åè©ã«ãèšããã§ããããããé£ã¹ãããåãäžããŸãã (11) ããã€ãã¬ãåºãé£ã¹ããããªããã°... ããã§ (12) a. ã¬ãåºãé£ã¹ããããã€ãããªããã°... b.*ããã€ãé£ã¹ããã¬ãåºãããªããã°... ã®å¯Ÿæ¯ãããæ¬¡ã®ããã«èããããŸãã (13) [NP2 [NP1-o Vacc]] ãã®è°è«ã¯ Hoji, Miyagawa and Tada. 1989. NP-movement in Japanese, ms. ã«äŸããŸãã ãããŸã§ (14) [NP2 [NP1-o V] α] ãšããæ§é ã確èªããŸãããèªé ãšã®å¯Ÿå¿ã¯ (15) [NP2 [NP1-o V] α] æ§é ",
"title": ""
},
{
"paragraph_id": 252,
"tag": "p",
"text": "ã«ãªããŸãã éã«ååšæã§ã¯ (16)",
"title": ""
},
{
"paragraph_id": 253,
"tag": "p",
"text": "[NP2-ni [NP1 V] α] ã§ãã",
"title": ""
}
]
| ãçŸä»£æ¥æ¬èªã®ææ³ããšèšãæã«ã¯ãææ³ãã«äºã€ã®çšæ³ããããäžã€ã«ã¯äžè¬ã«äœ¿ãããããã«ãçŸä»£æ¥æ¬èªïŒæŒ ç¶ãšæããŠïŒã®èŠåãç¶²çŸ
ããŠããçšæ³ã§ãããããäžã€ã¯ãåå¥èšèªã§ããçŸä»£æ¥æ¬èªã®æ¯èªè©±è
ã®ç¥èãããèªäœãæãçšæ³ã§ãããããã§ã¯åŸè
ãèšè¿°ãããã®ããçµ±èªè«ããšåŒã¶ã çµ±èªè«ã¯ããã®æ¯èªè©±è
ãæé»ã«çè§£ããäºã«äŸåãããæé»ã®ç¥è tacit knowledge ãå
šãŠæžãåºããªããã°ãªããªããæ¬¡ãèããŠã¿ããã çç²ãããŒãã«ã®äžã«ããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã çç²ã¯ããŒãã«ã®äžã«ãã
ããŒãã«ã®äžã«ã¯çç²ããã
ããŒãã«ã®äžã«ã¯çç²ãããã®ã
ããŒãã«ã®äžã«çç²ãããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
çç²ãããŒãã«ã®äžã«ããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã ãããäºã€ã®æã«ã€ããŠå
ãã©ã®ãããªããšã芳å¯ã§ããã ããããæ¯èªè©±è
ã¯ãããã®æãçŸåšèªã®æã§ããããªããããããªãšããšããªããšå€æ judge ãããæ¬¡ã®æãšæ¯ã¹ãŠã¿ããã çç²ã¯ããŒãã«ã®äžã«ãã
ããŒãã«ã®äžã«ã¯çç²ããã
ããŒãã«ã®äžã«çç²ãããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã æ¯èªè©±è
ã¯ãããã®æã¯çŸä»£èªã®æãšããŠãããããçŸä»£èªã®æã§ã¯ãªãããšå€æãããèšãæãããšã(1a-e) ã®æã¯å®¹èªå¯èœ acceptable ã§ããã®ã«å¯Ÿãã(2a, b) ã®æã¯å®¹èªäžå¯èœ unacceptable ã§ããããšããã ããŠãæ¯èªè©±è
ã¯ã©ã®ããã«ããŠãããã£ã倿ã瀺ãã®ã§ãããããäžã€ã®ä»®èª¬ãšããŠãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãå®¹èªæ§ acceptability ã®å€æãäžãããã®ãšãããããã§çŸä»£èªçµ±èªè«ãšåŒãã§ãããã®ã¯ããã®ä»®èª¬ãåãå
¥ãã倿ã®åºç€ãšãªã£ãŠããçµ±èªçãªç¥èãæžãåºãããšããã®ã§ããã çŸä»£æ¥æ¬èªã®çµ±èªçãªç¥èã¯ã©ã®ãããªãã®ã§æ§æãããŠããã®ã ãããã(1) ã«çŸãããçç²ããæã瀺ãç©ã«ã€ããŠèããŠã¿ãããããèãããšäžäœäœãæããŠããã®ã ããããçç²ïŒã³ãŒããŒïŒãæ§æããé³é» /koRhiR/ ã¯é£²ã¿ç©ãæå³ããããããæ¶²äœã¯ãã®ãŸãŸã§ããŒãã«ã®äžã«çœ®ãããšãã§ãããã®ã§ã¯ãªãïŒæº¢ãããé¶ãããæäººã錻ã«å²ã箞ãçªã£èŸŒãã§æã£ãã®ã§ç¬ã£ãŠå¹ãåºãããçã®å Žåã¯å¥ã®æã䜿ãã¯ãïŒãæã瀺ãããŠããã®ã¯ã³ãŒããŒãåšã«å
¥ã£ãç¶æ
ã®ãã®ãã³ãŒããŒè±ã容åšã«å
¥ã£ãç¶æ
ã®ãã®ãçã§ãããããçç²ãããããã£ãç©ãæãã®ã¯ã¡ããã㌠metonymy ãšåŒã°ãããã®ã§ãèšèªã®éèŠãªç¥èã§ããããããçµ±èªè«çãªç¥èã¯ãããã£ããã®ã¯å«ãŸãªãã (1a) ãš (2a) ãæ¯ã¹ãŠã¿ãããéãã¯ãããŒãã«ã®äžããšãããŒãã«ãããã§å©è©ããããããªãããã§ããããããŒãã«äž (ããã)ããšããã°å®¹èªå¯èœãšãªãããããã§ã¯ãã®åé¡ã¯æªããèšèªã«ãã£ãŠã¯ããç°å¢ã§å©è©ãã«å¯Ÿå¿ãããã®ãèªç±ã«è±èœããããæ¥æ¬èªã®çŸä»£èªã§ã¯èš±ãããªããã€ãŸããããŒãã«ããšãäžããçµ±èªè«çãªãŸãšãŸãããæ§æçŽ constituentãããã«ã¯å©è©ããå¿
èŠãšãªãããããŒãã«ããšãäžãã¯åŠæ ¡ã®åœææ³ã®åè©ã§ãããããããããªãæ§æçŽ ãåè©ã§ããããããã£ãåè©ã®æ§æçŽ ã¯æŽã«æã®äžéšãšãªãããæãæãç«ãããæ§æçŽ ã®ããã®æ§æã®ä»æ¹ã«é¢ããç¥èã§ããå©è©ãã®å¿
é æ§ã¯çµ±èªè«çãªç¥èã§ããã ç¶ã㊠㚠(2b) ãæ¯ã¹ãŠã¿ããã(1d, e) ã®æç fragment ãåãåºãããã®ã次ã§ããã ããŒãã«ã®äžã«çç²ããã çç²ãããŒãã«ã®äžã«ãã ããã§ã¯ãããŒãã«ã®äžã«ããšãçç²ããã®é åºãå
¥ãæ¿ãã£ãŠããããæ¥æ¬èªã¯èªé ãèªç±ã§ããããšããèšãããããäžã®äºæã¯ãããäŸç€ºããŠãããæŽã« çç²ã¯ããŒãã«ã®äžã«ããã ããŒãã«ã®äžã«ããããçç²ã¯ ã® (4b) ã®ããã«ãçç²ã¯ããè¿°éšã®åŸã«çœ®ãããšãå¯èœã§ãããããããèŠããšçŸä»£èªã§ã¯ NP-ni NP-ga ar NP-ga NP-ni ar NP-ni ar NP-ga NP-ga ar NP-ni ãšããããã«æ¥µããŠèªé ãèªç±ã§ããããã«èŠãããå ã㊠ç£ç£ãåãããããªããã°ïŒãã®è©Šåã«è² ããªãã£ãã®ã«ïŒ åãããç£ç£ãããªããã°ïŒãã®è©Šåã«è² ããªãã£ãã®ã«ïŒ ã®ããã«è¿°éšãåã«çœ®ãããå Žåããã NP-ga taore taore NP-ga ãšããããã«ãèªé ã¯å®å
šã«èªç±ã§ãããšèãããããããããªãã è±èªã®èªé 㯠SVO ã§ããã®ã«å¯ŸããŠæ¥æ¬èªã¯ SOV ã§ããïŒã ãããã³ãã«ã³ãïŒããšèšãããããšããããäžã®èгå¯ãèæ
®ã«å
¥ããå ŽåãSVO èªé ãããã° VS èªé ããããããããæ¥æ¬èªã«é¢ããŠèªé ã«èšåããããšã¯ç¡æå³ã ãšãã人ãå±
ãŠãããããªãã ãããããã§ (2b) ãèŠãŠã¿ãããäžã«åæ²ããã (2) b.*ããŒãã«ã®äžã«ããçç²ãããšã«ããã€ã¯æ°ä»ããŠããªãã®ã ãã®æã¯å®¹èªäžå¯èœã§ããããã¡ãããã®æç (8) ããŒãã«ã®äžã«ããçç²ã ã¯çŸä»£èªãšããŠåé¡ããªãæçã§ããããã ããã®æçã¯ãçç²ããšããåè©ããããŒãã«ã®äžã«ããããé£äœä¿®é£ŸããŠãããã®ã§ãããã§åé¡ãšããããšããŠãããã®ãšã¯ç°ãªããå¥ã®æç (9) ããŒãã«ã®äžã«ããçç²ãããšã« ã¯äžé©æ Œãªæçã§ãããåæ§ã« (10) a.*ããããªãã€ã³ãã«ãšã³ã¶ã«ããã«ããããšææŽããæ¬ ãããã«è¡ã£ãŠãã b.*ææ¥ã¯è¯ãããã倩æ°ãããå¯äžæ°Žæ³³ã«åºãããã ã容èªäžå¯èœã§ããã å®å
šã«å®¹èªå¯èœãªç¯å²ã®èªé ã®å
¥ãæ¿ããšã容èªäžå¯èœã«ãªãèªé ã®å
¥ãæ¿ãã®ç°å¢ã®éãã¯äœã ããããè¿°éšã®åŸã«äž»èªãªã©ãçŸããã®ã¯äž»ç¯ã«ãããŠã§ãããåŸå±ç¯ã§ã¯å¿
ãè¿°éšãæ«å°Ÿã«çŸããªããã°ãªããªããã€ãŸããèªç±èªé ã¯äž»ç¯ã«ã®ã¿èŠãããçŸè±¡ã§ãçŸä»£èªã®ãããããšããã«èŠãããçŸè±¡ã§ã¯ãªãããšããããšã«ãªãã ã§ã¯ä»ã®èªç±èªé ãããªãã¡è¿°éšã®åã«æ¥ãèŠçŽ ã¯å¶éãªãèªç±ãªã®ã§ãããããè±èªã®ãã㪠SVO ããã¢ã€ã«ã©ã³ãèªãã¿ã¬ãã°èªã®ãã㪠VSO ã§ã¯ãªããšããŠãè¿°éšãæåŸã«ããããã°èªé ã«èŠåæ§ããåºæ¬èªé ã®ãããªãã®ã¯ãªãã®ã ãããã ãããŸã§åè©ãèŠæ±ããæ§æçŽ ããé
argumentãã®ã¿ãæ±ã£ãŠããããããã§é
ã§ã¯ãªãå¯è©ãªã©ã®æ§æçŽ ã§ãããä»å è© adjunctããåãäžããŠèããŠã¿ããã (11â) a. 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåãæšæ¥åã«å¢ãã]ãšåŸæ¥å¡ã«åãã b. *æšæ¥áµ¢ 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåã táµ¢ åã«å¢ãã]ãšåŸæ¥å¡ã«åãã äžè¬ã«ãä»å è©ã¯åŸå±ç¯ã®äžããåãåºããŠäž»ç¯ã«çœ®ãããšãã§ããªããšèšãããŠãããç¯å¢çãè¶ããæ»ãæ··ã scrambling ã¯ãé·è·é¢æ»ãæ··ã long-distance scramblingããšåŒã°ããŠãããäžã¯ãã®äžäŸã ããäž»ç¯ã«æéå¯è©ãäºã€ããããã«ããã§é¢ä¿ä»ããŠè§£éããããããšãæªããããŠããã«ãããããªããã€ãŸããèªç±èªé çŸè±¡ãšã¯ã²ãšãŸãé¢ä¿ã®ãªãçŸè±¡ã ãšèšããããããããªãã æ¬¡ã«äžã®ãããªäŸãèããŠã¿ããã (12) a. å
ã¯æšæ¥çŽäŒåå±ãžåèæžãè²·ãã«è¡ã£ã b. å
ã¯åèæžãè²·ãã«æšæ¥çŽäŒåå±ãžè¡ã£ã ãããäºã€ã®æã¯ã次ã®äºã€ã®ç¯ãçµã¿åãããŠããããäžæã«ããŠããã (13) a. å
ã¯æšæ¥çŽäŒåå±ãžè¡ã£ã b. å
ãåèæžãè²·ã åé¡ã®äºã€ã®æã®éãã¯ã(13b) ããäœã£ãç®çç¯ãäž»ç¯è¿°éšãè¡ã£ããã«é£æ¥ããŠãããåŠãã§ãããããã§ãçŽäŒåå±ãžãã®èªé ãå
¥ãæ¿ããŠã¿ããã (14) a. å
ã¯æšæ¥åèæžãçŽäŒåå±ãžè²·ãã«è¡ã£ã b.*å
ã¯åèæžãçŽäŒåå±ãžè²·ãã«æšæ¥è¡ã£ã åè©ã«ç®çç¯ã飿¥ããŠããªã (14b) ã¯å®¹èªäžå¯èœããããŠäžèªç¶ããšå€æãããã¯ãã§ããã æããäºã€ã®ã±ãŒã¹ã¯è€æã§ããããŠãè€æã§ã¯æå±ããç¯ããæ§æçŽ ãç§»ãããšã¯èªç±ãšã¯èšããªãããšããããšããè¿°ã¹ãŠããªããããã§æ¬¡ã«åæãåãäžããŠèå¯ãããã ãŽãŒã«ãæç¢ºã«ããããã«ãããèšããããæ¥æ¬èªã¯ SOV èªé ã§ãããã«ããããŠåé¡èšå®ããŠã¿ãããããã§çŸä»£èªã«ã¯ãåºæ¬èªé basic word-orderãããã (15) a. NP-ga NP-o V b. NP-o NP-ga V ã®ããããã§ãããããããã¯ãåºæ¬èªé ã¯ãªããåæã§ã¯é
ã¯èªç±èªé ã§ããããã確ããããã æ¬¡ã®æãèãããã (16) a. ã©ã®èгå
客ãäœãåŒåœãè²·ã£ã b. 芳å
客ã®èª°ããã©ã®åŒåœãè²·ã£ã ããã§ (16a) ã¯â ãã©ã®èгå
客ãåãäžããŠããããããè²·ã£ãåŒåœãæäœäžã€ããããšããè§£éïŒåé
è§£éãšåŒã¶ãéååã®äœçšåã¯âïŒâïŒãæã€ããŸããâ¡ãåŒåœã«ã€ããŠã芳å
客ã®ãããããã®ãè²·ã£ãåŒåœãååšããããšããè§£éïŒååšè§£éãéååã®äœçšåã¯âïŒâïŒãšããèªé ãšã¯éã«ãªãäœçšå inverse scope ãæã€ããã«èŠãããããã (16b) ã¯ååšè§£éã®â¢ã芳å
客ã®åäœã«ã€ããŠãåŒåœãšããåäœã®ãã¹ãŠãè²·ã£ã芳å
客ãååšããããšããè§£éãæã€ããâ£ãåŒåœã®ã©ã®åäœãåãäžããŠãããããããããè²·ã£ã芳å
客ãæäœäžäººããããšããåé
è§£éã¯æã£ãŠããªããè±èªã§ã¯ãã®å Žåãèªé ãšã¯éã«ãªãäœçšåã®è§£éãæã¡ãâSome woman loves every manâ ãšããæã§ã¯ãSome woman loves every man, and her name is Edith. ãšããååšè§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£é Some woman loves every man, because Edith loves Harold, Deirdre loves Tom and Anne loves Andy. ãšããåé
è§£éã®ãšå¯Ÿç
§çã§ããããããè±èªã§ âEvery woman loves some manâ ã¯ç¢ºãã«èªé ãšã¯éã«ãªãäœçšåã®è§£éã«èŠãããã®ã¯ããããããã¯åé
è§£éã®ç¹æ®äŸã§ãããããæããç·ãå¶ç¶äžèŽãããšãããã®ã§ãããçŸä»£èªã§ã¯è¡šé¢ã®èªé ãšäœçšåã®åºçã¯å³å¯ã«å¯Ÿå¿ãããšèšãããŠãã(Kuroda, âRemarks on the notion of subject with special reference to the words like also, even, and onlyâ ãªã©ïŒãâ£ã®æ¬ åŠãå å³ãããšãäžã®â¡ã®è§£éã¯è±èªã®å Žåãšåæ§ã«â ã®ç¹æ®äŸãšèããããšãã§ããçŸä»£èªã¯èªé ãšäœçšåãå³å¯ã«å¯Ÿå¿ãããšèããããã (16) ã®èªé ãå
¥ãæ¿ããŠã¿ããã (17) a. äœãåŒåœãã©ã®èгå
客ãè²·ã£ã b. ã©ã®åŒåœã芳å
客ã®èª°ããè²·ã£ã ãã®èªé 㯠OSV ãšããèªé ã§ããããã®èªé ã§ SOV ãšåãæ§åŒã§è«ççè§£éããããããããªãã°ãçŸä»£èªã«åºæ¬èªé ã¯ãªãããšããäžã€ã®èšŒæ ã«ãªãããããã(17a) ã¯â ã®åé
è§£éãšâ¡ã®ååšè§£éãæã¡ã(17b) ã¯â¢ã®ååšãšâ£ã®åé
è§£éãæã€ãã€ãŸããããããèªé éãã®äœçšåã®è§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£éã§å€çŸ©çãšãªããSOV ãšã¯è§£éã®å€æ§æ§ãšããç¹ã§ç°ãªãã®ã§ããããã®äžã€ã§ããèªé ãšã¯éã«ãªãäœçšåã®è§£é㯠SOV ãšåãè§£éãä¿åãããã®ã§ãããããäžã€ã§ããèªé éãã®äœçšåã®è§£é㯠OSV ãšããèªé ã§æ°ãã«åŸããããã®ã§ãããããåºæ¬èªé ããªããäžããããèªé ã§äœçšåã®è§£éãå®ãŸãã®ã§ããã°ã(17a, b) ã¯èªé ãšéã«ãªãäœçšåãåããªãã¯ããªã®ã§ããããã®èгå¯ã¯çŸä»£èªã«åºæ¬èªé ããããšããããšã®åºç€ã®äžã€ãšãªããã€ãŸãçŸä»£èªã«ã€ããŠä»¥äžãæãç«ã€ïŒ (18) åºæ¬èªé â NP-ga NP-o V ååšæã®åºæ¬èªé ã«ã€ããŠã¯ä¹
éæ²ã®è©³çްãªç ç©¶ããã åºæ¬èªé â¡ NP-ni NP-ga ar ããã§æåã®äŸã«æ»ã£ãŠã¿ããã (20) a. çç²ã¯ããŒãã«ã®äžã«ãã b. ããŒãã«ã®äžã«ã¯çç²ããã c. ããŒãã«ã®äžã«ã¯çç²ãããã®ã ããã㯠(1d) ã®æçã§ãã (21) ããäœãããŠããã (21) ããŒãã«ã®äžã«çç²ããã ãããš (20b) ã®éãã¯ãããŒãã«ã®äžã«ãã®åŸã«ãã¯ããããããªãããã ãã§ããããã¯ããšã¯ãªãã ããããåŠæ ¡ã®åœææ³ã§ã¯ãä¿å©è©ããšããåè©ã«åé¡ãããŠãããä¿å©è©ãšã¯ãå€å
žèªã®ææ³ã§ã¯è¿°éšã®çµã³ã決å®ãããããªå©è©ã®ããšãæããŠããã®ãèŠããŠããã ãããäŸãã°ãããã®çµã³ã¯é£äœåœ¢ã§ãããããã®çµã³ã¯å·²ç¶åœ¢ã§ããããªãã°ãã¯ãïŒããã¯çµæ¢åœ¢ã§çµã¶ãã®ãšããŠä¿å©è©ãšåé¡ãããŠããã®ã§ããã ããã§ãããããã®ãšãªããã®ã®éããèããŠã¿ãããããã§ãâ
ãã¯ãã«å¯Ÿå¿ãããã®ãç¡ãããšã衚ããŠããã (22) a. ããŒãã«ã®äžã« â
çç²ããã b. ããŒãã«ã®äžã« ã çç²ããã
䜿ãããç¶æ³ãæèãæäžã®ç°å¢ã«æ³šæããŠäœ¿ãããã©ãããèŠãŠã¿ããã æ¬¡ã®ãããªç¶æ³ãèããŠã¿ããïŒä»äºããåž°å®
ããŠãããã³ã«å
¥ããšããè«ããããããµãšããŒãã«ã«ãã£ãæã« (23) ãïŒããŒãã«ã®äžã« â
çç²ãããïŒ
ãšããçºè©±ã¯å¯èœã§ãããäžæ¹ (24) ãïŒããŒãã«ã®äžã« ã çç²ãããïŒ ãšããçºè©±ã¯äžå¯èœã§ãããããã ã (25) ãïŒããŒãã«ã®äžã« ã çç²ãããããã¬ã¹ã¬ã³ãžã®äžã« ã ãã³ã±ãŒããããïŒïŒåå±
äººãæ°ãå©ããŠããªãã»ã»ã»ïŒ ã®ããã«ãããšå¯èœã«ãªããããã®å Žåã®ãã¯ã察æ¯ããšåŒã°ãããã®ã§ãããã§ã¯è§Šããªãã ä»åºŠã¯ (26) ãããããŒãã«ã®äžã«äœãããã®ïŒ
ãšè³ªåããããšããã (27) ããŒãã«ã®äžã« ã çç²ãããïŒãïŒ ãšçããã®ã¯å¯èœã§ãããã (28) ããŒãã«ã®äžã« â
çç²ãããïŒãïŒ ãšçããããšã¯ã§ããªãã質åã§ã (29) ã¡ãã£ãšäŒæ©ã«ããŠãè¶ã«ããªãïŒ ã®ãããªå Žåã«ã¯å¯èœã§ãããããã®å Žåå矩éãã«ã¯ããããããã¡ãã£ãšâŠããªã©çã§çããã¿ã€ãã®çåæã§ããã®çãã¯èªçšè«ç嫿ãããããïŒèªåã§ãªããšããããããªã©ïŒã ããã¹ãã«ãããåºçŸãèããŠã¿ãããæ¬¡ã®ãããªããã¹ããèããã (30) æäººããã¡ãåºãŠããããäžå¹Žã«ãªããæ©ãå¿ããæ¹ããããã ããããããã€ã«ãããªã«ãé Œãåã£ãŠããã®ããæ²ãããªãæ¯æ¥ã ã£ãããããªæ¥ã
ã«ãçªç¶æäººãã LINE ãå±ããããè¿ããã¡ã«æ»ã£ãŠãããïŒãâŠâŠèžãé«é³Žãã仿¥ãã仿¥ããšå®¶è·¯ã«æ¥ãããããŠâŠâŠ ç· ãæ¬ãã«ã¯ (22) ã®ã©ã¡ããçžå¿ããã ãããã 倿ãèªãã§ãã ãã£ãŠããæ¹ã
ã«å§ããŠïŒéããïŒæäžã§ã®ç°å¢ã«æ³šæãç§»ããããæ¡ä»¶ç¯ã«ã¯ (22) ã®ã©ã¡ããåºçŸå¯èœã ãããã (31) ã°èª°ãã飲ãã«éããªã 次ã®ããã« (22a) ã«å¯Ÿå¿ãã圢åŒã¯åºçŸå¯èœã§ããã®æå
šäœã¯å®¹èªå¯èœã§ããã (32) ããŒãã«ã®äžã« â
çç²ãããã°èª°ãã飲ãã«éããªã ããã«å¯Ÿã (22b) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã容èªäžå¯èœãšãªãã (33) *ããŒãã«ã®äžã« ã çç²ãããã°èª°ãã飲ãã«éããªã ããã ãã§ã¯ãªãã(20a) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã«ã容èªäžå¯èœãšãªãã (34) * çç² ã ããŒãã«ã®äžã«ããã°èª°ãã飲ãã«éããªã ãã®æ®µèœã®èгå¯ã§ã¯ååã«ç€ºããŠããªãããããã§åãäžããŠããçšæ³ã®ãã¯äž»ç¯ã«çŸãããã®ãšäžå¿èŠãªããããšã«ãªãã 仿«ãããã«ã€ããŠå°ã詳ããèããŠã¿ããããã¯ãä»ã®ä¿å©è©ãšåæ§ã«ã次ã®äœçœ®ã«çŸããã (35) NP-Case-___ ãããããå©è©ã«åŸç¶ããå Žåã«ã¯ãå
è¡ããå©è©ãçŸããŠã¯ãªããªãã (36) NP-â
-___ çŸããŠã¯ãªããªãå©è©ã¯ã¬ãšã²ã§ããããã®åŸæ¥ã«ãã£ãŠçèµ·åºæ¥ãªãã¬ã¯è»¢çœ®ã«ãã£ãŠçŸããã (37) a. ã¢ã¡ãªã«å€§çµ±é â
ãããã«ãã»ãã©ã³ãæ°ã b. ããã«ãã»ãã©ã³ãæ°ã¬ã¢ã¡ãªã«å€§çµ±é ã ãããäžäžç« ã¯ãææ ŒããšåŒãã ïŒãçŸä»£èªæ³åºèª¬ãïŒãããã«å¯Ÿã (38) a. ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒ â
ãç«ã b.*ç«ã¬ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒã
ã®ããã«è»¢çœ®ã§ã¬ãåºããªããã®ããããäžäžã¯ããããç¡æ ŒããšåŒãã ïŒäžæ²æžïŒãã€ãŸãããã¯åžžã«æ Œã䌎ãåè©å¥ãšãšãã«çšããããèš³ã§ã¯ãªãããšããããšã§ãããã§ã¯ãã®æå³ã»æ©èœãšã¯ãªãã ãããã åç¯åãããæïŒããã£ïŒãããç«ïŒãã®ãããªãã®ã§ã¯ãªãæïŒã«ã€ããŠããããŸã§ãã䌎ãå¥ããäž»é¡ topicããæã€æãšæããªãæã«åãããããšèããããŠãããäž»é¡ãæã€æãæŸäžå€§äžéã¯ãæé¡çæææå®ãïŒãæšæºæ¥æ¬ææ³ãïŒãé»ç°æå¹žã¯ categorical judgment ãïŒããŒãã«ã®äžã« â
çç²ãããïŒ ã®ããã«ãããåºæ¥äºã«ã€ããŠããããã²ãšãŸãšãŸãã®å€æãšããŠåºãæãã«è¿°ã¹ãïŒèšãæãããšãè«è©±ãæèãªãã«ç®åã®åºæ¥äºãè¿°ã¹ãïŒäœ¿ããæ¹ããããååšåè©æä»¥å€ã§ã¯ (39) a. ã»ãïŒãŠãã®åãèµ°ã£ãŠãïŒ b. èŠãŠïŒçœãã€ãéåè»ãåŸ
ã£ãŠãïŒ ã®ãããªèªåè©æãä»åè©æã§ç¡é¡æãšãªããã®ããããäžæ¹ã察å¿ããæé¡æ (40) a. ãŠãã®åã¯èµ°ã£ãŠãã b. çœãã€ã¯éåè»ãåŸ
ã£ãŠãã ã§ã¯ç°ãªã䜿ããæ¹ãã (41) a. ã¢ã³ã¿ããšãã®åã©ãâŠïŒ -ãŠãã®åïŒã¯ïŒããèµ°ã£ãŠãã£ãŠïŒ b. ã¹ããŒãéåã«ã¯æ°ãä»ããŠãçœãã€ã¯éåè»ãåŸ
ã£ãŠããããâŠ
ã® (41a) ã®ããã«ãå
è¡ããçºè©±ãæ¿ããŠãããŠãã®åããšãã倿ãè¡ããããã«å¥ã®å€æãããèµ°ã£ãŠãããçµåãããŠæ
å ±ãäŒãããã(41b) ã®ãããªãç·ç§°æ generic sentenceãã§ãã¹ããŒãéåã®åãç· ãŸããã飿³ããããçœãã€ããšãã倿ã«ãéåè»ãåŸ
ã£ãŠããããšãã倿ãçµåãããŠããåŸãç¶æ³ãäŒããŠæ³šæãåèµ·ãããããã ãªãã(39) ãš (41) ã察æ¯ããããšãã¬ã䌎ãåè©å¥ãšãã䌎ãåè©å¥ã察ç
§çã§ããããããã°ãã°ãäž»èªã®ããšã¬ã¯ã©ãéããããšããåé¡èšå®ããªãããããããååšåè©æã§èŠãããã«ããä»ããããŠäž»é¡ã«ãªãã®ã¯ã¬ã䌎ãåè©å¥ã«éãããããã䌎ãåè©å¥ããä»ã«ã¯ã²ã䌎ãåè©å¥ãã«ã©ã䌎ãåè©å¥ããªã©ãšå¯Ÿç
§ãããã¹ãã§ãããã€ãŸãããäž»èªã®ããšã¬ã¯ã©ãéããããšããã®ã¯èª€ã£ãåé¡èšå®ã§ãããããã«ææ³¥ããããã«ä»ã®éèŠãªçŸè±¡ããæ³šæãéžããããŠããŸããšããããšã§ã誀ã£ãåé¡èšå®ãèŸããŠéèŠãªçŸè±¡ã«åãçµãã¹ãã§ãããšããŠäžäžç« ããäž»èªå»æ¢è«ãã匷ã説ããããšã¯æåã§ããïŒæ¥æ¬èªã«ãã©ããªå®çŸ©ãã¯çœ®ããŠãäž»èªã¯ãªãããšäž»åŒµããŠããããã§ã¯ãªããäžäžã¯ãäž»èªããšããçšèªãé¿ããŠãäž»æ ŒããšåŒã³ã€ã€ãäž»æ Œã®åªäœæ§ã¯åŒ·èª¿ããŠããïŒã æé¡æãšç¡é¡æã®æå³ã»æ©èœã«ã€ããŠã¯ãŸãæ¹ããŠè§Šããããšã«ãããããã§ã¯ãããã®çµ±èªè«çæ§è³ªã«æ»ãããšã«ããã(1a, b) ã®æé¡æ (42) a. çç² ã ããŒãã«ã®äžã«ãã b. ããŒãã«ã®äžã« ã çç²ããã
ã«å¯Ÿå¿ããç¡é¡æã¯ (43) ããŒãã«ã®äžã«çç²ããã ã§ãããåºæ¬èªé ãæã€ (43) ãšäžŠã¹ãŠèгå¯ãããšã(42b) ã¯åºæ¬èªé ã®ãŸãŸã§ããã®ã«å¯Ÿãã (42a) ã¯ãçç²ããå«ãäž»é¡ã¯æé ãŸã§åé²ããŠããããããåºæ¬èªé ã®ãŸãŸã®æé¡æã«ãããš (44) ããŒãã«ã®äžã«çç² ã ãã ãšãªããããã®å Žåãçç²ã¯ãã¯å¯Ÿæ¯ã®è§£éã§æ¬¡ã®ãããªæãè«è©±ã®æç (45) a. ããŒãã«ã®äžã«çç²ã¯ããã麊é
ã¯ãªã b. ããŒãã«ã®äžã«çç²ã¯ãããã§ãèå¿ã®ããŒã¹ããŒã±ãŒãã¯ãªããããïŒ ãšã¯ãªããããäž»é¡ãšã¯è§£éã§ããªããæåŠçããã¹ãã« (46) å³»å³ãã衚æ
ãæã
ã«èŠããéå³°ã®äžè
¹ã«ç®æã寺é¢ã¯ãã ã®ãããªäŸãèŠãããããç Žæ Œãšãã¹ããåŠãäžæã§ããã®è¡šçŸå¹æãæ°ã«ãªããããã§ã¯ãããã£ãäŸã®ã¹ããŒã¿ã¹ã«ã€ããŠã¯ä¿çã«ãããã ãããããšãåºæ¬èªé ãšãã芳ç¹ããã(42b) ã¯äž»é¡ãå
ã®äœçœ®ã«çãŸã£ãŠããã®ã«å¯Ÿãã (42a) ã§ã¯äž»é¡ãæé ã«è»¢äœãããŠããããšèšã£ãŠå·®ãæ¯ããªããå³åŒçã«ç€ºããš (46) a. [áŽáŽ NP-ni wa ... b. [áŽáŽ NP-â
wa NP-ni ____ ... ã§ãããããã§ âCPâ ã¯ãããŸãã«ãæããšããã«ããŽãªãŒã ãšçè§£ããããã å
ã«ãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãæã®å®¹èªæ§å€æãäžããããšè¿°ã¹ããçºè©±ããåŽããèŠãå Žåãæ¯èªè©±è
ã¯çºè©±ããæãçŸä»£èªã®ç¥èãåç
§ããŠå®çŸ©ããããã®ãããªçŸä»£èªã®çµ±èªçç¥èãæ§æãããã®ããèŠåããšåŒãŒãã ãããŸã§èŠãŠããããšããèããŠãçŸä»£èªæ¯èªè©±è
ã®çµ±èªçç¥èã«ã¯æ¬¡ã®ãããªèŠåãå«ãŸããŠããªããã°ãªããªãã (48) åºæ¬èªé NP-ga NP-o V NP-ga Váµ¢ NP-ni NP-ga Vâ (49) äž»é¡æã®èªé [áŽáŽ [áŽáŽáŽ NP-case wa]áµ¢ Xâ° â
áµ¢ Yâ°] ãããã«å ããŠæ¬¡ã®èŠåãå¿
èŠãšãªãã (50) åºæ¬èªé ãšäž»é¡æã®èªé ã®é¢ä¿ãå®çŸ©ããèŠå 話ãå
ã«é²ããããã«ãæã®è¿°éšãæ§æããåè©ã圢容è©ãªã©ã®æ§è³ªã«ã€ããŠç°¡åã«èŠãŠã¿ãããšæããŸãã åŠæ ¡ã®ææ³ãè¿°éšã«ãªãããšæããã®ã¯çšèšã®åè©ã圢容è©ã圢容åè©ãšãäœèšã®åè©ã»ä»£åè©ã«æå®ã®å©åè©ãã¢ã«ïŒãããã¹ïŒãä»å±ãããã®ã§ããäžäžç« ã®äŸ ã»ãããªããšãããšãã³ã¬ïŒãããã€ãèŠããªããïŒã ã ãšããã®ããããæç€ºè©ãããçŸå®äžçã®ãã®ã鿥çã«äœèšã®ããã«ã§ããŸãã è¿°éšã¯ãããã«å©åè©ãçµå©è©ãä»å±ããŠæ¡åŒµããããšãã§ããŸããããã§ã¯æ¡åŒµããªã裞ã®è¿°èªãèŠãŠã¿ãŸãããã   述èªã¯å€§ããåããŠåè©ãšãã以å€ã«åé¡ã§ããŸãã <åè©> ã»çç²ã飲ã ã»å¯ã ã»ãã <圢容è©> ã»å¯ã <圢容åè©> ã»éãã <åè©+æå®ã®å©åè©> ã»å€±æ¥è
ã ãããã¯æ¬¡ã®ã¹ããŒãã«åœãŠã¯ãŸããšãæåºãããåè©ã§äºåãããŸãã ã»___ã___ã±ã¬ã㢠<åè©> ã»çç²ã飲ã¿ãããã±ã¬ã㢠ã»å¯ãããã±ã¬ã㢠ã»ãããããã±ã¬ã㢠<圢容è©> ã»å¯ããããã±ã¬ã㢠<圢容åè©> ã»éãã§ãããã±ã¬ã㢠<åè©+æå®ã®å©åè©> ã»å€±æ¥è
ã§ãããã±ã¬ã㢠ã€ãŸããæåºãããåè©ãã¹ã«ã§ãããã®ãšã¢ã«ã§ãããã®ããããŸããåè
ãã¹ã«åãåŸè
ãã¢ã«åãšåŒã¶ããšã«ããŸãïŒåè©ããããèªäœã¯ã¹ã«åã§ãïŒã   ãããããäž»èªãã«é¢ããŠãã¹ã«åãšã¢ã«åã«ã¯æ¬¡ã®ãããªéãããããŸãã ã¹ã«åã§ã¯ ã»ç¶ã¬çç²ã飲ãã§ãã ã§ãã¬ã䌎ãåè©å¥ãç¹æ®µç¹æ®ãªè§£éãæã€ããšã¯ãããŸããã äžæ¹ãã¢ã«åã§ã¯çºé³äžåç«ãèŠããããç·èš exhaustive listingãã®è§£éãç¡æšã§ãã ã»ãã®éšå±ã¬å¯ã ã»ç°èã¬éãã ã»1.7%ã¬å€±æ¥è
ã ã¢ã«åããªããã®ãããªè§£éãåããã®ãã«ã€ããŠã¯æé¡ã»ç¡é¡ãã¢ã¹ãã¯ããšé¢ä¿ä»ããŠå¥ã«ãã€ãŒãããããšæããŸãã ããã§ã¯ã¹ã«åã§ããåè©ã®æ§è³ªã«ã€ããŠèããŸãããã åè©ã¯æéã®ããŒã¯ã³ã§ããããšããèãããããŸãïŒéå亚ãèšèªã®æé衚çŸãïŒãæéã¯äœãç¬ç«ã«ååšãããã®ã§ã¯ãªããã€ãã³ãïŒåºæ¥äºïŒã®é£ãªãã§ãããšèšãããšãã§ããŸããç§éãæå»ãæéãç¥ãã®ã¯ç¬ç«ã«ååšããæéãåç
§ããŠããããã§ã¯ãããŸããã 䞊è¡ããŠèµ·ãã£ãŠããã€ãã³ãã®äžã€ãåºæºã«ããŠïŒäžççãªæéã®åäœã¯ã»ã·ãŠã ïŒïŒïŒã®é·ç§»ã«åºã¥ããŠããïŒãæŠããããšåãããã«å€åãããã®ïŒè
æèšãªã©ïŒãèŠãŠæå»ãç¥ã£ãããæéãæž¬ã£ããããŸãã åè©ã¯ãã®ãããªã€ãã³ãã®é£ãªãã§ããæéã®äžéšã«ååãä»ãããã®ã§ããåèªå埩ã®ããã«ãªããŸãããããããŠåè©ã¯ã€ãã³ããæç€ºå¯Ÿè±¡ãšããŸãã   èšèªãé¢ããŠã€ãã³ããèããããšã¯é£ããå ŽåããããŸãããèããŠã¿ãŸãã ã€ãã³ãã¯äœããèµ·ããå ŽåããããŸããããªã«ããªãèµ·ããå ŽåããããŸããäŸãã°ããªã¢å
ãççºãããã§ã¯ãã®äœãã¯ããªã¢å
ãã§ãããæéšãããã®ã¯ç¹ã«äœãããã£ãŠèµ·ããããã§ã¯ãããŸããã ããã§ãççºãããã¯ããªã¢å
ããåŒãèµ·ãããã®ã§ãèšèªçã«ã¯ããã®åè©ã¯åäžã®åè©å¥ãå¿
èŠãšããŸããããã¯ïŒé
åè©ã§ãäžè¬ã«ãèªåè©ããšåŒã°ããŸãããæéšãããã¯ïŒé
åè©ã§ãã ãããããèªåè©ããšãä»åè©ããšå¯Ÿå¿ããããšã次ã®ããã«ãªããŸãã <èªåè©> ïŒé
åè©ãïŒé
åè© <ä»åè©> ïŒé
åè©ãïŒé
åè© æ¥æ¬èªæ¯èªè©±è
ã®çµ±èªçç¥èãèããäžã§ããããã£ãæ
å ±ã§ååã§ããããïŒå
åãã«ãªããŸããããã€ã¹ãšã¢ã¹ãã¯ãã®èгç¹ããããã«äžã®ãããªæ§æ Œä»ããå¿
èŠã§ãã ïŒé
åè©ã®äžã«ã¯ãã¯ãããããã®å身ããšããæãäœãããã®ãšäœããªããã®ããããŸãã ã»ããªãã«å±
ããããšå°ã ã»éšã«éãããŠãã¶æ¿¡ãã«ãªã£ã ã»*ãããã *èŠããã äœããªãã¿ã€ãã®åè©ãäžäžç« ã¯ãæåè©ããšåä»ããŸããã æ¢ã«èŠãããã«ïŒé
åè©ã«ã¯å¯Ÿå¿ããä»åè©ãæã€ãã®ããããã·ãã€ã«ã®åœ¢ã§çµæã®åç¶ã®è§£éãæã¡ãŸãã ã»ããŒã«ãå·ããŠãã ã»ã¢ãããèµ°ã£ãŠããïŒé²è¡/*çµæåç¶ïŒ ãŸããå©åè©ç¡ãã§å¯èœã®æå³ãæ
ãåŸãŸãã ã»ãã®æã¯ç°¡åã«éããªã ãã®ã¿ã€ãã¯ãéå¯Ÿæ Œåè©ããšåŒã°ããŸãã ïŒé
åè©ã§ãããæ®Žããã§ãèªåãã®å
è¡è©ã«é¢ããŠèª¿ã¹ããš ã»ç°äžéšé·áµ¢ãèªåáµ¢ã®éšäžã殎ã£ã ã§ã¯ãç°äžéšé·ãããèªåãã®å
è¡è©ã«ãªããŸãã ã»*èªåáµ¢ã®äžåžãæ± ç°áµ¢ã殎ã£ã ã§ã¯äžå¯èœã§ããããã«å¯Ÿã ã»èªåáµ¢ã®éå»ããªãŒãŠã§ã³áµ¢ãèŠããã ã¯å¯èœã§ãã ãã®ãããªãå
è¡è©ãéã®äœçœ®ã«ãªããããªã¯ã©ã¹ã®åè©ããå¿çåè© psych verbããšãããŸãã   åè©ä»¥å€ã§ã¯ ã»èªåáµ¢ã®åšãçæŸáµ¢ã®èªãã ã®ãããªãã®ããããŸãïŒäžå®
ç¥å®ãèšèªåŠäŒçºè¡šïŒã ãŸãšãããš 0 é
åè© å¹éªããæéšãã éå¯Ÿæ Œåè© èãããæãã éèœæ Œåè© èµ°ããæ³³ã_èªåè© æåè© ãããããã ä»åè© æå¯Ÿä»åè© èãããæã ç¡å¯Ÿä»åè© é£ã¹ã ç§»ååè© è¡ããæ¥ã å¿çåè© èŠããã è€ä»åè© æž¡ããããã (1)
NP-ga Váµ¢
NP-ni NP-ga Vâ
NP-ga NP-o V (2) NP-ga
ã®å Žåãæ¬¡ã®ç¶æ
ã®åè£ã
(3) {NP-ga, NP-o, NP-ni, V, â
, ...}
ã§ãããããã確çã«ãã£ãŠ
(4) NP-gaâNP-o
ãéžã°ããŸãã (5) {NP-ga, NP-o, NP-ni, V, â
, ...}
ãšããåè£ãã確çã«ãã£ãŠ
(6) NP-gaâNP-oâV
ãéžã°ããŸããç¶æ
é·ç§»ã¯äºåºŠã®é·ç§»
(7) ç¶æ
ââç¶æ
ââç¶æ
â
ã§çµäºãããã®ãšããããã§æã宿ããŸãã (8)
a. ç¶æ
â
b. ç¶æ
ââç¶æ
â
c. ç¶æ
ââç¶æ
ââç¶æ
â
d. ç¶æ
ââç¶æ
ââç¶æ
ââç¶æ
â
ã®å¯èœæ§ããããæçµã®ç¶æ
ããç¶æ
âããšãããš
(9) ç¶æ
ââ°â ⊠âç¶æ
ââââ°âç¶æ
â
ã®ããã«äžè¬çã«è¿°ã¹ãŠããå¿
èŠããããŸãããããŠç¶æ
âã§ããåè©ã«ãã£ãŠæ¡çšããç¶æ
ã®æ°ã決ãŸãããšããŠãããªããã°ãªããŸããã
ææ³ã¯ãæãåŒ±çæ weakly generate ããæ§é èšè¿°ãåŒ·çæ strongly generate ããããã®ã§ããæãã¯è¡šé¢çãªèªã®äžŠã³ãæããŸãïŒãæ§é èšè¿°ãã«ã€ããŠã¯åŸçšïŒã匱çæèœåããæããªãæéç¶æ
ææ³ãæ¥æ¬èªæ¯èªè©±è
ã®ç¥èãèšè¿°ããããšã¯äžå¯èœã§ãã
ããã§ç·åœ¢é åºïŒåŒ±çæåãæã€ç¥èã§å®çŸ©ãããïŒã§ã¯ãªããæ§é èšè¿° structural description ã«æ³šæãåããããšã«ããŸããããæ§é èšè¿°ãšã¯ãæã®è¡šé¢ã«çŸãããèŠããã»èããã圢åŒã®èåŸã«ããããŸãšãŸãïŒæ§æçŽ æ§ïŒãªã©ã®ããšã§ãã
ãŸãšãŸããšããã®ã¯æ©æ¬é²åã®é£æç¯ãææèª èšã®å
¥ãåãã¢ã¡ãªã«æ§é 䞻矩èšèªåŠã® IC åæã®æ§æçŽ ã®ããšã§ããäŸãæããŠèããŠã¿ãŸããããäŸãæç¯ã«åããŠç€ºããŸã
(10) |ããããª|ãããããã®|æŽæ|
äžã®æã¯å€çŸ©çã§ããäžã€ã¯ãããããªã®ã¯ãããããããšããè§£éã§ãã
ãã®è§£éã§ã®ç¬¬äžã®é£æç¯ã âââ ã䜿ã£ãŠç€ºããŸãã
(11) |ããããªâãããããã®|æŽæ|
ãããããªâãããããããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããæ¬¡ã®é£æç¯ã瀺ããš
(12) |第äžé£æç¯âæŽæ|
ãšãªããŸãã
次ã«ããäžã€ã®è§£éãèããŸãããããããªã®ã¯æŽæããšããè§£éã§ããã第äžé£æç¯ã¯
(13) |ããããª|ãããããã®âæŽæ|
ãšãªããŸããããããããã®âæŽæããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããŠæ¬¡ã®é£æç¯æ§é ã瀺ããš
(14) |ããããªâ第äžé£æç¯|
ãšãªããŸãã
以äžãæ§æçŽ ãšåŒã³ãã¿ã€ãã®äŸ¿å®äžãæ¬åŒ§ã§æ§æçŽ ã瀺ããŸãã
(15)
a.|ããããª|ãããããã®|æŽæ|
b.|ããããªâãããããã®|
c.|ãããããã®âæŽæ|
ã¯ãããã
(16)
a. [ããããª][ãããããã®][æŽæ]
b. [[ããããª][ãããããã®]]
c. ãããããã®æŽæ
ãšåãã§ãã
åºæ¬èªé ãæã€åæã®åé¡ã«æ»ããŸããããæ¬¡ã®æãèããŸãã
(18) 姪ãçªãéãã
ããã«çŸããã姪ãããçªãããéããããšããäžè
ã®éã®é¢ä¿ã¯å¯Ÿçã§ã¯ãããŸããããçªãéããããšããçµã¿åããã䜿ã£ãŠäœã
(19) [çªãéããŠ] ãã
ã®ãããªæã¯ãã£ãŠãã姪ãéãããã«ã¯ãããŸããã
ãŸã
(20) NP㬠NPã² éã±ã«
ã«ã¯å¯Ÿå¿ãã
(21) NP㬠éã¯
ãããããæå³ã§ãã®éå¯Ÿæ Œåè©ã®ã䜿圹åããšèšããŸããèªä»å¯Ÿå¿ã¯åœ¢æ
è«ã®åé¡ãšããä»åè©æãšäœ¿åœ¹ææ³ã®éãã¯åŸåãã«ããŠãããããæ§æçŽ æ§é ãæç¢ºã«ãããš
(22)
a. [NP ga é]
b. [NP ga [NP o é] 䜿]
ã§ãã
ããã§çåãçããŸããäžç·ã«å©è©ã®ã¬ãã²ãç¥ã£ãŠããå¿
èŠãããããã§ãã0 é
åè©ãé€ãã»ãšãã©ã®åæã¯ä¿å©è©ãå¯å©è©ã§çœ®ãæãããªããã°æäœäžã€ã¬ã䌎ãåè©å¥ãçŸããŸãã詳ããã¯åŸã«ããŠèªä»å¯Ÿå¿ãããã¯ã©ã¹ã Vunacc ãšãããš
(10)
a. [NPâ Vunacc]
b. [NPâ [NPâ Vunacc] CAUS]
åæ§ã®ããšã¯ç¡å¯Ÿä»åè©ã«ãèšããã§ããããããé£ã¹ãããåãäžããŸãã
(11) ããã€ãã¬ãåºãé£ã¹ããããªããã°...
ããã§
(12)
a. ã¬ãåºãé£ã¹ããããã€ãããªããã°...
b.*ããã€ãé£ã¹ããã¬ãåºãããªããã°...
ã®å¯Ÿæ¯ãããæ¬¡ã®ããã«èããããŸãã
(13) [NPâ [NPâ-o Vacc]]
ãã®è°è«ã¯
Hoji, Miyagawa and Tada. 1989. NP-movement in Japanese, ms.
ã«äŸããŸãã
ãããŸã§
(14) [NPâ [NPâ-o V] α]
ãšããæ§é ã確èªããŸãããèªé ãšã®å¯Ÿå¿ã¯
(15)
[NPâ [NPâ-o V] α] æ§é ã«ãªããŸãã
éã«ååšæã§ã¯
(16) [NPâ-ni [NPâ V] α]
ã§ãã | ãçŸä»£æ¥æ¬èªã®ææ³ããšèšãæã«ã¯ãææ³ãã«äºã€ã®çšæ³ããããäžã€ã«ã¯äžè¬ã«äœ¿ãããããã«ãçŸä»£æ¥æ¬èªïŒæŒ ç¶ãšæããŠïŒã®èŠåãç¶²çŸ
ããŠããçšæ³ã§ãããããäžã€ã¯ãåå¥èšèªã§ããçŸä»£æ¥æ¬èªã®æ¯èªè©±è
ã®ç¥èãããèªäœãæãçšæ³ã§ãããããã§ã¯åŸè
ãèšè¿°ãããã®ããçµ±èªè«ããšåŒã¶ã
çµ±èªè«ã¯ããã®æ¯èªè©±è
ãæé»ã«çè§£ããäºã«äŸåãããæé»ã®ç¥è tacit knowledge ãå
šãŠæžãåºããªããã°ãªããªããæ¬¡ãèããŠã¿ããã
<ol>
<li>
çç²ãããŒãã«ã®äžã«ããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
<ol style="list-style-type: lower-latin">
<li>çç²ã¯ããŒãã«ã®äžã«ãã
<li>ããŒãã«ã®äžã«ã¯çç²ããã
<li>ããŒãã«ã®äžã«ã¯çç²ãããã®ã
<li>ããŒãã«ã®äžã«çç²ãããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
<li>çç²ãããŒãã«ã®äžã«ããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
</ol>
ãããäºã€ã®æã«ã€ããŠå
ãã©ã®ãããªããšã芳å¯ã§ããã ããããæ¯èªè©±è
ã¯ãããã®æãçŸåšèªã®æã§ããããªããããããªãšããšããªããšå€æ judge ãããæ¬¡ã®æãšæ¯ã¹ãŠã¿ããã
<li>
<ol style="list-style-type: lower-latin">
<li>çç²ã¯ããŒãã«ã®äžã«ãã
<li>ããŒãã«ã®äžã«ã¯çç²ããã
<li>ããŒãã«ã®äžã«çç²ãããããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
</ol>
æ¯èªè©±è
ã¯ãããã®æã¯çŸä»£èªã®æãšããŠãããããçŸä»£èªã®æã§ã¯ãªãããšå€æãããèšãæãããšã(1a-e) ã®æã¯å®¹èªå¯èœ acceptable ã§ããã®ã«å¯Ÿãã(2a, b) ã®æã¯å®¹èªäžå¯èœ unacceptable ã§ããããšããã
ããŠãæ¯èªè©±è
ã¯ã©ã®ããã«ããŠãããã£ã倿ã瀺ãã®ã§ãããããäžã€ã®ä»®èª¬ãšããŠãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãå®¹èªæ§ acceptability ã®å€æãäžãããã®ãšãããããã§çŸä»£èªçµ±èªè«ãšåŒãã§ãããã®ã¯ããã®ä»®èª¬ãåãå
¥ãã倿ã®åºç€ãšãªã£ãŠããçµ±èªçãªç¥èãæžãåºãããšããã®ã§ããã
çŸä»£æ¥æ¬èªã®çµ±èªçãªç¥èã¯ã©ã®ãããªãã®ã§æ§æãããŠããã®ã ãããã(1) ã«çŸãããçç²ããæã瀺ãç©ã«ã€ããŠèããŠã¿ãããããèãããšäžäœäœãæããŠããã®ã ããããçç²ïŒã³ãŒããŒïŒãæ§æããé³é» /koRhiR/ ã¯é£²ã¿ç©ãæå³ããããããæ¶²äœã¯ãã®ãŸãŸã§ããŒãã«ã®äžã«çœ®ãããšãã§ãããã®ã§ã¯ãªãïŒæº¢ãããé¶ãããæäººã錻ã«å²ã箞ãçªã£èŸŒãã§æã£ãã®ã§ç¬ã£ãŠå¹ãåºãããçã®å Žåã¯å¥ã®æã䜿ãã¯ãïŒãæã瀺ãããŠããã®ã¯ã³ãŒããŒãåšã«å
¥ã£ãç¶æ
ã®ãã®ãã³ãŒããŒè±ã容åšã«å
¥ã£ãç¶æ
ã®ãã®ãçã§ãããããçç²ãããããã£ãç©ãæãã®ã¯ã¡ããã㌠metonymy ãšåŒã°ãããã®ã§ãèšèªã®éèŠãªç¥èã§ããããããçµ±èªè«çãªç¥èã¯ãããã£ããã®ã¯å«ãŸãªãã
(1a) ãš (2a) ãæ¯ã¹ãŠã¿ãããéãã¯ãããŒãã«ã®äžããšãããŒãã«ãããã§å©è©ããããããªãããã§ããããããŒãã«äž (ããã)ããšããã°å®¹èªå¯èœãšãªãããããã§ã¯ãã®åé¡ã¯æªããèšèªã«ãã£ãŠã¯ããç°å¢ã§å©è©ãã«å¯Ÿå¿ãããã®ãèªç±ã«è±èœããããæ¥æ¬èªã®çŸä»£èªã§ã¯èš±ãããªããã€ãŸããããŒãã«ããšãäžããçµ±èªè«çãªãŸãšãŸãããæ§æçŽ constituentãããã«ã¯å©è©ããå¿
èŠãšãªãããããŒãã«ããšãäžãã¯åŠæ ¡ã®åœææ³ã®åè©ã§ãããããããããªãæ§æçŽ ãåè©ã§ããããããã£ãåè©ã®æ§æçŽ ã¯æŽã«æã®äžéšãšãªãããæãæãç«ãããæ§æçŽ ã®ããã®æ§æã®ä»æ¹ã«é¢ããç¥èã§ããå©è©ãã®å¿
é æ§ã¯çµ±èªè«çãªç¥èã§ããã
ç¶ã㊠(1d, e) ãš (2b) ãæ¯ã¹ãŠã¿ããã(1d, e) ã®æç fragment ãåãåºãããã®ã次ã§ããã
<li>
<ol style="list-style-type: lower-latin">
<li> ããŒãã«ã®äžã«çç²ããã
<li> çç²ãããŒãã«ã®äžã«ãã
</ol>
ããã§ã¯ãããŒãã«ã®äžã«ããšãçç²ããã®é åºãå
¥ãæ¿ãã£ãŠããããæ¥æ¬èªã¯èªé ãèªç±ã§ããããšããèšãããããäžã®äºæã¯ãããäŸç€ºããŠãããæŽã«
<li>
<ol style="list-style-type: lower-latin">
<li> çç²ã¯ããŒãã«ã®äžã«ããã
<li> ããŒãã«ã®äžã«ããããçç²ã¯
</ol>
ã® (4b) ã®ããã«ãçç²ã¯ããè¿°éšã®åŸã«çœ®ãããšãå¯èœã§ãããããããèŠããšçŸä»£èªã§ã¯
<li>
<ol style="list-style-type: lower-latin">
<li> NP-ni NP-ga ar
<li> NP-ga NP-ni ar
<li> NP-ni ar NP-ga
<li> NP-ga ar NP-ni
</ol>
ãšããããã«æ¥µããŠèªé ãèªç±ã§ããããã«èŠãããå ããŠ
<li>
<ol style="list-style-type: lower-latin">
<li> ç£ç£ãåãããããªããã°ïŒãã®è©Šåã«è² ããªãã£ãã®ã«ïŒ
<li> åãããç£ç£ãããªããã°ïŒãã®è©Šåã«è² ããªãã£ãã®ã«ïŒ
</ol>
ã®ããã«è¿°éšãåã«çœ®ãããå Žåããã
<li>
<ol style="list-style-type: lower-latin">
<li> NP-ga taore
<li> taore NP-ga
</ol>
ãšããããã«ãèªé ã¯å®å
šã«èªç±ã§ãããšèãããããããããªãã
è±èªã®èªé 㯠SVO ã§ããã®ã«å¯ŸããŠæ¥æ¬èªã¯ SOV ã§ããïŒã ãããã³ãã«ã³ãïŒããšèšãããããšããããäžã®èгå¯ãèæ
®ã«å
¥ããå ŽåãSVO èªé ãããã° VS èªé ããããããããæ¥æ¬èªã«é¢ããŠèªé ã«èšåããããšã¯ç¡æå³ã ãšãã人ãå±
ãŠãããããªãã
ãããããã§ (2b) ãèŠãŠã¿ãããäžã«åæ²ããã
(2) b.*ããŒãã«ã®äžã«ããçç²ãããšã«ããã€ã¯æ°ä»ããŠããªãã®ã
ãã®æã¯å®¹èªäžå¯èœã§ããããã¡ãããã®æç
</ol>
(8) ããŒãã«ã®äžã«ããçç²ã
ã¯çŸä»£èªãšããŠåé¡ããªãæçã§ããããã ããã®æçã¯ãçç²ããšããåè©ããããŒãã«ã®äžã«ããããé£äœä¿®é£ŸããŠãããã®ã§ãããã§åé¡ãšããããšããŠãããã®ãšã¯ç°ãªããå¥ã®æç
(9) ããŒãã«ã®äžã«ããçç²ãããšã«
ã¯äžé©æ Œãªæçã§ãããåæ§ã«
(10)
a.*ããããªãã€ã³ãã«ãšã³ã¶ã«ããã«ããããšææŽããæ¬ ãããã«è¡ã£ãŠãã
b.*ææ¥ã¯è¯ãããã倩æ°ãããå¯äžæ°Žæ³³ã«åºãããã
ã容èªäžå¯èœã§ããã
å®å
šã«å®¹èªå¯èœãªç¯å²ã®èªé ã®å
¥ãæ¿ããšã容èªäžå¯èœã«ãªãèªé ã®å
¥ãæ¿ãã®ç°å¢ã®éãã¯äœã ããããè¿°éšã®åŸã«äž»èªãªã©ãçŸããã®ã¯äž»ç¯ã«ãããŠã§ãããåŸå±ç¯ã§ã¯å¿
ãè¿°éšãæ«å°Ÿã«çŸããªããã°ãªããªããã€ãŸããèªç±èªé ã¯äž»ç¯ã«ã®ã¿èŠãããçŸè±¡ã§ãçŸä»£èªã®ãããããšããã«èŠãããçŸè±¡ã§ã¯ãªãããšããããšã«ãªãã
ã§ã¯ä»ã®èªç±èªé ãããªãã¡è¿°éšã®åã«æ¥ãèŠçŽ ã¯å¶éãªãèªç±ãªã®ã§ãããããè±èªã®ãã㪠SVO ããã¢ã€ã«ã©ã³ãèªãã¿ã¬ãã°èªã®ãã㪠VSO ã§ã¯ãªããšããŠãè¿°éšãæåŸã«ããããã°èªé ã«èŠåæ§ããåºæ¬èªé ã®ãããªãã®ã¯ãªãã®ã ãããã
ãããŸã§åè©ãèŠæ±ããæ§æçŽ ããé
argumentãã®ã¿ãæ±ã£ãŠããããããã§é
ã§ã¯ãªãå¯è©ãªã©ã®æ§æçŽ ã§ãããä»å è© adjunctããåãäžããŠèããŠã¿ããã
(11â)
a. 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåãæšæ¥åã«å¢ãã]ãšåŸæ¥å¡ã«åãã
b. *æšæ¥áµ¢ 瀟é·ãçŽæçŽåã®ä»æ¥[ååŒå
ãžã®çŽåã táµ¢ åã«å¢ãã]ãšåŸæ¥å¡ã«åãã
äžè¬ã«ãä»å è©ã¯åŸå±ç¯ã®äžããåãåºããŠäž»ç¯ã«çœ®ãããšãã§ããªããšèšãããŠãããç¯å¢çãè¶ããæ»ãæ··ã scrambling ã¯ãé·è·é¢æ»ãæ··ã long-distance scramblingããšåŒã°ããŠãããäžã¯ãã®äžäŸã ããäž»ç¯ã«æéå¯è©ãäºã€ããããã«ããã§é¢ä¿ä»ããŠè§£éããããããšãæªããããŠããã«ãããããªããã€ãŸããèªç±èªé çŸè±¡ãšã¯ã²ãšãŸãé¢ä¿ã®ãªãçŸè±¡ã ãšèšããããããããªãã
次ã«äžã®ãããªäŸãèããŠã¿ããã
(12)
a. å
ã¯æšæ¥çŽäŒåå±ãžåèæžãè²·ãã«è¡ã£ã
b. å
ã¯åèæžãè²·ãã«æšæ¥çŽäŒåå±ãžè¡ã£ã
ãããäºã€ã®æã¯ã次ã®äºã€ã®ç¯ãçµã¿åãããŠããããäžæã«ããŠããã
(13)
a. å
ã¯æšæ¥çŽäŒåå±ãžè¡ã£ã
b. å
ãåèæžãè²·ã
åé¡ã®äºã€ã®æã®éãã¯ã(13b) ããäœã£ãç®çç¯ãäž»ç¯è¿°éšãè¡ã£ããã«é£æ¥ããŠãããåŠãã§ãããããã§ãçŽäŒåå±ãžãã®èªé ãå
¥ãæ¿ããŠã¿ããã
(14)
a. å
ã¯æšæ¥åèæžãçŽäŒåå±ãžè²·ãã«è¡ã£ã
b.*å
ã¯åèæžãçŽäŒåå±ãžè²·ãã«æšæ¥è¡ã£ã
åè©ã«ç®çç¯ã飿¥ããŠããªã (14b) ã¯å®¹èªäžå¯èœããããŠäžèªç¶ããšå€æãããã¯ãã§ããã
æããäºã€ã®ã±ãŒã¹ã¯è€æã§ããããŠãè€æã§ã¯æå±ããç¯ããæ§æçŽ ãç§»ãããšã¯èªç±ãšã¯èšããªãããšããããšããè¿°ã¹ãŠããªããããã§æ¬¡ã«åæãåãäžããŠèå¯ãããã
ãŽãŒã«ãæç¢ºã«ããããã«ãããèšããããæ¥æ¬èªã¯ SOV èªé ã§ãããã«ããããŠåé¡èšå®ããŠã¿ãããããã§çŸä»£èªã«ã¯ãåºæ¬èªé basic word-orderãããã
(15)
a. NP-ga NP-o V
b. NP-o NP-ga V
ã®ããããã§ãããããããã¯ãåºæ¬èªé ã¯ãªããåæã§ã¯é
ã¯èªç±èªé ã§ããããã確ããããã
æ¬¡ã®æãèãããã
(16)
a. ã©ã®èгå
客ãäœãåŒåœãè²·ã£ã
b. 芳å
客ã®èª°ããã©ã®åŒåœãè²·ã£ã
ããã§ (16a) ã¯â ãã©ã®èгå
客ãåãäžããŠããããããè²·ã£ãåŒåœãæäœäžã€ããããšããè§£éïŒåé
è§£éãšåŒã¶ãéååã®äœçšåã¯âïŒâïŒãæã€ããŸããâ¡ãåŒåœã«ã€ããŠã芳å
客ã®ãããããã®ãè²·ã£ãåŒåœãååšããããšããè§£éïŒååšè§£éãéååã®äœçšåã¯âïŒâïŒãšããèªé ãšã¯éã«ãªãäœçšå inverse scope ãæã€ããã«èŠãããããã (16b) ã¯ååšè§£éã®â¢ã芳å
客ã®åäœã«ã€ããŠãåŒåœãšããåäœã®ãã¹ãŠãè²·ã£ã芳å
客ãååšããããšããè§£éãæã€ããâ£ãåŒåœã®ã©ã®åäœãåãäžããŠãããããããããè²·ã£ã芳å
客ãæäœäžäººããããšããåé
è§£éã¯æã£ãŠããªããè±èªã§ã¯ãã®å Žåãèªé ãšã¯éã«ãªãäœçšåã®è§£éãæã¡ãâSome woman loves every manâ ãšããæã§ã¯ãSome woman loves every man, and her name is Edith. ãšããååšè§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£é Some woman loves every man, because Edith loves Harold, Deirdre loves Tom and Anne loves Andy. ãšããåé
è§£éïŒè§£éã®äŸã¯ Koeneman and Zeijlstra, ''Introducing Syntax'' ããïŒã®ãšå¯Ÿç
§çã§ããããããè±èªã§ âEvery woman loves some manâ ã¯ç¢ºãã«èªé ãšã¯éã«ãªãäœçšåã®è§£éã«èŠãããã®ã¯ããããããã¯åé
è§£éã®ç¹æ®äŸã§ãããããæããç·ãå¶ç¶äžèŽãããšãããã®ã§ãããçŸä»£èªã§ã¯è¡šé¢ã®èªé ãšäœçšåã®åºçã¯å³å¯ã«å¯Ÿå¿ãããšèšãããŠãã(Kuroda, âRemarks on the notion of subject with special reference to the words like also, even, and onlyâ ãªã©ïŒãâ£ã®æ¬ åŠãå å³ãããšãäžã®â¡ã®è§£éã¯è±èªã®å Žåãšåæ§ã«â ã®ç¹æ®äŸãšèããããšãã§ããçŸä»£èªã¯èªé ãšäœçšåãå³å¯ã«å¯Ÿå¿ãããšèããããã
(16) ã®èªé ãå
¥ãæ¿ããŠã¿ããã
(17)
a. äœãåŒåœãã©ã®èгå
客ãè²·ã£ã
b. ã©ã®åŒåœã芳å
客ã®èª°ããè²·ã£ã
ãã®èªé 㯠OSV ãšããèªé ã§ããããã®èªé ã§ SOV ãšåãæ§åŒã§è«ççè§£éããããããããªãã°ãçŸä»£èªã«åºæ¬èªé ã¯ãªãããšããäžã€ã®èšŒæ ã«ãªãããããã(17a) ã¯â ã®åé
è§£éãšâ¡ã®ååšè§£éãæã¡ã(17b) ã¯â¢ã®ååšãšâ£ã®åé
è§£éãæã€ãã€ãŸããããããèªé éãã®äœçšåã®è§£éãšãèªé ãšã¯éã«ãªãäœçšåã®è§£éã§å€çŸ©çãšãªããSOV ãšã¯è§£éã®å€æ§æ§ãšããç¹ã§ç°ãªãã®ã§ããããã®äžã€ã§ããèªé ãšã¯éã«ãªãäœçšåã®è§£é㯠SOV ãšåãè§£éãä¿åãããã®ã§ãããããäžã€ã§ããèªé éãã®äœçšåã®è§£é㯠OSV ãšããèªé ã§æ°ãã«åŸããããã®ã§ãããããåºæ¬èªé ããªããäžããããèªé ã§äœçšåã®è§£éãå®ãŸãã®ã§ããã°ã(17a, b) ã¯èªé ãšéã«ãªãäœçšåãåããªãã¯ããªã®ã§ããããã®èгå¯ã¯çŸä»£èªã«åºæ¬èªé ããããšããããšã®åºç€ã®äžã€ãšãªããã€ãŸãçŸä»£èªã«ã€ããŠä»¥äžãæãç«ã€ïŒ
(18) åºæ¬èªé â
NP-ga NP-o V
ååšæã®åºæ¬èªé ã«ã€ããŠã¯ä¹
éæ²ã®è©³çްãªç ç©¶ããã (Linguistic Inquiry è«æããæ¥æ¬ææ³ç ç©¶ããªã©ïŒãåºæ¬èªé ã¯æ¬¡ã®ããã«èããããŠããã
(19) åºæ¬èªé â¡
NP-ni NP-ga ar
ããã§æåã®äŸã«æ»ã£ãŠã¿ããã
(20)
a. çç²ã¯ããŒãã«ã®äžã«ãã
b. ããŒãã«ã®äžã«ã¯çç²ããã
c. ããŒãã«ã®äžã«ã¯çç²ãããã®ã
ããã㯠(1d) ã®æçã§ãã (21) ããäœãããŠããã
(21) ããŒãã«ã®äžã«çç²ããã (= 3a)
ãããš (20b) ã®éãã¯ãããŒãã«ã®äžã«ãã®åŸã«ãã¯ããããããªãããã ãã§ããããã¯ããšã¯ãªãã ããããåŠæ ¡ã®åœææ³ã§ã¯ãä¿å©è©ããšããåè©ã«åé¡ãããŠãããä¿å©è©ãšã¯ãå€å
žèªã®ææ³ã§ã¯è¿°éšã®çµã³ã決å®ãããããªå©è©ã®ããšãæããŠããã®ãèŠããŠããã ãããäŸãã°ãããã®çµã³ã¯é£äœåœ¢ã§ãããããã®çµã³ã¯å·²ç¶åœ¢ã§ããããªãã°ãã¯ãïŒããã¯çµæ¢åœ¢ã§çµã¶ãã®ãšããŠä¿å©è©ãšåé¡ãããŠããã®ã§ããã
ããã§ãããããã®ãšãªããã®ã®éããèããŠã¿ãããããã§ãâ
ãã¯ãã«å¯Ÿå¿ãããã®ãç¡ãããšã衚ããŠããã
(22)
a. ããŒãã«ã®äžã« â
çç²ããã
b. ããŒãã«ã®äžã« ã çç²ããã
䜿ãããç¶æ³ãæèãæäžã®ç°å¢ã«æ³šæããŠäœ¿ãããã©ãããèŠãŠã¿ããã
次ã®ãããªç¶æ³ãèããŠã¿ããïŒä»äºããåž°å®
ããŠãããã³ã«å
¥ããšããè«ããããããµãšããŒãã«ã«ãã£ãæã«
(23) ãïŒããŒãã«ã®äžã« â
çç²ãããïŒ
ãšããçºè©±ã¯å¯èœã§ãããäžæ¹
(24) ãïŒããŒãã«ã®äžã« ã çç²ãããïŒ
ãšããçºè©±ã¯äžå¯èœã§ãããããã ã
(25) ãïŒããŒãã«ã®äžã« ã çç²ãããããã¬ã¹ã¬ã³ãžã®äžã« ã ãã³ã±ãŒããããïŒïŒåå±
äººãæ°ãå©ããŠããªãã»ã»ã»ïŒ
ã®ããã«ãããšå¯èœã«ãªããããã®å Žåã®ãã¯ã察æ¯ããšåŒã°ãããã®ã§ãããã§ã¯è§Šããªãã
ä»åºŠã¯
(26) ãããããŒãã«ã®äžã«äœãããã®ïŒ
ãšè³ªåããããšããã
(27) ããŒãã«ã®äžã« ã çç²ãããïŒãïŒ
ãšçããã®ã¯å¯èœã§ãããã
(28) ããŒãã«ã®äžã« â
çç²ãããïŒãïŒ
ãšçããããšã¯ã§ããªãã質åã§ã
(29) ã¡ãã£ãšäŒæ©ã«ããŠãè¶ã«ããªãïŒ
ã®ãããªå Žåã«ã¯å¯èœã§ãããããã®å Žåå矩éãã«ã¯ããããããã¡ãã£ãšâŠããªã©çã§çããã¿ã€ãã®çåæã§ããã®çãã¯èªçšè«ç嫿ãããããïŒèªåã§ãªããšããããããªã©ïŒã
ããã¹ãã«ãããåºçŸãèããŠã¿ãããæ¬¡ã®ãããªããã¹ããèããã
(30) æäººããã¡ãåºãŠããããäžå¹Žã«ãªããæ©ãå¿ããæ¹ããããã ããããããã€ã«ãããªã«ãé Œãåã£ãŠããã®ããæ²ãããªãæ¯æ¥ã ã£ãããããªæ¥ã
ã«ãçªç¶æäººãã LINE ãå±ããããè¿ããã¡ã«æ»ã£ãŠãããïŒãâŠâŠèžãé«é³Žãã仿¥ãã仿¥ããšå®¶è·¯ã«æ¥ãããããŠâŠâŠ
ç· ãæ¬ãã«ã¯ (22) ã®ã©ã¡ããçžå¿ããã ãããã
倿ãèªãã§ãã ãã£ãŠããæ¹ã
ã«å§ããŠïŒéããïŒæäžã§ã®ç°å¢ã«æ³šæãç§»ããããæ¡ä»¶ç¯ã«ã¯ (22) ã®ã©ã¡ããåºçŸå¯èœã ãããã
(31) ã°èª°ãã飲ãã«éããªã
次ã®ããã« (22a) ã«å¯Ÿå¿ãã圢åŒã¯åºçŸå¯èœã§ããã®æå
šäœã¯å®¹èªå¯èœã§ããã
(32) ããŒãã«ã®äžã« â
çç²ãããã°èª°ãã飲ãã«éããªã
ããã«å¯Ÿã (22b) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã容èªäžå¯èœãšãªãã
(33) *ããŒãã«ã®äžã« ã çç²ãããã°èª°ãã飲ãã«éããªã
ããã ãã§ã¯ãªãã(20a) ã«å¯Ÿå¿ãã圢åŒãåºçŸããå Žåã«ã容èªäžå¯èœãšãªãã
(34) * çç² ã ããŒãã«ã®äžã«ããã°èª°ãã飲ãã«éããªã
ãã®æ®µèœã®èгå¯ã§ã¯ååã«ç€ºããŠããªãããããã§åãäžããŠããçšæ³ã®ãã¯äž»ç¯ã«çŸãããã®ãšäžå¿èŠãªããããšã«ãªãã
仿«ãããã«ã€ããŠå°ã詳ããèããŠã¿ããããã¯ãä»ã®ä¿å©è©ãšåæ§ã«ã次ã®äœçœ®ã«çŸããã
(35) NP-Case-___
ãããããå©è©ã«åŸç¶ããå Žåã«ã¯ãå
è¡ããå©è©ãçŸããŠã¯ãªããªãã
(36) NP-â
-___
çŸããŠã¯ãªããªãå©è©ã¯ã¬ãšã²ã§ããããã®åŸæ¥ã«ãã£ãŠçèµ·åºæ¥ãªãã¬ã¯è»¢çœ®ã«ãã£ãŠçŸããã
(37)
a. ã¢ã¡ãªã«å€§çµ±é â
ãããã«ãã»ãã©ã³ãæ°ã
b. ããã«ãã»ãã©ã³ãæ°ã¬ã¢ã¡ãªã«å€§çµ±é ã
ãããäžäžç« ã¯ãææ ŒããšåŒãã ïŒãçŸä»£èªæ³åºèª¬ãïŒãããã«å¯Ÿã
(38)
a. ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒ â
ãç«ã
b.*ç«ã¬ã¢ã¡ãªã«ã³ã»ã·ã§ãŒããã¢ãŒã
ã®ããã«è»¢çœ®ã§ã¬ãåºããªããã®ããããäžäžã¯ããããç¡æ ŒããšåŒãã ïŒäžæ²æžïŒãã€ãŸãããã¯åžžã«æ Œã䌎ãåè©å¥ãšãšãã«çšããããèš³ã§ã¯ãªãããšããããšã§ãããã§ã¯ãã®æå³ã»æ©èœãšã¯ãªãã ãããã
åç¯åãããæïŒããã£ïŒãããç«ïŒãã®ãããªãã®ã§ã¯ãªãæïŒã«ã€ããŠããããŸã§ãã䌎ãå¥ããäž»é¡ topicããæã€æãšæããªãæã«åãããããšèããããŠãããäž»é¡ãæã€æãæŸäžå€§äžéã¯ãæé¡çæææå®ãïŒãæšæºæ¥æ¬ææ³ãïŒãé»ç°æå¹žã¯ categorical judgment (double judgment è€å倿ã''The (W)hole of Doughnuts''ïŒã衚çŸããæã§ãããšããŠããããããŠäž»é¡ãæããªãæãæŸäžã¯ãç¡é¡çå®å
šæææ§æå®ããé»ç°ã¯ thetic judgment (simple judgment åçŽå€æïŒã衚çŸããæã§ãããšããŠããã
以åŸãäž»é¡ãå«ãæããæé¡æããå«ãŸãªãæããç¡é¡æããšåŒã¶ãç¡é¡æã¯
(23) ãïŒããŒãã«ã®äžã« â
çç²ãããïŒ
ã®ããã«ãããåºæ¥äºã«ã€ããŠããããã²ãšãŸãšãŸãã®å€æãšããŠåºãæãã«è¿°ã¹ãïŒèšãæãããšãè«è©±ãæèãªãã«ç®åã®åºæ¥äºãè¿°ã¹ãïŒäœ¿ããæ¹ããããååšåè©æä»¥å€ã§ã¯
(39)
a. ã»ãïŒãŠãã®åãèµ°ã£ãŠãïŒ
b. èŠãŠïŒçœãã€ãéåè»ãåŸ
ã£ãŠãïŒ
ã®ãããªèªåè©æãä»åè©æã§ç¡é¡æãšãªããã®ããããäžæ¹ã察å¿ããæé¡æ
(40)
a. ãŠãã®åã¯èµ°ã£ãŠãã
b. çœãã€ã¯éåè»ãåŸ
ã£ãŠãã
ã§ã¯ç°ãªã䜿ããæ¹ãã
(41)
a. ã¢ã³ã¿ããšãã®åã©ãâŠïŒ -ãŠãã®åïŒã¯ïŒããèµ°ã£ãŠãã£ãŠïŒ
b. ã¹ããŒãéåã«ã¯æ°ãä»ããŠãçœãã€ã¯éåè»ãåŸ
ã£ãŠããããâŠ
ã® (41a) ã®ããã«ãå
è¡ããçºè©±ãæ¿ããŠãããŠãã®åããšãã倿ãè¡ããããã«å¥ã®å€æãããèµ°ã£ãŠãããçµåãããŠæ
å ±ãäŒãããã(41b) ã®ãããªãç·ç§°æ generic sentenceãã§ãã¹ããŒãéåã®åãç· ãŸããã飿³ããããçœãã€ããšãã倿ã«ãéåè»ãåŸ
ã£ãŠããããšãã倿ãçµåãããŠããåŸãç¶æ³ãäŒããŠæ³šæãåèµ·ãããããã
ãªãã(39) ãš (41) ã察æ¯ããããšãã¬ã䌎ãåè©å¥ãšãã䌎ãåè©å¥ã察ç
§çã§ããããããã°ãã°ãäž»èªã®ããšã¬ã¯ã©ãéããããšããåé¡èšå®ããªãããããããååšåè©æã§èŠãããã«ããä»ããããŠäž»é¡ã«ãªãã®ã¯ã¬ã䌎ãåè©å¥ã«éãããããã䌎ãåè©å¥ããä»ã«ã¯ã²ã䌎ãåè©å¥ãã«ã©ã䌎ãåè©å¥ããªã©ãšå¯Ÿç
§ãããã¹ãã§ãããã€ãŸãããäž»èªã®ããšã¬ã¯ã©ãéããããšããã®ã¯èª€ã£ãåé¡èšå®ã§ãããããã«ææ³¥ããããã«ä»ã®éèŠãªçŸè±¡ããæ³šæãéžããããŠããŸããšããããšã§ã誀ã£ãåé¡èšå®ãèŸããŠéèŠãªçŸè±¡ã«åãçµãã¹ãã§ãããšããŠäžäžç« ããäž»èªå»æ¢è«ãã匷ã説ããããšã¯æåã§ããïŒæ¥æ¬èªã«ãã©ããªå®çŸ©ãã¯çœ®ããŠãäž»èªã¯ãªãããšäž»åŒµããŠããããã§ã¯ãªããäžäžã¯ãäž»èªããšããçšèªãé¿ããŠãäž»æ ŒããšåŒã³ã€ã€ãäž»æ Œã®åªäœæ§ã¯åŒ·èª¿ããŠããïŒã
æé¡æãšç¡é¡æã®æå³ã»æ©èœã«ã€ããŠã¯ãŸãæ¹ããŠè§Šããããšã«ãããããã§ã¯ãããã®çµ±èªè«çæ§è³ªã«æ»ãããšã«ããã(1a, b) ã®æé¡æ
(42)
a. çç² ã ããŒãã«ã®äžã«ãã
b. ããŒãã«ã®äžã« ã çç²ããã
ã«å¯Ÿå¿ããç¡é¡æã¯
(43) ããŒãã«ã®äžã«çç²ããã
ã§ãããåºæ¬èªé ãæã€ (43) ãšäžŠã¹ãŠèгå¯ãããšã(42b) ã¯åºæ¬èªé ã®ãŸãŸã§ããã®ã«å¯Ÿãã (42a) ã¯ãçç²ããå«ãäž»é¡ã¯æé ãŸã§åé²ããŠããããããåºæ¬èªé ã®ãŸãŸã®æé¡æã«ãããš
(44) ããŒãã«ã®äžã«çç² ã ãã
ãšãªããããã®å Žåãçç²ã¯ãã¯å¯Ÿæ¯ã®è§£éã§æ¬¡ã®ãããªæãè«è©±ã®æç
(45)
a. ããŒãã«ã®äžã«çç²ã¯ããã麊é
ã¯ãªã
b. ããŒãã«ã®äžã«çç²ã¯ãããã§ãèå¿ã®ããŒã¹ããŒã±ãŒãã¯ãªããããïŒ
ãšã¯ãªããããäž»é¡ãšã¯è§£éã§ããªããæåŠçããã¹ãã«
(46) å³»å³ãã衚æ
ãæã
ã«èŠããéå³°ã®äžè
¹ã«ç®æã寺é¢ã¯ãã
ã®ãããªäŸãèŠãããããç Žæ Œãšãã¹ããåŠãäžæã§ããã®è¡šçŸå¹æãæ°ã«ãªããããã§ã¯ãããã£ãäŸã®ã¹ããŒã¿ã¹ã«ã€ããŠã¯ä¿çã«ãããã
ãããããšãåºæ¬èªé ãšãã芳ç¹ããã(42b) ã¯äž»é¡ãå
ã®äœçœ®ã«çãŸã£ãŠããã®ã«å¯Ÿãã (42a) ã§ã¯äž»é¡ãæé ã«è»¢äœãããŠããããšèšã£ãŠå·®ãæ¯ããªããå³åŒçã«ç€ºããš
(46)
a. [áŽáŽ NP-ni wa ...
b. [áŽáŽ NP-â
wa NP-ni ____ ...
ã§ãããããã§ âCPâ ã¯ãããŸãã«ãæããšããã«ããŽãªãŒã ãšçè§£ããããã
å
ã«ãæ¯èªè©±è
ã¯æã£ãŠããçŸä»£èªã®ç¥èã«ç
§ããåãããŠãèªèŠçã§ããããšãªããããšãæã®å®¹èªæ§å€æãäžããããšè¿°ã¹ããçºè©±ããåŽããèŠãå Žåãæ¯èªè©±è
ã¯çºè©±ããæãçŸä»£èªã®ç¥èãåç
§ããŠå®çŸ©ããããã®ãããªçŸä»£èªã®çµ±èªçç¥èãæ§æãããã®ããèŠåããšåŒãŒãã
ãããŸã§èŠãŠããããšããèããŠãçŸä»£èªæ¯èªè©±è
ã®çµ±èªçç¥èã«ã¯æ¬¡ã®ãããªèŠåãå«ãŸããŠããªããã°ãªããªãã
(48) åºæ¬èªé
NP-ga NP-o V
NP-ga Váµ¢
NP-ni NP-ga Vâ
(49) äž»é¡æã®èªé
[áŽáŽ [áŽáŽáŽ NP-case wa]áµ¢ Xâ° â
áµ¢ Yâ°]
ãããã«å ããŠæ¬¡ã®èŠåãå¿
èŠãšãªãã
(50) åºæ¬èªé ãšäž»é¡æã®èªé ã®é¢ä¿ãå®çŸ©ããèŠå
話ãå
ã«é²ããããã«ãæã®è¿°éšãæ§æããåè©ã圢容è©ãªã©ã®æ§è³ªã«ã€ããŠç°¡åã«èŠãŠã¿ãããšæããŸãã
åŠæ ¡ã®ææ³ãè¿°éšã«ãªãããšæããã®ã¯çšèšã®åè©ã圢容è©ã圢容åè©ãšãäœèšã®åè©ã»ä»£åè©ã«æå®ã®å©åè©ãã¢ã«ïŒãããã¹ïŒãä»å±ãããã®ã§ããäžäžç« ã®äŸ
ã»ãããªããšãããšãã³ã¬ïŒãããã€ãèŠããªããïŒã ã
ãšããã®ããããæç€ºè©ãããçŸå®äžçã®ãã®ã鿥çã«äœèšã®ããã«ã§ããŸãã
è¿°éšã¯ãããã«å©åè©ãçµå©è©ãä»å±ããŠæ¡åŒµããããšãã§ããŸããããã§ã¯æ¡åŒµããªã裞ã®è¿°èªãèŠãŠã¿ãŸãããã
  述èªã¯å€§ããåããŠåè©ãšãã以å€ã«åé¡ã§ããŸãã
<åè©>
ã»çç²ã飲ã
ã»å¯ã
ã»ãã
<圢容è©>
ã»å¯ã
<圢容åè©>
ã»éãã
<åè©+æå®ã®å©åè©>
ã»å€±æ¥è
ã
ãããã¯æ¬¡ã®ã¹ããŒãã«åœãŠã¯ãŸããšãæåºãããåè©ã§äºåãããŸãã
ã»___ã___ã±ã¬ãã¢
<åè©>
ã»çç²ã飲ã¿ãããã±ã¬ãã¢
ã»å¯ãããã±ã¬ãã¢
ã»ãããããã±ã¬ãã¢
<圢容è©>
ã»å¯ããããã±ã¬ãã¢
<圢容åè©>
ã»éãã§ãããã±ã¬ãã¢
<åè©+æå®ã®å©åè©>
ã»å€±æ¥è
ã§ãããã±ã¬ãã¢
ã€ãŸããæåºãããåè©ãã¹ã«ã§ãããã®ãšã¢ã«ã§ãããã®ããããŸããåè
ãã¹ã«åãåŸè
ãã¢ã«åãšåŒã¶ããšã«ããŸãïŒåè©ããããèªäœã¯ã¹ã«åã§ãïŒã
  ãããããäž»èªãã«é¢ããŠãã¹ã«åãšã¢ã«åã«ã¯æ¬¡ã®ãããªéãããããŸãã
ã¹ã«åã§ã¯
ã»ç¶ã¬çç²ã飲ãã§ãã
ã§ãã¬ã䌎ãåè©å¥ãç¹æ®µç¹æ®ãªè§£éãæã€ããšã¯ãããŸããïŒæŸäžã®ç¡é¡çå®å
šæææ§æå®ãé»ç°ã® thetic judgmentïŒã
äžæ¹ãã¢ã«åã§ã¯çºé³äžåç«ãèŠããããç·èš exhaustive listingãã®è§£éãç¡æšã§ãã
ã»ãã®éšå±ã¬å¯ã
ã»ç°èã¬éãã
ã»1.7%ã¬å€±æ¥è
ã
ã¢ã«åããªããã®ãããªè§£éãåããã®ãã«ã€ããŠã¯æé¡ã»ç¡é¡ãã¢ã¹ãã¯ããšé¢ä¿ä»ããŠå¥ã«ãã€ãŒãããããšæããŸãã
ããã§ã¯ã¹ã«åã§ããåè©ã®æ§è³ªã«ã€ããŠèããŸãããã
åè©ã¯æéã®ããŒã¯ã³ã§ããããšããèãããããŸãïŒéå亚ãèšèªã®æé衚çŸãïŒãæéã¯äœãç¬ç«ã«ååšãããã®ã§ã¯ãªããã€ãã³ãïŒåºæ¥äºïŒã®é£ãªãã§ãããšèšãããšãã§ããŸããç§éãæå»ãæéãç¥ãã®ã¯ç¬ç«ã«ååšããæéãåç
§ããŠããããã§ã¯ãããŸããã
䞊è¡ããŠèµ·ãã£ãŠããã€ãã³ãã®äžã€ãåºæºã«ããŠïŒäžççãªæéã®åäœã¯ã»ã·ãŠã ïŒïŒïŒã®é·ç§»ã«åºã¥ããŠããïŒãæŠããããšåãããã«å€åãããã®ïŒè
æèšãªã©ïŒãèŠãŠæå»ãç¥ã£ãããæéãæž¬ã£ããããŸãã
åè©ã¯ãã®ãããªã€ãã³ãã®é£ãªãã§ããæéã®äžéšã«ååãä»ãããã®ã§ããåèªå埩ã®ããã«ãªããŸãããããããŠåè©ã¯ã€ãã³ããæç€ºå¯Ÿè±¡ãšããŸãã
  èšèªãé¢ããŠã€ãã³ããèããããšã¯é£ããå ŽåããããŸãããèããŠã¿ãŸãã
ã€ãã³ãã¯äœããèµ·ããå ŽåããããŸããããªã«ããªãèµ·ããå ŽåããããŸããäŸãã°ããªã¢å
ãççºãããã§ã¯ãã®äœãã¯ããªã¢å
ãã§ãããæéšãããã®ã¯ç¹ã«äœãããã£ãŠèµ·ããããã§ã¯ãããŸããã
ããã§ãççºãããã¯ããªã¢å
ããåŒãèµ·ãããã®ã§ãèšèªçã«ã¯ããã®åè©ã¯åäžã®åè©å¥ãå¿
èŠãšããŸããããã¯ïŒé
åè©ã§ãäžè¬ã«ãèªåè©ããšåŒã°ããŸãããæéšãããã¯ïŒé
åè©ã§ãã
ãããããèªåè©ããšãä»åè©ããšå¯Ÿå¿ããããšã次ã®ããã«ãªããŸãã
<èªåè©>
ïŒé
åè©ãïŒé
åè©
<ä»åè©>
ïŒé
åè©ãïŒé
åè©
æ¥æ¬èªæ¯èªè©±è
ã®çµ±èªçç¥èãèããäžã§ããããã£ãæ
å ±ã§ååã§ããããïŒå
åãã«ãªããŸããããã€ã¹ãšã¢ã¹ãã¯ãã®èгç¹ããããã«äžã®ãããªæ§æ Œä»ããå¿
èŠã§ãã
ïŒé
åè©ã®äžã«ã¯ãã¯ãããããã®å身ããšããæãäœãããã®ãšäœããªããã®ããããŸãã
ã»ããªãã«å±
ããããšå°ã
ã»éšã«éãããŠãã¶æ¿¡ãã«ãªã£ã
ã»*ãããã *èŠããã
äœããªãã¿ã€ãã®åè©ãäžäžç« ã¯ãæåè©ããšåä»ããŸããã
æ¢ã«èŠãããã«ïŒé
åè©ã«ã¯å¯Ÿå¿ããä»åè©ãæã€ãã®ããããã·ãã€ã«ã®åœ¢ã§çµæã®åç¶ã®è§£éãæã¡ãŸãã
ã»ããŒã«ãå·ããŠãã
ã»ã¢ãããèµ°ã£ãŠããïŒé²è¡/*çµæåç¶ïŒ
ãŸããå©åè©ç¡ãã§å¯èœã®æå³ãæ
ãåŸãŸãã
ã»ãã®æã¯ç°¡åã«éããªã
ãã®ã¿ã€ãã¯ãéå¯Ÿæ Œåè©ããšåŒã°ããŸãã
ïŒé
åè©ã§ãããæ®Žããã§ãèªåãã®å
è¡è©ã«é¢ããŠèª¿ã¹ããš
ã»ç°äžéšé·'''áµ¢'''ãèªå'''áµ¢'''ã®éšäžã殎ã£ã
ïŒäžä»ãã® âiâ ã¯åã人ïŒ
ã§ã¯ãç°äžéšé·ãããèªåãã®å
è¡è©ã«ãªããŸãã
ã»*èªå'''áµ¢'''ã®äžåžãæ± ç°'''áµ¢'''ãæ®Žã£ã
ã§ã¯äžå¯èœã§ããããã«å¯Ÿã
ã»èªå'''áµ¢'''ã®éå»ããªãŒãŠã§ã³'''áµ¢'''ãèŠããã
ã¯å¯èœã§ãã
ãã®ãããªãå
è¡è©ãéã®äœçœ®ã«ãªããããªã¯ã©ã¹ã®åè©ããå¿çåè© psych verbããšãããŸãã
  åè©ä»¥å€ã§ã¯
ã»èªå'''áµ¢'''ã®åšãçæŸ'''áµ¢'''ã®èªãã
ã®ãããªãã®ããããŸãïŒäžå®
ç¥å®ãèšèªåŠäŒçºè¡šïŒã
ãŸãšãããš
0 é
åè© å¹éªããæéšãã
éå¯Ÿæ Œåè© èãããæãã
éèœæ Œåè© èµ°ããæ³³ã_èªåè©
æåè© ãããããã
ä»åè©
æå¯Ÿä»åè© èãããæã
ç¡å¯Ÿä»åè© é£ã¹ã
ç§»ååè© è¡ããæ¥ã
å¿çåè© èŠããã
è€ä»åè© æž¡ããããã
çŸä»£æ¥æ¬èªã®åºæ¬èªé ã¯æ¬¡ã®ãããªãã®ã ãšè¿°ã¹ãŸããã
(1)
NP-ga Váµ¢
NP-ni NP-ga Vâ
NP-ga NP-o V
æ¯èªè©±è
ã®ç¥èã¯ãããã£ãåæãå®çŸ©ããããã«ã¯ã©ã®ãããªãã®ã§ãªããã°ãªããªãã§ããããïŒ
ãŸãç·åœ¢é åºã«æ²¿ã£ãŠå®çŸ©ããæ¹æ³ãããäžã€ã«ãæéç¶æ
ææ³ãããããŸããèªç¶èšèªã«å¯ŸããŠæéç¶æ
ææ³ã¯çæå generative power ã匱ãããããšããããšã Noam Chomsky ã瀺ããŸãããæéç¶æ
ææ³ã¯ãããç¶æ
ããæ¬¡ã®ç¶æ
ãžã®é·ç§»ã確çã§æ±ºå®ãããŠãããç¶æ
é·ç§»ã¯äžå®ã§çµäºããããããæã«å¯Ÿå¿ããããšãããã®ã§ããã¯ããã®ç¶æ
ã
(2) NP-ga
ã®å Žåãæ¬¡ã®ç¶æ
ã®åè£ã
(3) {NP-ga, NP-o, NP-ni, V, â
, ...}
ã§ãããããã確çã«ãã£ãŠ
(4) NP-gaâNP-o
ãéžã°ããŸãã
次ã«ã
(5) {NP-ga, NP-o, NP-ni, V, â
, ...}
ãšããåè£ãã確çã«ãã£ãŠ
(6) NP-gaâNP-oâV
ãéžã°ããŸããç¶æ
é·ç§»ã¯äºåºŠã®é·ç§»
(7) ç¶æ
ââç¶æ
ââç¶æ
â
ã§çµäºãããã®ãšããããã§æã宿ããŸãã
ç§ãã¡ã®é¢å¿ã¯ãçŸä»£æ¥æ¬èªã®æ¯èªè©±è
ã®çµ±èªçç¥èã§ããçŸä»£æ¥æ¬èªã®æãæéç¶æ
ææ³ã®ãããªä»çµã¿ã§å®çŸ©ãããŠããããšæèšãããšããããšã¯ãæ¯èªè©±è
ã®ç¥èãæéç¶æ
ææ³ã§ãããšäž»åŒµããŠããããšããããšãæå³ããŠããŸãã
ãããæ¢ã«ãåè©ã®æ§è³ªãã®ãšããã§èŠãããã«ãæã®å®æã決å®ããé
ã®æ°ãåè©å¥ã«åŸç¶ããå©è©ã¯åè©ã«ãã£ãŠæ±ºãŸããŸããã€ãŸãæéã®ç¶æ
é·ç§»ã«ã¯
(8)
a. ç¶æ
â
b. ç¶æ
ââç¶æ
â
c. ç¶æ
ââç¶æ
ââç¶æ
â
d. ç¶æ
ââç¶æ
ââç¶æ
ââç¶æ
â
ã®å¯èœæ§ãããïŒé
ã®åæ°ã 0 ã 3 ãšããŠïŒãæçµã®ç¶æ
ããç¶æ
âããšãããš
(9) ç¶æ
ââ°â ⊠âç¶æ
ââââ°âç¶æ
â
ã®ããã«äžè¬çã«è¿°ã¹ãŠããå¿
èŠããããŸãããããŠç¶æ
âã§ããåè©ã«ãã£ãŠæ¡çšããç¶æ
ã®æ°ã決ãŸãããšããŠãããªããã°ãªããŸããïŒããã§ãç¶æ
â°ãã¯ç¶æ
ã 0 以äžã§ããããšã衚ãããšã«ããŸãïŒã
ææ³ã¯ãæãåŒ±çæ weakly generate ããæ§é èšè¿°ãåŒ·çæ strongly generate ãããïŒNoam Chomsky _Aspects of the Theory of Syntax_ïŒãã®ã§ããæãã¯è¡šé¢çãªèªã®äžŠã³ãæããŸãïŒãæ§é èšè¿°ãã«ã€ããŠã¯åŸçšïŒã匱çæèœåããæããªãæéç¶æ
ææ³ãæ¥æ¬èªæ¯èªè©±è
ã®ç¥èãèšè¿°ããããšã¯äžå¯èœã§ãã
ããã§ç·åœ¢é åºïŒåŒ±çæåãæã€ç¥èã§å®çŸ©ãããïŒã§ã¯ãªããæ§é èšè¿° structural description ã«æ³šæãåããããšã«ããŸããããæ§é èšè¿°ãšã¯ãæã®è¡šé¢ã«çŸãããèŠããã»èããã圢åŒã®èåŸã«ããããŸãšãŸãïŒæ§æçŽ æ§ïŒãªã©ã®ããšã§ãã
ãŸãšãŸããšããã®ã¯æ©æ¬é²åã®é£æç¯ãææèª èšã®å
¥ãåãã¢ã¡ãªã«æ§é 䞻矩èšèªåŠã® IC åæã®æ§æçŽ ã®ããšã§ããäŸãæããŠèããŠã¿ãŸããããäŸãæç¯ã«åããŠç€ºããŸã
(10) |ããããª|ãããããã®|æŽæ|
äžã®æã¯å€çŸ©çã§ããäžã€ã¯ãããããªã®ã¯ãããããããšããè§£éã§ãã
ãã®è§£éã§ã®ç¬¬äžã®é£æç¯ã âââ ã䜿ã£ãŠç€ºããŸãã
(11) |ããããªâãããããã®|æŽæ|
ãããããªâãããããããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããæ¬¡ã®é£æç¯ã瀺ããš
(12) |第äžé£æç¯âæŽæ|
ãšãªããŸãã
次ã«ããäžã€ã®è§£éãèããŸãããããããªã®ã¯æŽæããšããè§£éã§ããã第äžé£æç¯ã¯
(13) |ããããª|ãããããã®âæŽæ|
ãšãªããŸããããããããã®âæŽæããã第äžé£æç¯ããšãã衚çŸã§çœ®ãæããŠæ¬¡ã®é£æç¯æ§é ã瀺ããš
(14) |ããããªâ第äžé£æç¯|
ãšãªããŸãã
以äžãæ§æçŽ ãšåŒã³ãã¿ã€ãã®äŸ¿å®äžãæ¬åŒ§ã§æ§æçŽ ã瀺ããŸãã
(15)
a.|ããããª|ãããããã®|æŽæ|
b.|ããããªâãããããã®|
c.|ãããããã®âæŽæ|
ã¯ãããã
(16)
a. [ããããª][ãããããã®][æŽæ]
b. [[ããããª][ãããããã®]]
c. [[ãããããã®æŽæ]]
ãšåãã§ãã
åºæ¬èªé ãæã€åæã®åé¡ã«æ»ããŸããããæ¬¡ã®æãèããŸãã
(18) 姪ãçªãéãã
ããã«çŸããã姪ãããçªãããéããããšããäžè
ã®éã®é¢ä¿ã¯å¯Ÿçã§ã¯ãããŸããããçªãéããããšããçµã¿åããã䜿ã£ãŠäœã
(19) [çªãéããŠ] ãã
ã®ãããªæã¯ãã£ãŠãã姪ãéãããã«ã¯ãããŸããã
ãŸã
(20) NP㬠NPã² éã±ã«
ã«ã¯å¯Ÿå¿ãã
(21) NP㬠éã¯
ãããããæå³ã§ãã®éå¯Ÿæ Œåè©ã®ã䜿圹åããšèšããŸããèªä»å¯Ÿå¿ã¯åœ¢æ
è«ã®åé¡ãšããä»åè©æãšäœ¿åœ¹ææ³ã®éãã¯åŸåãã«ããŠãããããæ§æçŽ æ§é ãæç¢ºã«ãããš
(22)
a. [NP ga é]
b. [NP ga [NP o é] 䜿]
ã§ãã
ããã§çåãçããŸããäžç·ã«å©è©ã®ã¬ãã²ãç¥ã£ãŠããå¿
èŠãããããã§ãã0 é
åè©ãé€ãã»ãšãã©ã®åæã¯ä¿å©è©ãå¯å©è©ã§çœ®ãæãããªããã°æäœäžã€ã¬ã䌎ãåè©å¥ãçŸããŸãã詳ããã¯åŸã«ããŠèªä»å¯Ÿå¿ãããã¯ã©ã¹ã Vunacc ãšãããš
(10)
a. [NPâ Vunacc]
b. [NPâ [NPâ Vunacc] CAUS]
åæ§ã®ããšã¯ç¡å¯Ÿä»åè©ã«ãèšããã§ããããããé£ã¹ãããåãäžããŸãã
(11) ããã€ãã¬ãåºãé£ã¹ããããªããã°...
ããã§
(12)
a. ã¬ãåºãé£ã¹ããããã€ãããªããã°...
b.*ããã€ãé£ã¹ããã¬ãåºãããªããã°...
ã®å¯Ÿæ¯ãããæ¬¡ã®ããã«èããããŸãã
(13) [NPâ [NPâ-o Vacc]]
ãã®è°è«ã¯
Hoji, Miyagawa and Tada. 1989. NP-movement in Japanese, ms.
ã«äŸããŸãã
ãããŸã§
(14) [NPâ [NPâ-o V] α]
ãšããæ§é ã確èªããŸãããèªé ãšã®å¯Ÿå¿ã¯
(15)
[NPâ [NPâ-o V] α] æ§é
| | |
â ⡠⢠èªé
ã«ãªããŸãã
éã«ååšæã§ã¯
(16)
â ⡠⢠èªé
| | |
[NPâ-ni [NPâ V] α]
ã§ãã
[[ã«ããŽãª:æ¥æ¬èª]] | null | 2022-11-23T06:37:25Z | []
| https://ja.wikibooks.org/wiki/%E7%94%9F%E6%88%90%E6%96%87%E6%B3%95/%E6%97%A5%E6%9C%AC%E8%AA%9E |
24,969 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/åæç©ã® Laplace 倿 | ã f ( t ) {\displaystyle f(t)} ãš g ( t ) {\displaystyle g(t)} ã®åæç©ãšãã,
ãšç¥èšãã. æ¬¡ã®æ§è³ªã¯éèŠã§ãã.
蚌æ {\displaystyle \quad }
å®çŸ©ã«ãã,
å³èŸºã®ç©åã®ç¯å²ã¯ 0 < Ï < t < â {\displaystyle 0<\tau <t<\infty } ã§ãããã,å³ã«ç€ºããäžè§åœ¢é åã§ãã.
ç©åé åºã亀æãããš,
ãšãªã.ããã§ e â s t = e â s ( t â Ï ) â
e â s Ï {\displaystyle e^{-st}=e^{-s(t-\tau )}\cdot e^{-s\tau }} ãšå€åœ¢ã, v := t â Ï {\displaystyle v:=t-\tau } ã«ãã£ãŠãç©å倿°ã t {\displaystyle t} ãã v {\displaystyle v} ã«å€ãããš,
å¥èšŒ {\displaystyle \quad }
äžã®ç©åé åºã®å€æŽã¯,å³ã®ãããªèª¬æã«ãããªããŠã,圢åŒçã«æ¬¡ã®ããã«èããŠããã. f ( t ) = 0 ( t < 0 ) {\displaystyle f(t)=0\quad (t<0)} ã«æ³šæãããš
ãšç©åã®äžéã â {\displaystyle \infty } ã«ãšãããšãã§ãã. ãã®ããã«ããŠãããŠããç©åé åºã亀æãããš,
ãšãªã.ããã§åã³ f ( t ) = 0 ( t < 0 ) {\displaystyle f(t)=0\quad (t<0)} ãæ³èµ·ãããš,å
åŽã®ç©åã®äžéã¯ Ï {\displaystyle \tau } ã§ãã,
ãåŸã.
äŸ18 {\displaystyle \quad } äžã®(æåã®)蚌æããåããããã«,ç©åé åºã®äº€æåŒã¯ f ( t ) = 0 ( t < 0 ) {\displaystyle f(t)=0\quad (t<0)} ã¯å¿
èŠã§ãªã.å¥èšŒã®ã¢ã€ãã£ã¢ã¯ããã®ä»®å®ãã¯ãããŠããããããšãã§ãã. ã©ãèãããããã.
è§£çäŸ {\displaystyle \quad }
å®ç©åã®äžéã T {\displaystyle T} ãšãã. S 1 = â« 0 T d t â« 0 t d Ï f ( t â Ï ) g ( Ï ) e â s t {\displaystyle S_{1}=\int _{0}^{T}dt\int _{0}^{t}d\tau f(t-\tau )g(\tau )e^{-st}} , S 2 = â« 0 T d Ï â« Ï T d t f ( t â Ï ) g ( Ï ) e â s t {\displaystyle S_{2}=\int _{0}^{T}d\tau \int _{\tau }^{T}dt\ f(t-\tau )g(\tau )e^{-st}} ã«ãŠ, S 1 = S 2 {\displaystyle S_{1}=S_{2}} ã§ããããšã瀺ã.
å®çŸ©å ( t , Ï ) {\displaystyle (t,\tau )} ã® 0 < t < Ï < T {\displaystyle 0<t<\tau <T} ã®é åã§éç©åããããšãèããã°
åŒ(2.4a)ã®å·ŠèŸºãš S 1 {\displaystyle S_{1}} ãå ãããã®ã¯,
ãŸã,åŒ(2.4a)ã®å³èŸºãš S 2 {\displaystyle S_{2}} ãå ãããã®ã¯,
ä»,ç©åé åºã®äº€æãå¯èœã§ããä»®å®ã®ããšã§, â« 0 T d t â« 0 T d Ï f ( t â Ï ) g ( Ï ) e â s t = â« 0 T d Ï â« 0 T d t f ( t â Ï ) g ( Ï ) e â s t {\displaystyle \int _{0}^{T}dt\int _{0}^{T}d\tau f(t-\tau )g(\tau )e^{-st}=\int _{0}^{T}d\tau \int _{0}^{T}dt\ f(t-\tau )g(\tau )e^{-st}} ãã,
ãã£ãŠ,åŒ(2.4a)ãã, S 1 = S 2 {\displaystyle S_{1}=S_{2}} ,ããªãã¡,
T â â {\displaystyle T\to \infty } ã§äž¡èŸºãšã極éå€ãæãŠã°,åãããã®çåŒã¯æç«ãã.
⢠{\displaystyle \diamondsuit }
äŸ19 {\displaystyle \quad }
(i) f â g = g â f {\displaystyle f*g=g*f}
(ii) ( k f ) â g = k ( f â g ) {\displaystyle (kf)*g=k(f*g)}
(iii) f â ( g â h ) = ( f â g ) â h {\displaystyle f*(g*h)=(f*g)*h}
(iv) f â ( g + h ) = f â g + f â h {\displaystyle f*(g+h)=f*g+f*h}
ã瀺ã.
è§£çäŸ {\displaystyle \quad }
(i)
ã«ãŠ, v = t â Ï {\displaystyle v=t-\tau } ãšãããŠç©å倿°ã Ï {\displaystyle \tau } ãã v {\displaystyle v} ã«æãããšã, d v = â d Ï {\displaystyle dv=-d\tau } ,ãŸã Ï {\displaystyle \tau } ã 0 â t {\displaystyle 0\to t} ãšå€åãããšã v {\displaystyle v} 㯠t â 0 {\displaystyle t\to 0} ãšå€åãããã,
(ii)
(iii) ããã¯ãšãŠãé£ãã...ãã€ãåããæ¥ãæ¥ãã®ã ããã?
(iv)
⢠{\displaystyle \diamondsuit }
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã f ( t ) {\\displaystyle f(t)} ãš g ( t ) {\\displaystyle g(t)} ã®åæç©ãšãã,",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšç¥èšãã. æ¬¡ã®æ§è³ªã¯éèŠã§ãã.",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "蚌æ {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å®çŸ©ã«ãã,",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å³èŸºã®ç©åã®ç¯å²ã¯ 0 < Ï < t < â {\\displaystyle 0<\\tau <t<\\infty } ã§ãããã,å³ã«ç€ºããäžè§åœ¢é åã§ãã.",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ç©åé åºã亀æãããš,",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãšãªã.ããã§ e â s t = e â s ( t â Ï ) â
e â s Ï {\\displaystyle e^{-st}=e^{-s(t-\\tau )}\\cdot e^{-s\\tau }} ãšå€åœ¢ã, v := t â Ï {\\displaystyle v:=t-\\tau } ã«ãã£ãŠãç©å倿°ã t {\\displaystyle t} ãã v {\\displaystyle v} ã«å€ãããš,",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å¥èšŒ {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äžã®ç©åé åºã®å€æŽã¯,å³ã®ãããªèª¬æã«ãããªããŠã,圢åŒçã«æ¬¡ã®ããã«èããŠããã. f ( t ) = 0 ( t < 0 ) {\\displaystyle f(t)=0\\quad (t<0)} ã«æ³šæãããš",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšç©åã®äžéã â {\\displaystyle \\infty } ã«ãšãããšãã§ãã. ãã®ããã«ããŠãããŠããç©åé åºã亀æãããš,",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªã.ããã§åã³ f ( t ) = 0 ( t < 0 ) {\\displaystyle f(t)=0\\quad (t<0)} ãæ³èµ·ãããš,å
åŽã®ç©åã®äžéã¯ Ï {\\displaystyle \\tau } ã§ãã,",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãåŸã.",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "äŸ18 {\\displaystyle \\quad } äžã®(æåã®)蚌æããåããããã«,ç©åé åºã®äº€æåŒã¯ f ( t ) = 0 ( t < 0 ) {\\displaystyle f(t)=0\\quad (t<0)} ã¯å¿
èŠã§ãªã.å¥èšŒã®ã¢ã€ãã£ã¢ã¯ããã®ä»®å®ãã¯ãããŠããããããšãã§ãã. ã©ãèãããããã.",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "å®ç©åã®äžéã T {\\displaystyle T} ãšãã. S 1 = â« 0 T d t â« 0 t d Ï f ( t â Ï ) g ( Ï ) e â s t {\\displaystyle S_{1}=\\int _{0}^{T}dt\\int _{0}^{t}d\\tau f(t-\\tau )g(\\tau )e^{-st}} , S 2 = â« 0 T d Ï â« Ï T d t f ( t â Ï ) g ( Ï ) e â s t {\\displaystyle S_{2}=\\int _{0}^{T}d\\tau \\int _{\\tau }^{T}dt\\ f(t-\\tau )g(\\tau )e^{-st}} ã«ãŠ, S 1 = S 2 {\\displaystyle S_{1}=S_{2}} ã§ããããšã瀺ã.",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "å®çŸ©å ( t , Ï ) {\\displaystyle (t,\\tau )} ã® 0 < t < Ï < T {\\displaystyle 0<t<\\tau <T} ã®é åã§éç©åããããšãèããã°",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "åŒ(2.4a)ã®å·ŠèŸºãš S 1 {\\displaystyle S_{1}} ãå ãããã®ã¯,",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãŸã,åŒ(2.4a)ã®å³èŸºãš S 2 {\\displaystyle S_{2}} ãå ãããã®ã¯,",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ä»,ç©åé åºã®äº€æãå¯èœã§ããä»®å®ã®ããšã§, â« 0 T d t â« 0 T d Ï f ( t â Ï ) g ( Ï ) e â s t = â« 0 T d Ï â« 0 T d t f ( t â Ï ) g ( Ï ) e â s t {\\displaystyle \\int _{0}^{T}dt\\int _{0}^{T}d\\tau f(t-\\tau )g(\\tau )e^{-st}=\\int _{0}^{T}d\\tau \\int _{0}^{T}dt\\ f(t-\\tau )g(\\tau )e^{-st}} ãã,",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã£ãŠ,åŒ(2.4a)ãã, S 1 = S 2 {\\displaystyle S_{1}=S_{2}} ,ããªãã¡,",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "T â â {\\displaystyle T\\to \\infty } ã§äž¡èŸºãšã極éå€ãæãŠã°,åãããã®çåŒã¯æç«ãã.",
"title": ""
},
{
"paragraph_id": 24,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 25,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 26,
"tag": "p",
"text": "äŸ19 {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 27,
"tag": "p",
"text": "(i) f â g = g â f {\\displaystyle f*g=g*f}",
"title": ""
},
{
"paragraph_id": 28,
"tag": "p",
"text": "(ii) ( k f ) â g = k ( f â g ) {\\displaystyle (kf)*g=k(f*g)}",
"title": ""
},
{
"paragraph_id": 29,
"tag": "p",
"text": "(iii) f â ( g â h ) = ( f â g ) â h {\\displaystyle f*(g*h)=(f*g)*h}",
"title": ""
},
{
"paragraph_id": 30,
"tag": "p",
"text": "(iv) f â ( g + h ) = f â g + f â h {\\displaystyle f*(g+h)=f*g+f*h}",
"title": ""
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã瀺ã.",
"title": ""
},
{
"paragraph_id": 32,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 33,
"tag": "p",
"text": "(i)",
"title": ""
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ã«ãŠ, v = t â Ï {\\displaystyle v=t-\\tau } ãšãããŠç©å倿°ã Ï {\\displaystyle \\tau } ãã v {\\displaystyle v} ã«æãããšã, d v = â d Ï {\\displaystyle dv=-d\\tau } ,ãŸã Ï {\\displaystyle \\tau } ã 0 â t {\\displaystyle 0\\to t} ãšå€åãããšã v {\\displaystyle v} 㯠t â 0 {\\displaystyle t\\to 0} ãšå€åãããã,",
"title": ""
},
{
"paragraph_id": 35,
"tag": "p",
"text": "(ii)",
"title": ""
},
{
"paragraph_id": 36,
"tag": "p",
"text": "(iii) ããã¯ãšãŠãé£ãã...ãã€ãåããæ¥ãæ¥ãã®ã ããã?",
"title": ""
},
{
"paragraph_id": 37,
"tag": "p",
"text": "(iv)",
"title": ""
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 39,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 40,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 41,
"tag": "p",
"text": "",
"title": ""
}
]
| ã f ãš g ã®åæç©ãšããïŒ ãšç¥èšããïŒ
æ¬¡ã®æ§è³ªã¯éèŠã§ããïŒ | {{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t f(t-\tau)g(\tau)d\tau</math>|tag=(2.3)|label=eq:2.3}}
ã <math>f(t)</math> ãš <math>g(t)</math> ã®[[w:%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF|åæç©]]ãšããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t)*g(t)</math> ãŸã㯠<math>f*g</math>}}
ãšç¥èšãã<ref>
ãã®ç©å圢ã«è¿ãåãšããŠã¯ïŒãããããè€æ°æ¡Ãè€æ°æ¡ã®çç®ãïŒç©ã®äžã€ã®æ¡ã«çç®ãããš <math>f(t-\tau)g(\tau)</math> 圢ã®ç·åããšãïŒ
</ref>ïŒ
æ¬¡ã®æ§è³ªã¯éèŠã§ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \mathcal{L}[f]\cdot\mathcal{L}[g]</math>|tag=(2.4)|label=eq:2.4}}
<div id="蚌æ">
<strong>蚌æ</strong><math>\quad</math>
å®çŸ©ã«ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \int_0^\infty \left \{ \int_0^t f(t-\tau)g(\tau)d\tau \right \} e^{-st}dt</math>}}
å³èŸºã®ç©åã®ç¯å²ã¯ <math>0 < \tau < t < \infty</math> ã§ããããïŒå³ã«ç€ºããäžè§åœ¢é åã§ããïŒ
[[File:Example.jpg|border|]]
[[File:Example.jpg|border|]]
ç©åé åºã亀æãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \int_0^\infty \left \{ \int_{\tau}^\infty f(t - \tau)e^{-st}dt \right \} g(\tau)d\tau</math>}}
ãšãªãïŒããã§ <math>e^{-st} = e^{-s(t - \tau)}\cdot e^{-s\tau}</math> ãšå€åœ¢ãïŒ<math>v:=t - \tau</math> ã«ãã£ãŠãç©å倿°ã <math>t</math> ãã <math>v</math> ã«å€ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \int_0^\infty \left \{ \int_0^\infty f(v)e^{-sv}dv \right \} g(\tau)e^{-s\tau}d\tau</math><ref>
<math>v = t - \tau</math> ã®äž¡èŸºã <math>t</math> ã§åŸ®åãããš <math>\frac{dv}{dt} = 1 \therefore \frac{dt}{dv} = 1</math>ïŒãã£ãŠ <math>dt=\frac{dt}{dv}dv</math> ããªãã¡ <math>dt = dv</math>ã«ãŠç©å倿°ã <math>t</math> ãã <math>v</math> ã«å€æŽã§ããïŒãŸãç©åç¯å²ã¯ <math>t</math> ã <math>\tau</math> ãã <math>\infty</math> ã«åããšã <math>v</math> 㯠<math>0</math> ãã <math>\infty</math> ã«åãïŒ
</ref>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f*g] = \int_0^\infty f(v)e^{-sv}dv \int_0^\infty g(\tau)e^{-s\tau}d\tau</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \mathcal{L}[f]\cdot\mathcal{L}[g]</math>}}
<strong>å¥èšŒ</strong><math>\quad</math>
äžã®ç©åé åºã®å€æŽã¯ïŒå³ã®ãããªèª¬æã«ãããªããŠãïŒåœ¢åŒçã«æ¬¡ã®ããã«èããŠãããïŒ<math>f(t)=0 \quad (t<0)</math> ã«æ³šæãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^\infty \left \{ \int_0^t f(t-\tau)g(\tau)d\tau \right \} e^{-st}dt = \int_0^\infty \left \{ \int_0^\infty f(t-\tau)g(\tau)d\tau \right \} e^{-st}dt</math>}}
ãšç©åã®äžéã <math>\infty</math> ã«ãšãããšãã§ãã<ref>
ãªããªãã°ïŒå
åŽã®ç©å倿° <math>\tau</math> ã«ããç©åã§ïŒ<math>\tau > t</math> ãªãã° <math>t - \tau < 0</math> ãã£ãŠ <math>f(t - \tau) = 0</math>ïŒ<br />
<math>\therefore \int_t^\infty f(t - \tau)g(\tau)d\tau = \int_t^\infty 0 \cdot g(\tau)d\tau = 0</math>ïŒ<br />
<math>\therefore \int_0^t d\tau = \int_0^t d\tau + \int_t^\infty d\tau = \int_0^\infty d\tau</math>ïŒ
</ref>ïŒ
ãã®ããã«ããŠãããŠããç©åé åºã亀æãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \int_0^\infty \left \{ \int_0^\infty f(t - \tau)e^{-st}dt \right \} g(\tau)d\tau</math>}}
ãšãªãïŒããã§åã³ <math>f(t) = 0 \quad (t < 0)</math> ãæ³èµ·ãããšïŒå
åŽã®ç©åã®äžé㯠<math>\tau</math> ã§ãã<ref>
ç©å倿°<math>t</math> ã <math>0 < t < \tau</math> ã®ç¯å²ã®ãšã <math>t - \tau < 0 \therefore f(t - \tau) = 0</math>
</ref>ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>=\int_0^\infty \left \{ \int_{\tau}^\infty f(t-\tau)e^{-st}dt \right \} g(\tau)d\tau</math>}}
ãåŸãïŒ<ref>ãã®ç¶ãã¯äžèšã®ãšãã <math>e^{-st} = e^{-s(t - \tau)}\cdot e^{-s\tau}</math> ãšå€åœ¢ãïŒ<math>v:=t - \tau \therefore dv = dt</math> ãšããŠç©å倿°ã <math>t</math> ãã <math>v</math> ã«å€ããïŒ</ref>
<!-- ex:018:start-->
<div id="ex:18">
<strong>äŸ18</strong><math>\quad</math>
äžã®ïŒæåã®ïŒèšŒæããåããããã«ïŒç©åé åºã®äº€æåŒã¯ <math>f(t)=0 \quad (t<0)</math> ã¯å¿
èŠã§ãªãïŒå¥èšŒã®ã¢ã€ãã£ã¢ã¯ããã®ä»®å®ãã¯ãããŠããããããšãã§ããïŒ
ã©ãèããããããïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
å®ç©åã®äžéã <math>T</math> ãšããïŒ
<math>S_1 = \int_0^T dt \int_0^t d\tau f(t-\tau)g(\tau)e^{-st}</math>ïŒ
<math>S_2 = \int_0^T d\tau \int_{\tau}^T dt\ f(t-\tau)g(\tau)e^{-st}</math> ã«ãŠïŒ<math>S_1 = S_2</math> ã§ããããšã瀺ãïŒ
å®çŸ©å <math>(t, \tau)</math> ã® <math>0 < t < \tau < T</math> ã®é åã§éç©åããããšãèããã°
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T dt \int_t^T d\tau f(t-\tau)g(\tau)e^{-st} = \int_0^T d\tau \int_0^{\tau} dt\ f(t-\tau)g(\tau)e^{-st}</math>|tag=(2.4a)|label=eq:2.4a}}
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/åæç©ã® Laplace 倿#eq:2.4a|(2.4a)]]ã®å·ŠèŸºãš <math>S_1</math> ãå ãããã®ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>S_1 + \int_0^T dt \int_t^T d\tau f(t-\tau)g(\tau)e^{-st} = \int_0^T dt \left \{ \int_0^t d\tau f(t-\tau)g(\tau)e^{-st} + \int_t^T d\tau f(t-\tau)g(\tau)e^{-st} \right \}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \int_0^T dt \int_0^T d\tau f(t-\tau)g(\tau)e^{-st}</math>}}
ãŸãïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/åæç©ã® Laplace 倿#eq:2.4a|(2.4a)]]ã®å³èŸºãš <math>S_2</math> ãå ãããã®ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>S_2 + \int_0^T d\tau \int_0^{\tau}dt\ f(t-\tau)g(\tau)e^{-st} = \int_0^T d\tau \left \{ \int_{\tau}^T dt\ f(t-\tau)g(\tau)e^{-st} + \int_0^{\tau} dt\ f(t-\tau)g(\tau)e^{-st} \right \}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \int_0^T d\tau \int_0^T dt\ f(t-\tau)g(\tau)e^{-st}</math>}}
ä»ïŒç©åé åºã®äº€æãå¯èœã§ããä»®å®ã®ããšã§ïŒ<math>\int_0^T dt \int_0^T d\tau f(t-\tau)g(\tau)e^{-st} = \int_0^T d\tau \int_0^T dt\ f(t-\tau)g(\tau)e^{-st}</math> ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>S_1 + \int_0^T dt \int_t^T d\tau f(t-\tau)g(\tau)e^{-st} = S_2 + \int_0^T d\tau \int_0^{\tau}dt\ f(t-\tau)g(\tau)e^{-st}</math>}}
ãã£ãŠïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª/åæç©ã® Laplace 倿#eq:2.4a|(2.4a)]]ããïŒ<math>S_1 = S_2</math>ïŒããªãã¡ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^T dt \int_0^t d\tau f(t-\tau)g(\tau)e^{-st} = \int_0^T d\tau \int_{\tau}^T dt\ f(t-\tau)g(\tau)e^{-st}</math>}}
<math>T \to \infty</math> ã§äž¡èŸºãšã極éå€ãæãŠã°ïŒåãããã®çåŒã¯æç«ããïŒ
<math>\diamondsuit</math>
<!-- ex:018:end-->
<!-- ex:019:start-->
<div id="ex:19">
<strong>äŸ19</strong><math>\quad</math>
(i) <math>f*g = g*f</math>
(ii) <math>(kf)*g = k(f*g)</math>
(iii) <math>f*(g*h) = (f*g)*h</math>
(iv) <math>f*(g + h) = f*g + f*h</math>
ã瀺ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
(i)
:<math>f*g = \int_0^t f(t-\tau)g(\tau)d\tau</math><br />
ã«ãŠïŒ<math>v = t - \tau</math> ãšãããŠç©å倿°ã <math>\tau</math> ãã <math>v</math> ã«æãããšãïŒ<math>dv = -d\tau</math>ïŒãŸã <math>\tau</math> ã <math>0 \to t</math> ãšå€åãããšã <math>v</math> 㯠<math>t \to 0</math> ãšå€åããããïŒ
:<math>f*g = -\int_t^0 f(v)g(t - v)dv = \int_0^t g(t-v)f(v)dv = g * f</math>ïŒ<br />
(ii)
:<math>(kf)*g = \int_0^t \{kf(t-\tau)\}g(\tau)d\tau</math><br />
:<math>=\int_0^t kf(t-\tau)g(\tau)d\tau</math><br />
:<math>=k\int_0^t f(t-\tau)g(\tau)d\tau = k(f*g)</math>ïŒ<br />
(iii)
ããã¯ãšãŠãé£ããâŠãã€ãåããæ¥ãæ¥ãã®ã ãããïŒ
(iv)
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f*(g + h) = \int_0^t f(t-\tau) \left \{ g(\tau) + h(\tau) \right \} d\tau</math>ïŒ}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \int_0^t f(t-\tau)g(\tau)d\tau + \int_0^t f(t-\tau)h(\tau)d\tau = f * g + f * h</math>ïŒ}}
<math>\diamondsuit</math>
<!-- ex:019:end-->
<references />
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:24:03Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%81%A8%E3%81%9D%E3%81%AE%E5%9F%BA%E6%9C%AC%E7%9A%84%E6%80%A7%E8%B3%AA/%E5%90%88%E6%88%90%E7%A9%8D%E3%81%AE_Laplace_%E5%A4%89%E6%8F%9B |
24,983 | èæžããã©ã€èªå
¥é/å眮è©(2)/å眮è©ã®èª¬æ | 11.4 å眮è©ã®èª¬æ
æ1 ã®åçœ®è© ×Ö¶×ã¯ãæ¹åãã衚ããæã
ã® ã ã«è¿ãããã㊠ã ã ã ãšæ®ã©å矩çã§ããããã« ×Ö¶× ã¯ 10.3 ã§åŠãã ×Ö° ãšæå³ã®éãªãéšåããããã×Ö° ã»ã©å€çŸ©çã§ã¯ãªãã×Ö° ã¯ã10.3 ã§èŠããææãã®æå³ããããããããããã«ãç·ããŠå¯Ÿè±¡(ãã®å Žåãå眮è©ã®æ¯é
ããåè©ã«ãã£ãŠè¡šããããã®)ãšäž»äœ(ãã®å Žåããã®å眮è©å¥ãšçµåãããåè©å¥ã«ãã£ãŠãããããããã®)ãšã®å¯çé¢ä¿ã衚ããåŸã£ãŠæ¹åã衚ãæè(åè©æã§ã¯äž»äœã®è¡šãæå³ã«ãã£ãŠå€æããã)ã«ãããŠã¯ã×Ö° ããã®å¯Ÿè±¡ãæ¥è¿ãåŸãç®æšãšããŠæããã®ã«å¯Ÿãã×Ö¶× ã¯å¯Ÿè±¡ãžã®å¿åæ§ãæå³ããããšèããããã
æ2ãæ3ã®åçœ®è© ×¢Ö·× ã®åºæ¬çãªæå³ã¯ãäžãã§ããããè±èªã® on ã®ããã«ãæ§ã
ã®æŽŸççæå³ã«ãããŠãçšããããã
æ3ã®åçœ®è© ×Ö°ÖŒ ã¯ã ãããäž»äœãšå¯Ÿè±¡ãšã®ãé¡äŒŒãã衚ããè±èªã®å眮è©ã§ã¯ as ãäžçªããã«è¿ãããšèããããã
æ4ã®åçœ®è© ×¢Ö·×ã¯ã×ÖŽ×ãåç¹ã»èµ·ç¹ã衚ãã®ã«å¯Ÿããå°éç¹ãã衚ããæ¥æ¬èªã® ãã ãäžçªè¿ãã×ÖŽ× ãšçµã«ãªã£ãŠã...ãã...ãŸã§ãã衚ããšããããã®ããã« ×¢Ö·× ã®åã«æ¥ç¶è© ×Ö° ã眮ãããããšãããããããã¯çŸ©åçã§ã¯ãªããäŸãã°
×ÖŽ× Ö¶ÖŒ×Ö¶× ×Ö°×¢Ö·×ÖŸ×ÖµÖŒ×ת֟×Öµ× ããã²ãããã¹ãã«ãŸã§ã
×ÖŽ×ÖŸ×Ö·×Ö¶ÖŒ×Ö¶× ×¢Ö·×ÖŸ××Ö¹× ××ֹת×Ö¹ ã(æ¯ã®)èããæ»ã®æ¥ãŸã§ã
×ÖŽ× ÖžÖŒ×ÖŽ×× ×Ö°×¢Ö·×ÖŸ×ÖŒ××Öµ× ãé èšè
ããç¥åžã«è³ããŸã§ã
×ÖŽ×ÖŒ×Ö¹× ×¢Ö·×֟ךַע ãåããæªãŸã§âåãæªãã
æ5ã® ×¢ÖŽ× ã¯ãæ¥æ¬èªã®å©è©ã®ãã¡ã§ã¯ ã ã«äžçªè¿ãã察象ãäž»äœã®çžæã§ããããš(ãç¥æããšå
±ã«ããæµãšã®æŠãã)ãã²ããŠã¯åææ§(ããã³ãã«ãæãããš...ã)ãŸã§è¡šãããããã...ãšèšããã®ããã«ã¯çšããããªãã
æ6ã® ×ÖŽ×ªÖŽÖŒ× ã¯ ×ֶת ã«äžäººç§°åæ°ä»£åè©ãæ¥å°Ÿãã圢ã ãã×ֶת ã¯å¯Ÿè±¡ãäž»äœã®ãã°ã«ãããšããé¢ä¿ã衚ããšèãããããã¯ã ã ã«è¿ããã×¢ÖŽ× ã®ãããªåææ§ã®æå³ã¯ãªãã
æ7㮠תַ֌×ַת ã¯ãäžãã§ãç¬ç«ã«ãããŠãçšããããåè©ã§ããããå§åçã«å€ãã®å Žåãé£èªåœ¢ã§ä»ã®åè©ã®åã«çœ®ãããå眮è©ãšããŠæ©èœããŠãããã代ããããæå³ããããšããããäŸãã°
×ֶךַע ×Ö·×ֵך תַ֌×ַת ×Ö¶×Ö¶× ãã¢ãã«ã®ä»£ããã®å¥ã®åçš®ã
æ8ã® ×ÖµÖŒ×× ã¯ãããã ããšããåè©ã§ãå眮è©ãšããŠã¯ãå€ãã®å Žåããã®äŸã®ããã« ×ÖµÖŒ×× ãç¹°ãè¿ã㊠×Ö° ã§çµåããããã ããçŽèš³ããã°ãã€ã¹ã©ãšã«ã®éãšããªã·ã人ã®éããšããããšã«ãªãã
以äžã«èŠãããã«ãããã©ã€èªã®å眮è©ãæ¥æ¬èªã®åè©ã§èš³ããããšãããã®é£èªçæ§æ Œã¯æ¥æ¬èªèš³ã«ããã®ãŸãŸåæ ãããäŸãã°
×Ö¶ÖŒ× ×Öž×ÖŽ××©× ããã®ç·ã®æ¯åã
×ֶת ×Öž×ÖŽ××©× ããã®ç·ã®ãã°ã
ãããæ¥æ¬èªã®åè©å¥ã¯æ Œå©è©ãªãã§ã¯æäžã§æ©èœããªãã®ãæ®éã ããããã®å Žå ã ã ã² çãæ·»ããå¿
èŠãããã®ã«å¯Ÿããããã©ã€èªã«ã¯ãã®ãããªãããã°çŽç²ã®ãæ Œå©è©ã¯ååšããªãã®ã§ããããã®ããšã¯ãäŸãã°äŸæ5ã§ããã®åå幎ããšããåè©å¥ããã®ãŸãŸã§å¯è©å¥ã®åããããããš(ãã®ç¹ã¯æ¥æ¬èªãåã)ã屿 Œé¢ä¿ãé£èªå¥ã§è¡šçŸãããããšããããŠããäž»éš-è¿°éšãé¢ä¿ããåæ Œé¢ä¿ãäœã衚é¢çãªæšç€ºãªãã«è¡šãããããšãšãé¢é£ããŠããã®ã§ãããäŸãã°
×ÖžÖŒ×ÖŽ× ×Ö¶ÖŒ×ÖŸ×Öž×ÖŽ××©× ããã®ç·ã®æ¯åãããããŸãã¯ããã®ç·ã®æ¯åã¯(ã)ãããã ãã
×ÖžÖŒ×ÖŽ× ×ֶת֟×Öž×ÖŽ××©× ããã®ç·ã®ãã°ã®ãããããŸãã¯ããã®ç·ã®ãã°ã«ãããããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.4 å眮è©ã®èª¬æ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ1 ã®åçœ®è© ×Ö¶×ã¯ãæ¹åãã衚ããæã
ã® ã ã«è¿ãããã㊠ã ã ã ãšæ®ã©å矩çã§ããããã« ×Ö¶× ã¯ 10.3 ã§åŠãã ×Ö° ãšæå³ã®éãªãéšåããããã×Ö° ã»ã©å€çŸ©çã§ã¯ãªãã×Ö° ã¯ã10.3 ã§èŠããææãã®æå³ããããããããããã«ãç·ããŠå¯Ÿè±¡(ãã®å Žåãå眮è©ã®æ¯é
ããåè©ã«ãã£ãŠè¡šããããã®)ãšäž»äœ(ãã®å Žåããã®å眮è©å¥ãšçµåãããåè©å¥ã«ãã£ãŠãããããããã®)ãšã®å¯çé¢ä¿ã衚ããåŸã£ãŠæ¹åã衚ãæè(åè©æã§ã¯äž»äœã®è¡šãæå³ã«ãã£ãŠå€æããã)ã«ãããŠã¯ã×Ö° ããã®å¯Ÿè±¡ãæ¥è¿ãåŸãç®æšãšããŠæããã®ã«å¯Ÿãã×Ö¶× ã¯å¯Ÿè±¡ãžã®å¿åæ§ãæå³ããããšèããããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ2ãæ3ã®åçœ®è© ×¢Ö·× ã®åºæ¬çãªæå³ã¯ãäžãã§ããããè±èªã® on ã®ããã«ãæ§ã
ã®æŽŸççæå³ã«ãããŠãçšããããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ3ã®åçœ®è© ×Ö°ÖŒ ã¯ã ãããäž»äœãšå¯Ÿè±¡ãšã®ãé¡äŒŒãã衚ããè±èªã®å眮è©ã§ã¯ as ãäžçªããã«è¿ãããšèããããã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ4ã®åçœ®è© ×¢Ö·×ã¯ã×ÖŽ×ãåç¹ã»èµ·ç¹ã衚ãã®ã«å¯Ÿããå°éç¹ãã衚ããæ¥æ¬èªã® ãã ãäžçªè¿ãã×ÖŽ× ãšçµã«ãªã£ãŠã...ãã...ãŸã§ãã衚ããšããããã®ããã« ×¢Ö·× ã®åã«æ¥ç¶è© ×Ö° ã眮ãããããšãããããããã¯çŸ©åçã§ã¯ãªããäŸãã°",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "×ÖŽ× Ö¶ÖŒ×Ö¶× ×Ö°×¢Ö·×ÖŸ×ÖµÖŒ×ת֟×Öµ× ããã²ãããã¹ãã«ãŸã§ã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "×ÖŽ×ÖŸ×Ö·×Ö¶ÖŒ×Ö¶× ×¢Ö·×ÖŸ××Ö¹× ××ֹת×Ö¹ ã(æ¯ã®)èããæ»ã®æ¥ãŸã§ã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "×ÖŽ× ÖžÖŒ×ÖŽ×× ×Ö°×¢Ö·×ÖŸ×ÖŒ××Öµ× ãé èšè
ããç¥åžã«è³ããŸã§ã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "×ÖŽ×ÖŒ×Ö¹× ×¢Ö·×֟ךַע ãåããæªãŸã§âåãæªãã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æ5ã® ×¢ÖŽ× ã¯ãæ¥æ¬èªã®å©è©ã®ãã¡ã§ã¯ ã ã«äžçªè¿ãã察象ãäž»äœã®çžæã§ããããš(ãç¥æããšå
±ã«ããæµãšã®æŠãã)ãã²ããŠã¯åææ§(ããã³ãã«ãæãããš...ã)ãŸã§è¡šãããããã...ãšèšããã®ããã«ã¯çšããããªãã",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æ6ã® ×ÖŽ×ªÖŽÖŒ× ã¯ ×ֶת ã«äžäººç§°åæ°ä»£åè©ãæ¥å°Ÿãã圢ã ãã×ֶת ã¯å¯Ÿè±¡ãäž»äœã®ãã°ã«ãããšããé¢ä¿ã衚ããšèãããããã¯ã ã ã«è¿ããã×¢ÖŽ× ã®ãããªåææ§ã®æå³ã¯ãªãã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "æ7㮠תַ֌×ַת ã¯ãäžãã§ãç¬ç«ã«ãããŠãçšããããåè©ã§ããããå§åçã«å€ãã®å Žåãé£èªåœ¢ã§ä»ã®åè©ã®åã«çœ®ãããå眮è©ãšããŠæ©èœããŠãããã代ããããæå³ããããšããããäŸãã°",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "×ֶךַע ×Ö·×ֵך תַ֌×ַת ×Ö¶×Ö¶× ãã¢ãã«ã®ä»£ããã®å¥ã®åçš®ã",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æ8ã® ×ÖµÖŒ×× ã¯ãããã ããšããåè©ã§ãå眮è©ãšããŠã¯ãå€ãã®å Žåããã®äŸã®ããã« ×ÖµÖŒ×× ãç¹°ãè¿ã㊠×Ö° ã§çµåããããã ããçŽèš³ããã°ãã€ã¹ã©ãšã«ã®éãšããªã·ã人ã®éããšããããšã«ãªãã",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "以äžã«èŠãããã«ãããã©ã€èªã®å眮è©ãæ¥æ¬èªã®åè©ã§èš³ããããšãããã®é£èªçæ§æ Œã¯æ¥æ¬èªèš³ã«ããã®ãŸãŸåæ ãããäŸãã°",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "×Ö¶ÖŒ× ×Öž×ÖŽ××©× ããã®ç·ã®æ¯åã",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "×ֶת ×Öž×ÖŽ××©× ããã®ç·ã®ãã°ã",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããæ¥æ¬èªã®åè©å¥ã¯æ Œå©è©ãªãã§ã¯æäžã§æ©èœããªãã®ãæ®éã ããããã®å Žå ã ã ã² çãæ·»ããå¿
èŠãããã®ã«å¯Ÿããããã©ã€èªã«ã¯ãã®ãããªãããã°çŽç²ã®ãæ Œå©è©ã¯ååšããªãã®ã§ããããã®ããšã¯ãäŸãã°äŸæ5ã§ããã®åå幎ããšããåè©å¥ããã®ãŸãŸã§å¯è©å¥ã®åããããããš(ãã®ç¹ã¯æ¥æ¬èªãåã)ã屿 Œé¢ä¿ãé£èªå¥ã§è¡šçŸãããããšããããŠããäž»éš-è¿°éšãé¢ä¿ããåæ Œé¢ä¿ãäœã衚é¢çãªæšç€ºãªãã«è¡šãããããšãšãé¢é£ããŠããã®ã§ãããäŸãã°",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "×ÖžÖŒ×ÖŽ× ×Ö¶ÖŒ×ÖŸ×Öž×ÖŽ××©× ããã®ç·ã®æ¯åãããããŸãã¯ããã®ç·ã®æ¯åã¯(ã)ãããã ãã",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "×ÖžÖŒ×ÖŽ× ×ֶת֟×Öž×ÖŽ××©× ããã®ç·ã®ãã°ã®ãããããŸãã¯ããã®ç·ã®ãã°ã«ãããããããã",
"title": ""
}
]
| 11.4 å眮è©ã®èª¬æ æ1 ã®åçœ®è© â×Ö¶×âã¯ãæ¹åãã衚ããæã
ã® ã ã«è¿ãããã㊠ã ã ã ãšæ®ã©å矩çã§ããããã« â×Ö¶×â 㯠10.3 ã§åŠãã â×Ö°â ãšæå³ã®éãªãéšåãããããâ×Ö°â ã»ã©å€çŸ©çã§ã¯ãªããâ×Ö°â ã¯ã10.3 ã§èŠããææãã®æå³ããããããããããã«ãç·ããŠå¯Ÿè±¡ïŒãã®å Žåãå眮è©ã®æ¯é
ããåè©ã«ãã£ãŠè¡šããããã®ïŒãšäž»äœïŒãã®å Žåããã®å眮è©å¥ãšçµåãããåè©å¥ã«ãã£ãŠãããããããã®ïŒãšã®å¯çé¢ä¿ã衚ããåŸã£ãŠæ¹åã衚ãæèïŒåè©æã§ã¯äž»äœã®è¡šãæå³ã«ãã£ãŠå€æãããïŒã«ãããŠã¯ãâ×Ö°â ããã®å¯Ÿè±¡ãæ¥è¿ãåŸãç®æšãšããŠæããã®ã«å¯Ÿããâ×Ö¶×â ã¯å¯Ÿè±¡ãžã®å¿åæ§ãæå³ããããšèããããã æ2ãæ3ã®åçœ®è© â×¢Ö·×â ã®åºæ¬çãªæå³ã¯ãäžãã§ããããè±èªã® on ã®ããã«ãæ§ã
ã®æŽŸççæå³ã«ãããŠãçšããããã æ3ã®åçœ®è© â×Ö°ÖŒâ ã¯ã ãããäž»äœãšå¯Ÿè±¡ãšã®ãé¡äŒŒãã衚ããè±èªã®å眮è©ã§ã¯ as ãäžçªããã«è¿ãããšèããããã æ4ã®åçœ®è© â×¢Ö·×âã¯ãâ×ÖŽ×âãåç¹ã»èµ·ç¹ã衚ãã®ã«å¯Ÿããå°éç¹ãã衚ããæ¥æ¬èªã® ãã ãäžçªè¿ããâ×ÖŽ×â ãšçµã«ãªã£ãŠãâŠããâŠãŸã§ãã衚ããšããããã®ããã« â×¢Ö·×â ã®åã«æ¥ç¶è© â×Ö°â ã眮ãããããšãããããããã¯çŸ©åçã§ã¯ãªããäŸãã° â×ÖŽ× Ö¶ÖŒ×Ö¶× ×Ö°×¢Ö·×ÖŸ×ÖµÖŒ×ת֟×Öµ×â ããã²ãããã¹ãã«ãŸã§ã â×ÖŽ×ÖŸ×Ö·×Ö¶ÖŒ×Ö¶× ×¢Ö·×ÖŸ××Ö¹× ××ֹת×Ö¹â ãïŒæ¯ã®ïŒèããæ»ã®æ¥ãŸã§ã â×ÖŽ× ÖžÖŒ×ÖŽ×× ×Ö°×¢Ö·×ÖŸ×ÖŒ××Öµ×â ãé èšè
ããç¥åžã«è³ããŸã§ã â×ÖŽ×ÖŒ×Ö¹× ×¢Ö·×֟ךַעâ ãåããæªãŸã§âåãæªãã æ5ã® â×¢ÖŽ×â ã¯ãæ¥æ¬èªã®å©è©ã®ãã¡ã§ã¯ ã ã«äžçªè¿ãã察象ãäž»äœã®çžæã§ããããšïŒãç¥æããšå
±ã«ããæµãšã®æŠããïŒãã²ããŠã¯åææ§ïŒããã³ãã«ãæãããšâŠãïŒãŸã§è¡šããããããâŠãšèšããã®ããã«ã¯çšããããªãã æ6ã® â×֎ת֎֌×â 㯠â×ֶתâ ã«äžäººç§°åæ°ä»£åè©ãæ¥å°Ÿãã圢ã ããâ×ֶתâ ã¯å¯Ÿè±¡ãäž»äœã®ãã°ã«ãããšããé¢ä¿ã衚ããšèãããããã¯ã ã ã«è¿ãããâ×¢ÖŽ×â ã®ãããªåææ§ã®æå³ã¯ãªãã æ7ã® âתַ֌×ַתâ ã¯ãäžãã§ãç¬ç«ã«ãããŠãçšããããåè©ã§ããããå§åçã«å€ãã®å Žåãé£èªåœ¢ã§ä»ã®åè©ã®åã«çœ®ãããå眮è©ãšããŠæ©èœããŠãããã代ããããæå³ããããšããããäŸãã° â×ֶךַע ×Ö·×ֵך תַ֌×ַת ×Ö¶×Ö¶×â ãã¢ãã«ã®ä»£ããã®å¥ã®åçš®ã æ8ã® â×ÖµÖŒ××â ã¯ãããã ããšããåè©ã§ãå眮è©ãšããŠã¯ãå€ãã®å Žåããã®äŸã®ããã« â×ÖµÖŒ××â ãç¹°ãè¿ã㊠â×Ö°â ã§çµåããããã ããçŽèš³ããã°ãã€ã¹ã©ãšã«ã®éãšããªã·ã人ã®éããšããããšã«ãªãã 以äžã«èŠãããã«ãããã©ã€èªã®å眮è©ãæ¥æ¬èªã®åè©ã§èš³ããããšãããã®é£èªçæ§æ Œã¯æ¥æ¬èªèš³ã«ããã®ãŸãŸåæ ãããäŸãã° â×Ö¶ÖŒ× ×Öž×ÖŽ×ש×â ããã®ç·ã®æ¯åã â×ֶת ×Öž×ÖŽ×ש×â ããã®ç·ã®ãã°ã ãããæ¥æ¬èªã®åè©å¥ã¯æ Œå©è©ãªãã§ã¯æäžã§æ©èœããªãã®ãæ®éã ããããã®å Žå ã ã ã² çãæ·»ããå¿
èŠãããã®ã«å¯Ÿããããã©ã€èªã«ã¯ãã®ãããªãããã°çŽç²ã®ãæ Œå©è©ã¯ååšããªãã®ã§ããããã®ããšã¯ãäŸãã°äŸæ5ã§ããã®åå幎ããšããåè©å¥ããã®ãŸãŸã§å¯è©å¥ã®åããããããšïŒãã®ç¹ã¯æ¥æ¬èªãåãïŒã屿 Œé¢ä¿ãé£èªå¥ã§è¡šçŸãããããšããããŠããäž»éš-è¿°éšãé¢ä¿ããåæ Œé¢ä¿ãäœã衚é¢çãªæšç€ºãªãã«è¡šãããããšãšãé¢é£ããŠããã®ã§ãããäŸãã° â×ÖžÖŒ×ÖŽ× ×Ö¶ÖŒ×ÖŸ×Öž×ÖŽ×ש×â ããã®ç·ã®æ¯åãããããŸãã¯ããã®ç·ã®æ¯åã¯ïŒãïŒãããã ãã â×ÖžÖŒ×ÖŽ× ×ֶת֟×Öž×ÖŽ×ש×â ããã®ç·ã®ãã°ã®ãããããŸãã¯ããã®ç·ã®ãã°ã«ãããããããã | 11.4 å眮è©ã®èª¬æ
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ1|æ1]] ã®åçœ®è© ‏×Ö¶×‎ã¯ãæ¹åãã衚ããæã
ã® ã ã«è¿ãããã㊠ã ã ã ãšæ®ã©å矩çã§ããããã« ‏×Ö¶×‎ 㯠[[èæžããã©ã€èªå
¥é/å眮è©(1)/æ§æèª¬æ|10.3]] ã§åŠãã ‏×Ö°‎ ãšæå³ã®éãªãéšåããããã‏×Ö°‎ ã»ã©å€çŸ©çã§ã¯ãªãã‏×Ö°‎ ã¯ã[[èæžããã©ã€èªå
¥é/å眮è©(1)/æ§æèª¬æ|10.3]] ã§èŠããææãã®æå³ããããããããããã«ãç·ããŠå¯Ÿè±¡ïŒãã®å Žåãå眮è©ã®æ¯é
ããåè©ã«ãã£ãŠè¡šããããã®ïŒãšäž»äœïŒãã®å Žåããã®å眮è©å¥ãšçµåãããåè©å¥ã«ãã£ãŠãããããããã®ïŒãšã®å¯çé¢ä¿ã衚ããåŸã£ãŠæ¹åã衚ãæèïŒåè©æã§ã¯äž»äœã®è¡šãæå³ã«ãã£ãŠå€æãããïŒã«ãããŠã¯ã‏×Ö°‎ ããã®å¯Ÿè±¡ãæ¥è¿ãåŸãç®æšãšããŠæããã®ã«å¯Ÿãã‏×Ö¶×‎ ã¯å¯Ÿè±¡ãžã®å¿åæ§ãæå³ããããšèããããã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ2|æ2]]ã[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ3|æ3]]ã®åçœ®è© ‏×¢Ö·×‎ ã®åºæ¬çãªæå³ã¯ãäžãã§ããããè±èªã® on ã®ããã«ãæ§ã
ã®æŽŸççæå³ã«ãããŠãçšããããã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ3|æ3]]ã®åçœ®è© ‏×Ö°ÖŒ‎ ã¯ã ãããäž»äœãšå¯Ÿè±¡ãšã®ãé¡äŒŒãã衚ããè±èªã®å眮è©ã§ã¯ as ãäžçªããã«è¿ãããšèããããã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ4|æ4]]ã®åçœ®è© ‏×¢Ö·×‎ã¯ã‏×ÖŽ×‎ãåç¹ã»èµ·ç¹ã衚ãã®ã«å¯Ÿããå°éç¹ãã衚ããæ¥æ¬èªã® ãã ãäžçªè¿ãã‏×ÖŽ×‎ ãšçµã«ãªã£ãŠãâŠããâŠãŸã§ãã衚ããšããããã®ããã« ‏×¢Ö·×‎ ã®åã«æ¥ç¶è© ‏×Ö°‎ ã眮ãããããšãããããããã¯çŸ©åçã§ã¯ãªããäŸãã°
‏×ÖŽ× Ö¶ÖŒ×Ö¶× ×Ö°×¢Ö·×ÖŸ×ÖµÖŒ×ת֟×Öµ×‎ ããã²ãããã¹ãã«ãŸã§ã
‏×ÖŽ×ÖŸ×Ö·×Ö¶ÖŒ×Ö¶× ×¢Ö·×ÖŸ××Ö¹× ××ֹת×Ö¹‎ ãïŒæ¯ã®ïŒèããæ»ã®æ¥ãŸã§ã
‏×ÖŽ× ÖžÖŒ×ÖŽ×× ×Ö°×¢Ö·×ÖŸ×ÖŒ××Öµ×‎ ãé èšè
ããç¥åžã«è³ããŸã§ã
‏×ÖŽ×ÖŒ×Ö¹× ×¢Ö·×֟ךַע‏ ãåããæªãŸã§âåãæªãã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ5|æ5]]ã® ‏×¢ÖŽ×‎ ã¯ãæ¥æ¬èªã®å©è©ã®ãã¡ã§ã¯ ã ã«äžçªè¿ãã察象ãäž»äœã®çžæã§ããããšïŒãç¥æã<u>ãš</u>å
±ã«ããæµ<u>ãš</u>ã®æŠããïŒãã²ããŠã¯åææ§ïŒããã³ãã«ãæãã<u>ãš</u>âŠãïŒãŸã§è¡šããããããâŠ<u>ãš</u>èšããã®ããã«ã¯çšããããªãã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ6|æ6]]ã® ‏×֎ת֎֌×‎ 㯠‏×ֶת‎ ã«äžäººç§°åæ°ä»£åè©ãæ¥å°Ÿãã圢ã ãã‏×ֶת‎ ã¯å¯Ÿè±¡ãäž»äœã®<u>ãã°</u>ã«ãããšããé¢ä¿ã衚ããšèãããããã¯ã ã ã«è¿ããã‏×¢ÖŽ×‎ ã®ãããªåææ§ã®æå³ã¯ãªãã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ7|æ7]]ã® ‏תַ֌×ַת‎ ã¯ãäžãã§ãç¬ç«ã«ãããŠãçšããããåè©ã§ããããå§åçã«å€ãã®å Žåãé£èªåœ¢ã§ä»ã®åè©ã®åã«çœ®ãããå眮è©ãšããŠæ©èœããŠãããã代ããããæå³ããããšããããäŸãã°
‏×ֶךַע ×Ö·×ֵך תַ֌×ַת ×Ö¶×Ö¶×‎ ãã¢ãã«ã®ä»£ããã®å¥ã®åçš®ã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ8|æ8]]ã® ‏×ÖµÖŒ××‎ ã¯ãããã ããšããåè©ã§ãå眮è©ãšããŠã¯ãå€ãã®å Žåããã®äŸã®ããã« ‏×ÖµÖŒ××‎ ãç¹°ãè¿ã㊠‏×Ö°‎ ã§çµåããããã ããçŽèš³ããã°ãã€ã¹ã©ãšã«ã®éãšããªã·ã人ã®éããšããããšã«ãªãã
以äžã«èŠãããã«ãããã©ã€èªã®å眮è©ãæ¥æ¬èªã®åè©ã§èš³ããããšãããã®é£èªçæ§æ Œã¯æ¥æ¬èªèš³ã«ããã®ãŸãŸåæ ãããäŸãã°
‏×Ö¶ÖŒ× ×Öž×ÖŽ×ש×‎ ããã®ç·<u>ã®</u>æ¯åã
‏×ֶת ×Öž×ÖŽ×ש×‎ ããã®ç·<u>ã®</u>ãã°ã
ãããæ¥æ¬èªã®åè©å¥ã¯æ Œå©è©ãªãã§ã¯æäžã§æ©èœããªãã®ãæ®éã ããããã®å Žå ã ã ã² çãæ·»ããå¿
èŠãããã®ã«å¯Ÿããããã©ã€èªã«ã¯ãã®ãããªãããã°çŽç²ã®ãæ Œå©è©ã¯ååšããªãã®ã§ããããã®ããšã¯ãäŸãã°[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ5|äŸæ5]]ã§ããã®åå幎ããšããåè©å¥ããã®ãŸãŸã§å¯è©å¥ã®åããããããšïŒãã®ç¹ã¯æ¥æ¬èªãåãïŒã屿 Œé¢ä¿ãé£èªå¥ã§è¡šçŸãããããšããããŠããäž»éš-è¿°éšãé¢ä¿ããåæ Œé¢ä¿ãäœã衚é¢çãªæšç€ºãªãã«è¡šãããããšãšãé¢é£ããŠããã®ã§ãããäŸãã°
‏×ÖžÖŒ×ÖŽ× ×Ö¶ÖŒ×ÖŸ×Öž×ÖŽ×ש×‎ ããã®ç·ã®æ¯åãããããŸãã¯ããã®ç·ã®æ¯å<u>ã¯</u>ïŒ<u>ã</u>ïŒããã<u>ã </u>ãã
‏×ÖžÖŒ×ÖŽ× ×ֶת֟×Öž×ÖŽ×ש×‎ ããã®ç·ã®ãã°<u>ã®</u>ãããããŸãã¯ããã®ç·ã®ãã°<u>ã«</u>ããã<u>ããã</u>ãã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:17Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E5%89%8D%E7%BD%AE%E8%A9%9E%E3%81%AE%E8%AA%AC%E6%98%8E |
25,001 | è¿æ±åŒ | ã¡ã€ã³ããŒãž > èªåŠ > æ¥æ¬èª > æ¥æ¬èªã®æ¹èš > è¿æ±åŒ
è¿æ±åŒ(ããã¿ã¹ã)ã¯ãé¢è¥¿å°æ¹ã®æ»è³çã§è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ããè¿ç¿æ¹èšã®äžçš®ã§ãããäžè¬çã«ãé¢è¥¿åŒããšããŠç¥ãããç¹åŸŽãå€ãåãããããæ»è³çæ°èªèº«ãå«ããŠãæ¹èšåŠè
ã§ããªãéãã¯ãé¢è¥¿åŒããšããŠèªèãããããšãå€ãã§ããã倧éªåŒãªã©ãšã¯ç°ãªã衚çŸãååšããŸãã
ãé¢è¥¿åŒããšåŒã°ããæ©äŒãå€ããããæ»è³çã®æ¹èšã®ååã¯å®ãŸã£ãŠããããè¿æ±åŒã®ã»ãã«ãæ±å·åŒ(ãããã
ãã¹ã)ãæ»è³åŒ(ããã¹ã)ãè¿æ±ããšã°(ããã¿ããšã°)ãªã©æ§ã
ãªåŒã³æ¹ããããŸãããããã§ã¯ãè¿æ±åŒããšåŒã¶ããšã«ããŸãã
æ»è³çã¯ãã»ã©é¢ç©ãåºããªããã®ã®ãäžå¿ã«çµç¶æ¹ããã絶察çãªäžå¿éœåžããªãããšã亀éã®èŠè¡ã§åšèŸºå°æ¹ãšã®æå亀æµãçããªããšãªã©ãããå®ã®ãšãããè¿æ±åŒããšããŠçµ±äžãããæ¹èšã¯ãããŸããã倧ãŸãã«ãçµç¶æ¹ãæãã§ãæ¹åããæ¹æ±ããæ¹è¥¿ããæ¹åãã§æååãåãããŸãã
ã¢ã¯ã»ã³ãã¯äœãçºé³ãããéšåããLããé«ãçºé³ãããéšåããHãã§ç€ºããŸããã
ä¿é³(ã£)ã®éšåã¯çç¥ããŸãããæ¥é³(ã)ã¯çç¥ããŸããã
åèªã®ã¢ã¯ã»ã³ãã¯ãæ¥é èªãä»ãããè€åèªã«ãªã£ããå©è©ãç¶ããããããšå€åããå ŽåããããŸãããèªåœã®é
ç®ãªã©ã§ã¢ã¯ã»ã³ãã解説ããéã«ã¯ãåºæ¬çã«ã¯åäœã§çºé³ããå Žåã®ã¢ã¯ã»ã³ããåãäžããŸãã
æ¹åå°æ¹ã®è¡šçŸã«é¢ããŠã¯ã衚çŸã¯åãã§ãã¢ã¯ã»ã³ããå°åã«ãã£ãŠçްããç°ãªãå Žåããããããã¢ã¯ã»ã³ãæ
å ±ãçç¥ããå ŽåããããŸãã
å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããŠãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > èªåŠ > æ¥æ¬èª > æ¥æ¬èªã®æ¹èš > è¿æ±åŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è¿æ±åŒ(ããã¿ã¹ã)ã¯ãé¢è¥¿å°æ¹ã®æ»è³çã§è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ããè¿ç¿æ¹èšã®äžçš®ã§ãããäžè¬çã«ãé¢è¥¿åŒããšããŠç¥ãããç¹åŸŽãå€ãåãããããæ»è³çæ°èªèº«ãå«ããŠãæ¹èšåŠè
ã§ããªãéãã¯ãé¢è¥¿åŒããšããŠèªèãããããšãå€ãã§ããã倧éªåŒãªã©ãšã¯ç°ãªã衚çŸãååšããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãé¢è¥¿åŒããšåŒã°ããæ©äŒãå€ããããæ»è³çã®æ¹èšã®ååã¯å®ãŸã£ãŠããããè¿æ±åŒã®ã»ãã«ãæ±å·åŒ(ãããã
ãã¹ã)ãæ»è³åŒ(ããã¹ã)ãè¿æ±ããšã°(ããã¿ããšã°)ãªã©æ§ã
ãªåŒã³æ¹ããããŸãããããã§ã¯ãè¿æ±åŒããšåŒã¶ããšã«ããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ»è³çã¯ãã»ã©é¢ç©ãåºããªããã®ã®ãäžå¿ã«çµç¶æ¹ããã絶察çãªäžå¿éœåžããªãããšã亀éã®èŠè¡ã§åšèŸºå°æ¹ãšã®æå亀æµãçããªããšãªã©ãããå®ã®ãšãããè¿æ±åŒããšããŠçµ±äžãããæ¹èšã¯ãããŸããã倧ãŸãã«ãçµç¶æ¹ãæãã§ãæ¹åããæ¹æ±ããæ¹è¥¿ããæ¹åãã§æååãåãããŸãã",
"title": "ãè¿æ±åŒãã®äžã«ã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã¢ã¯ã»ã³ãã¯äœãçºé³ãããéšåããLããé«ãçºé³ãããéšåããHãã§ç€ºããŸããã",
"title": "ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ä¿é³(ã£)ã®éšåã¯çç¥ããŸãããæ¥é³(ã)ã¯çç¥ããŸããã",
"title": "ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åèªã®ã¢ã¯ã»ã³ãã¯ãæ¥é èªãä»ãããè€åèªã«ãªã£ããå©è©ãç¶ããããããšå€åããå ŽåããããŸãããèªåœã®é
ç®ãªã©ã§ã¢ã¯ã»ã³ãã解説ããéã«ã¯ãåºæ¬çã«ã¯åäœã§çºé³ããå Žåã®ã¢ã¯ã»ã³ããåãäžããŸãã",
"title": "ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ¹åå°æ¹ã®è¡šçŸã«é¢ããŠã¯ã衚çŸã¯åãã§ãã¢ã¯ã»ã³ããå°åã«ãã£ãŠçްããç°ãªãå Žåããããããã¢ã¯ã»ã³ãæ
å ±ãçç¥ããå ŽåããããŸãã",
"title": "ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ããŠ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããŠãããŸãã",
"title": "解説ã«ã€ããŠ"
}
]
| ã¡ã€ã³ããŒãžÂ > èªåŠÂ > æ¥æ¬èªÂ > æ¥æ¬èªã®æ¹èšÂ > è¿æ±åŒ è¿æ±åŒïŒããã¿ã¹ãïŒã¯ãé¢è¥¿å°æ¹ã®æ»è³çã§è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ããè¿ç¿æ¹èšã®äžçš®ã§ãããäžè¬çã«ãé¢è¥¿åŒããšããŠç¥ãããç¹åŸŽãå€ãåãããããæ»è³çæ°èªèº«ãå«ããŠãæ¹èšåŠè
ã§ããªãéãã¯ãé¢è¥¿åŒããšããŠèªèãããããšãå€ãã§ããã倧éªåŒãªã©ãšã¯ç°ãªã衚çŸãååšããŸãã ãé¢è¥¿åŒããšåŒã°ããæ©äŒãå€ããããæ»è³çã®æ¹èšã®ååã¯å®ãŸã£ãŠããããè¿æ±åŒã®ã»ãã«ãæ±å·åŒïŒãããã
ãã¹ãïŒãæ»è³åŒïŒããã¹ãïŒãè¿æ±ããšã°ïŒããã¿ããšã°ïŒãªã©æ§ã
ãªåŒã³æ¹ããããŸãããããã§ã¯ãè¿æ±åŒããšåŒã¶ããšã«ããŸãã | {{Pathnav|ã¡ã€ã³ããŒãž|èªåŠ|æ¥æ¬èª|æ¥æ¬èªã®æ¹èš}}
{{wikipedia}}
[[è¿æ±åŒ]]ïŒããã¿ã¹ãïŒã¯ãé¢è¥¿å°æ¹ã®[[w:æ»è³ç|æ»è³ç]]ã§è©±ãããŠããæ¥æ¬èªã®æ¹èšã§ãã[[w:è¿ç¿æ¹èš|è¿ç¿æ¹èš]]ã®äžçš®ã§ãããäžè¬çã«ãé¢è¥¿åŒããšããŠç¥ãããç¹åŸŽãå€ãåãããããæ»è³çæ°èªèº«ãå«ããŠãæ¹èšåŠè
ã§ããªãéãã¯ãé¢è¥¿åŒããšããŠèªèãããããšãå€ãã§ããã[[倧éªåŒ]]ãªã©ãšã¯ç°ãªã衚çŸãååšããŸãã
ãé¢è¥¿åŒããšåŒã°ããæ©äŒãå€ããããæ»è³çã®æ¹èšã®ååã¯å®ãŸã£ãŠããããè¿æ±åŒã®ã»ãã«ã'''æ±å·åŒ'''ïŒãããã
ãã¹ãïŒã'''æ»è³åŒ'''ïŒããã¹ãïŒã'''è¿æ±ããšã°'''ïŒããã¿ããšã°ïŒãªã©æ§ã
ãªåŒã³æ¹ããããŸãããããã§ã¯ãè¿æ±åŒããšåŒã¶ããšã«ããŸãã
== ãè¿æ±åŒãã®äžã«ã ==
æ»è³çã¯ãã»ã©é¢ç©ãåºããªããã®ã®ãäžå¿ã«[[W:çµç¶æ¹|çµç¶æ¹]]ããã絶察çãªäžå¿éœåžããªãããšã亀éã®èŠè¡ã§åšèŸºå°æ¹ãšã®æå亀æµãçããªããšãªã©ãããå®ã®ãšãããè¿æ±åŒããšããŠçµ±äžãããæ¹èšã¯ãããŸããã倧ãŸãã«ãçµç¶æ¹ãæãã§ãæ¹åããæ¹æ±ããæ¹è¥¿ããæ¹åãã§æååãåãããŸãã
* '''æ¹å'''ïŒãã»ãïŒ - é·æµåžãšç±³ååžãããªãçåæ±éšãåéžãæ±æµ·ãšé£æ¥ããå°æ¹ã§ãè¿æ±åŒã®ãªãã§ãã£ãšãç¹è²è±ããéç«ã£ãç¹åŸŽã¯ãäžè¬çãªé¢è¥¿åŒã®ã¢ã¯ã»ã³ãïŒ[[w:京éªåŒã¢ã¯ã»ã³ã|京éªåŒã¢ã¯ã»ã³ã]]ïŒã§ã¯ãªã[[w:åäºåŒã¢ã¯ã»ã³ã|åäºåŒã¢ã¯ã»ã³ã]]ãååžããããšã ããè¥ãäžä»£ã§ã¯äº¬éªåŒã¢ã¯ã»ã³ãåãé²ã¿ã€ã€ãããçŠäºåŒã»ã©ã§ã¯ãªããèªå°Ÿãæ³¢æã€ããšãããã幎é
å±€ã§ã¯ãéããâãããããã®ãããªçºé³å€åããããç¹åŸŽçãªè¡šçŸã¯ãïœãããããïœããããïœã»ãããªã©ã
* '''æ¹æ±'''ïŒããšãïŒ - åœŠæ ¹åžãæ±è¿æ±åžãªã©ã®çæ±éšããïœãããããïœã»ãããªã©æ¹åãšå
±éãã衚çŸãå€ãããã¢ã¯ã»ã³ãã¯äžè¬çãªé¢è¥¿åŒããããâã»ããããã®âã»ã®ãã®ããã«ãããããã»ãã«ããå€åããïŒçå
åå°ã§èŠãããããæ¹æ±ã¯ç¹ã«ç®ç«ã€ïŒãæã®åéã«ãïœãããä»ããããšãå€ãïŒæ¹åã®äžéšã§ãïŒãèªå°Ÿã«ãïœãªãŒãããä»ããç¹åŸŽãããããçŸåšã¯äžéšã®é«éœ¢å¥³æ§ã«éãããã
* '''æ¹è¥¿'''ïŒãããïŒ - é«å³¶åžãšå€§æŽ¥åžåéšãããªãç西éšããïœãããã䜿ãç¹ãèªå°Ÿãæ³¢æã€ããšãããç¹ã¯æ¹åã«äŒŒããããã®ã»ãã¯äº¬éœåºåéšã®æ¹èšã«è¿ããèªå°Ÿã«ãïœã®ãŒããä»ããããšãå€ããæœæšãªã©å±±ééšã¯ç¬ç¹ã®è¡šçŸãå€ãã
* '''æ¹å'''ïŒããªãïŒ - 倧接åžäž»èŠéšããç²è³åžã«ãããŠã®çåéšã京éœãžã®éå€éåŠåã§ãã京éœåºåéšã®æ¹èšãšã»ãšãã©å€ãããªããã幎é
å±€ã§ã¯ãïœããããªã©ç¬ç¹ã®è¡šçŸããããç²è³åžãšæ¹ååžãããªã'''ç²è³'''ïŒãããïŒå°æ¹ã¯ãïœãããããªã©æ¹æ±ãšå
±éãã衚çŸããïœããããªã©äžéçã®æ¹èšãšå
±éãã衚çŸãå€ããããä»ã®æ¹åå°æ¹ãšã¯å¥åã«æ±ãããããšãå€ãã
== ã¢ã¯ã»ã³ãã®è¡šèšã«ã€ã㊠==
ã¢ã¯ã»ã³ãã¯äœãçºé³ãããéšåããLããé«ãçºé³ãããéšåããHãã§ç€ºããŸããã
:ïŒäŸïŒãããããã¯ãå
±éèªã§ã¯ããããè¿æ±åŒïŒãªã©é¢è¥¿ã®å€ãã®æ¹èšïŒã§ã¯çãäžã®ããããé«ãçºé³ãããŸããLãšHã§è¡šããšãå
±éèªã®ãããã¯HLLãè¿æ±åŒã®ãããã¯LHLãšãªããŸãã
ä¿é³ïŒã£ïŒã®éšåã¯çç¥ããŸãããæ¥é³ïŒãïŒã¯çç¥ããŸããã
:ïŒäŸïŒãå§å·»ãHHH
åèªã®ã¢ã¯ã»ã³ãã¯ãæ¥é èªãä»ãããè€åèªã«ãªã£ããå©è©ãç¶ããããããšå€åããå ŽåããããŸããã[[/èªåœ|èªåœ]]ã®é
ç®ãªã©ã§ã¢ã¯ã»ã³ãã解説ããéã«ã¯ãåºæ¬çã«ã¯åäœã§çºé³ããå Žåã®ã¢ã¯ã»ã³ããåãäžããŸãã
:ïŒäŸïŒã倧接ãåäœã§ã¯HLLã§ãããã倧接åžãã倧接é§
ãã®ããã«è€åèªã«ãªããšHHHLãHHHLLã®ããã«ã倧接ãã¯é«ããŸãŸã«ãªããŸãã
:ïŒäŸïŒãåºãåäœã§ã¯HLã§ãããæ¥é èªãä»ããŠããåºãã«ãããšLHLã§ã¯ãªãLLHã«ãªããŸããããã«å©è©ãä»ããŠããåºã«ãã«ãªããšLLHLã§ã¯ãªãLLLHãšãªããŸãã
:ïŒäŸïŒããããïŒè¯ãïŒåäœã§ã¯LHã§ããããããåºãã®ããã«åŸãã«Hããå§ãŸãåèªãä»ããšãLLHLã®ããã«ããããã¯äœããŸãŸã«ãªããŸãã
æ¹åå°æ¹ã®è¡šçŸã«é¢ããŠã¯ã衚çŸã¯åãã§ãã¢ã¯ã»ã³ããå°åã«ãã£ãŠçްããç°ãªãå Žåããããããã¢ã¯ã»ã³ãæ
å ±ãçç¥ããå ŽåããããŸãã
== 解説ã«ã€ã㊠==
å
±éèªã®ææ³ã®ç¥èãåæãšããäŸæãã¢ã¯ã»ã³ããå
±éèªèš³çã亀ããªãã解説ããŠãããŸãã
== ç®æ¬¡ ==
* [[/èªåœ|èªåœ]]
* [[/æå®|æå®]]ïŒïœãïŒ
* [[/éå»|éå»]]ïŒïœãïŒ
* [[/åŠå®|åŠå®]]ïŒïœãžããïœãçïŒ
* [[/é²è¡ã»ç¶ç¶|é²è¡ã»ç¶ç¶]]ïŒïœãŠããïœãšããïœããïŒ
* [[/åœä»€|åœä»€]]
* [[/çŠæ¢|çŠæ¢]]
* [[/æå|æå]]
* [[/å°æ¬|å°æ¬]]ïŒïœã¯ããïœããããïœããïŒ
* [[/ç®äžåŸ
é|ç®äžåŸ
é]]ïŒïœãããïœããããïœããïŒ
* [[/䜿圹|䜿圹]]
* [[/å§èª|å§èª]]
* [[/äžå¯èœ|äžå¯èœ]]
* [[/ææ«è©|ææ«è©]]ïŒïœã»ãçïŒ
* [[/æ¥ç¶å©è©|æ¥ç¶å©è©]]
[[Category:è¿æ±åŒ|*]]
{{stub}} | null | 2022-12-04T01:21:29Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Stub"
]
| https://ja.wikibooks.org/wiki/%E8%BF%91%E6%B1%9F%E5%BC%81 |
25,002 | è¿æ±åŒ/åœä»€ | è¿æ±åŒã§äœ¿çšãããåœä»€ããŸãšããŸããããªããåãè¿ç¿æ¹èšã§ããé¡äŒŒããŠããéšåã®ãã倧éªåŒããåŒçšããŠããéšåããããŸãããæ¹å€ããŠããŸãã
çžæã«ãé¡ããããšããåè©+ããŠã(掻çšã¯éå»ãé²è¡ãšåæ§)ã§ãéå»åœ¢ã®æåŸããã ããšãªãåè©ã«ã¯ããŠãã®ä»£ããã«ãã§ããã€ããŸãã
ãããŸã§ã¯å
±éèªãšåãã§ãããåŸãã«ããªããããããã€ããããšãã§ããŸããããªãããããããã®æ¹ãåœä»€ã®ãã¥ã¢ã³ã¹ãå«ã¿ãŸããããªãã¯ãéžæãããããšãã£ãæãã«ãªããŸãã
çžæãžã®åãããã匷ãããå Žåã¯ãããŠãã䌞ã°ããHLãšææãã€ããŸãããã®æãæ¹æ±ãªã©ã§ã¯ããªããšãããã ãã§ãªãããããã€ããããšãã§ããŸã(女æ§çãªè¡šçŸã§ã)ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è¿æ±åŒã§äœ¿çšãããåœä»€ããŸãšããŸããããªããåãè¿ç¿æ¹èšã§ããé¡äŒŒããŠããéšåã®ãã倧éªåŒããåŒçšããŠããéšåããããŸãããæ¹å€ããŠããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çžæã«ãé¡ããããšããåè©+ããŠã(掻çšã¯éå»ãé²è¡ãšåæ§)ã§ãéå»åœ¢ã®æåŸããã ããšãªãåè©ã«ã¯ããŠãã®ä»£ããã«ãã§ããã€ããŸãã",
"title": "ïœãŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããŸã§ã¯å
±éèªãšåãã§ãããåŸãã«ããªããããããã€ããããšãã§ããŸããããªãããããããã®æ¹ãåœä»€ã®ãã¥ã¢ã³ã¹ãå«ã¿ãŸããããªãã¯ãéžæãããããšãã£ãæãã«ãªããŸãã",
"title": "ïœãŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "çžæãžã®åãããã匷ãããå Žåã¯ãããŠãã䌞ã°ããHLãšææãã€ããŸãããã®æãæ¹æ±ãªã©ã§ã¯ããªããšãããã ãã§ãªãããããã€ããããšãã§ããŸã(女æ§çãªè¡šçŸã§ã)ã",
"title": "ïœãŠ"
}
]
| è¿æ±åŒã§äœ¿çšãããåœä»€ããŸãšããŸããããªããåãè¿ç¿æ¹èšã§ããé¡äŒŒããŠããéšåã®ãã倧éªåŒããåŒçšããŠããéšåããããŸãããæ¹å€ããŠããŸãã | [[è¿æ±åŒ]]ã§äœ¿çšãããåœä»€ããŸãšããŸããããªããåã[[W:è¿ç¿æ¹èš|è¿ç¿æ¹èš]]ã§ããé¡äŒŒããŠããéšåã®ãã[[倧éªåŒ]]ããåŒçšããŠããéšåããããŸãããæ¹å€ããŠããŸãã
== ïœãŠ ==
çžæã«ãé¡ããããšãã'''åè©+ããŠã'''ïŒæŽ»çšã¯[[è¿æ±åŒ/éå»|éå»]]ã[[è¿æ±åŒ/é²è¡ã»ç¶ç¶|é²è¡]]ãšåæ§ïŒã§ãéå»åœ¢ã®æåŸããã ããšãªãåè©ã«ã¯ããŠãã®ä»£ããã«'''ãã§ã'''ãã€ããŸãã
: è©ããã§ããLL HHH
ãããŸã§ã¯å
±éèªãšåãã§ãããåŸãã«ããªããããããã€ããããšãã§ããŸããããªãããããããã®æ¹ãåœä»€ã®ãã¥ã¢ã³ã¹ãå«ã¿ãŸããããªãã¯ãéžæãããããšãã£ãæãã«ãªããŸãã
: è¯ãã£ããæ¥ãŠãªããHLLL HHH
:: è¯ãã£ããæ¥ãŠãã
: ææ¥ãŸã§ã«èª¿ã¹ãŠæ¥ãŠãããHHH LLL HHHH HHH
:: ææ¥ãŸã§ã«èª¿ã¹ãŠæ¥ãŠãã
çžæãžã®åãããã匷ãããå Žåã¯ãããŠãã䌞ã°ããHLãšææãã€ããŸãããã®æãæ¹æ±ãªã©ã§ã¯ããªããšãããã ãã§ãªãããããã€ããããšãã§ããŸãïŒå¥³æ§çãªè¡šçŸã§ãïŒã
: ææ¥ãŸã§ã«èª¿ã¹ãŠæ¥ãŠããªããHHH LLL HHHH HHLL
:: ææ¥ãŸã§ã«èª¿ã¹ãŠæ¥ãŠãã
[[ã«ããŽãª:è¿æ±åŒ|ãããã]] | null | 2022-12-04T01:21:29Z | []
| https://ja.wikibooks.org/wiki/%E8%BF%91%E6%B1%9F%E5%BC%81/%E5%91%BD%E4%BB%A4 |
25,004 | è¿æ±åŒ/èªåœ | è¿æ±åŒã®èªåœããŸãšããŸãããåãè¿ç¿æ¹èšã§ãã倧éªåŒããåŒçšãæ¹å€ããéšåããããŸãã䜿çšå°åã衚ãã«ããã£ãŠã¯ãæ¹åãNãæ¹æ±ãEãæ¹è¥¿ãWãæ¹åãSãç²è³ãKãšããçå
åºç¯å²ã«ããã£ãŠäœ¿ããããã®(倧æµã®å Žå京éœã倧éªãšå
±é)ã¯ç©ºæ¬ãšããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è¿æ±åŒã®èªåœããŸãšããŸãããåãè¿ç¿æ¹èšã§ãã倧éªåŒããåŒçšãæ¹å€ããéšåããããŸãã䜿çšå°åã衚ãã«ããã£ãŠã¯ãæ¹åãNãæ¹æ±ãEãæ¹è¥¿ãWãæ¹åãSãç²è³ãKãšããçå
åºç¯å²ã«ããã£ãŠäœ¿ããããã®(倧æµã®å Žå京éœã倧éªãšå
±é)ã¯ç©ºæ¬ãšããŸãã",
"title": ""
}
]
| è¿æ±åŒã®èªåœããŸãšããŸãããåãè¿ç¿æ¹èšã§ãã倧éªåŒããåŒçšãæ¹å€ããéšåããããŸãã䜿çšå°åã衚ãã«ããã£ãŠã¯ãæ¹åãNãæ¹æ±ãEãæ¹è¥¿ãWãæ¹åãSãç²è³ãKãšããçå
åºç¯å²ã«ããã£ãŠäœ¿ããããã®ïŒå€§æµã®å Žå京éœã倧éªãšå
±éïŒã¯ç©ºæ¬ãšããŸãã | è¿æ±åŒã®èªåœããŸãšããŸãããåã[[W:è¿ç¿æ¹èš|è¿ç¿æ¹èš]]ã§ãã倧éªåŒããåŒçšãæ¹å€ããéšåããããŸãã䜿çšå°åã衚ãã«ããã£ãŠã¯ãæ¹åãNãæ¹æ±ãEãæ¹è¥¿ãWãæ¹åãSãç²è³ãKãšããçå
åºç¯å²ã«ããã£ãŠäœ¿ããããã®ïŒå€§æµã®å Žå京éœã倧éªãšå
±éïŒã¯ç©ºæ¬ãšããŸãã
{| class="wikitable"
|+ èªåœ
! è¿æ±åŒ !! ã¢ã¯ã»ã³ã !! å
±éèªèš³ !! 䜿çšå°åã»è£è¶³
|-
| ããã || HHH || é§ç® ||
|-
| ã㬠|| HH || åž°ã ||
|-
| ãã || HL || ã€ãã/é¢åã /æ°ã®æ¯ã /æ¥ãããã/å¯åæ³ãªã©å€çŸ© || N/Eããæãããèªæºãèªåãä»è
ã®äžéã»äžéãåãéããèªãã®å€±æãªã©ã«ã€ããŠããæ¥ããããããšãããŠç³ãèš³ãªãããšè©«ã³ãéãªã©ã«äœ¿ãããã
|-
| ãã¿ || LH || çµç¶æ¹ ||
|-
| ãã || LH || è¯ã || Eã§ã¯ããããããã䜿ãããã
|-
| ããã || HLL || ïŒèº«äœçã«ïŒèŠãã/ã²ã©ã/倧å€ã« || ç¹ã«ãïŒèº«äœçã«ïŒèŠããããšããçšæ³ã¯èè¥ç·å¥³åãããã䜿ãããã
|-
| ãããã« || HLLL, LLHL || ããããšã || 蟲æéšãäžå¿ã«ããã£ãã«ããªã©ãšãçºé³ããã
|-
| ãã£ãã || HLL || ãåãã || ãäžå¹Žç·æ§ããããããããšããæå³ã§ããã£ããããšèšãå Žåã¯HHHãšçºé³ããã
|-
| ããšã€ã || HHLL || ããšãšã ||
|-
| ãã || HH || ç±³ãç ã ||
|-
| ããªã || HLL || å«ã<small>(ãªããš)</small>/å°ã<small>(ããš)</small> ||
|-
| ããããã || LLLHH, HHHHH || ïŒæµåçå®ã®ïŒãåãã || N/E
|-
| ããã°ã || HHLL || ãããã£ãã ||
|-
| ããŸãã || HHHH || ãªããªã/å°œãã || N/E
|-
| ããããªã || HHLL || 仿¹ããªã ||
|-
| ããã©ã || LLHL || ïŒèº«äœçã粟ç¥çã«ïŒèŠãã ||
|-
| ããã || HLL || é¢å || N/E
|-
| ã¡ãã || LH || æ
ãŠãå/äžæ³šæ/軜ç || ããã¡ããã(LHL)ãšãèšããèœã¡çãããªãäººãæ³šæã»æ¶æããæãªã©ã«äœ¿ãã
|-
| ã¡ããã || HHH || 調åã«ä¹ã || Eããã¡ããããåè©åãããã®ã倧éªãªã©ãšåãããã¡ãããããšãèšãã
|-
| ã©ãã€ã || HHHH, LLLH || çªãåœãã ||
|-
| ãªãã || HHH || çä»ãã ||
|-
| ãªã¶ã || HHH || è§Šã/ããã ||
|-
| ãªãŸãããªã || HHHHLL || ã ãããªã || N/E
|-
| ãªãã° || HHH || åèŸå || N
|-
| ãªãã°/ãªãã°ã || HHH/HLLL || ããŠã¢ãã³ã· || N以å€ã
|-
| ãªã㌠|| LLH || 幟ã || äž»ã«éé¡ãå°ããéã«äœ¿ããæ°éã幎霢ãå°ããéã¯ãããã€ããšèšãå°åãå€ãã
|-
| ã¬ããšã || HHLL|| æãã || ãã®ããšãããšèšãå°åãå€ãã
|-
| ã»ãã || HHH || æšãŠã || N/E/Sã§ã¯ãæšãŠãããããµãŠãã(HHH)ãšå€åãããŠèšãããšãããã
|-
| ã»ã㟠|| LLH || æ¬åœ || S/Eã§ã¯ãå
šãã ãïŒããšããæå³ã§ãã»ããŸã«ãïŒã(LLLHL)ãšèšãã
|-
| ãŸã€ã°ã || HHHH || ãŸãšãŸã/絡ãŸã || EãããŸã€ãŒãããšãèšãã
|-
| ãã㌠|| HLL, LHL || 麊ç²è
« ||
|-
| ãããã ||HHHH || ãã°ç«ã€ ||
|-
| ããã§ãã || HHHLL || è¡ã£ãŠåž°ã£ãŠãã || N/EãããããŠããããšèšãå°åãããã
|-
| ããã || HHH || åž°ã || N/Eããæ»ãããå€åãããã®ã
|-
| ããã || HLL || ãããã ||
|-
| ããã || HLL || ãããŸãã/æããã/ããããããªã©å€çŸ© || NãKã§ã¯ã鬱é¶ããããšããæå³ã§äœ¿ããããããããããïŒHHHHLLïŒãšãèšãã
|-
| ãã°ãã || HHHH || é£ã¹ã || ã埡銳走ã«åŒã°ããããããé£ã¹ããã«çšæ³ãæ¡å€§ãããã®ã§ãããäžå¯§ãªãã¥ã¢ã³ã¹ãããã
|}
== åèæç® ==
* å¢äºéå
žãæ»è³ç æ¹èšèªåœã»çšäŸ èŸå
žããµã³ã©ã€ãºåºçã2000幎
[[Category:è¿æ±åŒ|ãã]] | null | 2022-12-04T01:21:29Z | []
| https://ja.wikibooks.org/wiki/%E8%BF%91%E6%B1%9F%E5%BC%81/%E8%AA%9E%E5%BD%99 |
25,005 | èæžããã©ã€èªå
¥é/å眮è©(2)/æ¥å°Ÿäººç§°ä»£åè©ã®ä»ãã圢 | 11.5 æ¥å°Ÿäººç§°ä»£åè©ã®ä»ãã圢
ãã®è¡šããåè©ã«æ¥å°Ÿãã人称代åè©ã«ã€ããŠã® 9.4.1 ã®èšè¿°ãšç
§åãããšãäŸãã°æ¬¡ã®ããšãåãã(ããã§ã¯æ¥å°Ÿäººç§°ä»£åè©ãæ¥å°ŸèŸãšç¥ç§°ãã)ã
(1) ×¢ÖŽ×ã×ֶת ã®å
šæ¥å°ŸèŸãš ×ÖµÖŒ×× ã®åæ°æ¥å°ŸèŸã¯ Ié¡ãããªãã¡åæ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã
(2) ×¢ÖŽ× ã®èªå¹¹ã¯ ×¢ÖŽ×ÖŒ `imm- 6.4.2ã×ֶת ã®èªå¹¹ã¯ ×֎ת֌ 'itt- ã ãããããã㯠×Öµ×ãæ¯ãã×Öµ×ãå¿ããšååã®åè©ã§ã×ֶת 㯠×ֵת ã®é£èªåœ¢ã§ããã
(3) ×ÖµÖŒ×× ã®è€æ°æ¥å°ŸèŸãš ×Ö¶×ã×¢Ö·×ã×¢Ö·×ãתַ֌×ַת ã®å
šæ¥å°ŸèŸã¯IIé¡ãããªãã¡è€æ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã
(4) åŸã£ãŠããããã®å眮è©ã«æ¥å°ŸèŸãä»ãã圢ã¯å®ã¯ *×ÖµÖŒ×× ÖŽ××ã*×Öµ×ÖŽ××ã*×¢Öž×ÖŽ××ã*×¢Öž×ÖŽ××ã*תַ֌×ְת֎֌×× ãšããè€æ°åè©ã«æ¥å°ŸèŸãä»ãã圢ã§ãããå®éããããããå°ãã ãããè€æ°é£èªåœ¢ã®ãã¡ã×Ö±×Öµ×ã×¢Ö²×Öµ×ã×¢Ö²×Öµ× ãšãã圢ã¯ãäž»ã«è©©æã«ããããã ×Ö¶×ã×¢Ö·×ã×¢Ö·× ãšåãæå³ãæ
ã£ãŠçšããããŠããããããã®è€æ°ç¬ç«åœ¢ãã ×Öµ×ã×¢Öž×ã×¢Öž× ãšããåæ°ç¬ç«åœ¢ãåæ§ããããã×Ö¶×ã×¢Ö·×ã×¢Ö·× ã¯ãããã®é£èªåœ¢ã§ããã(תַ֌×ַת ã«ã€ããŠã¯ãã»ãŽãŒã«åè©ãã®é
ã§è¿°ã¹ãã)
äºæå以äžã§æžãããå眮è©ã¯æ¬¡ã®èªãšã®éã空ããŠæžãããäžåããæã ã 以å€ã¯ããã±ãŒãã§é£çµãããã®ãæ®éã§ãããããã®éãèªåœ¢ã«å€åãåããããšã¯ãªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.5 æ¥å°Ÿäººç§°ä»£åè©ã®ä»ãã圢",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®è¡šããåè©ã«æ¥å°Ÿãã人称代åè©ã«ã€ããŠã® 9.4.1 ã®èšè¿°ãšç
§åãããšãäŸãã°æ¬¡ã®ããšãåãã(ããã§ã¯æ¥å°Ÿäººç§°ä»£åè©ãæ¥å°ŸèŸãšç¥ç§°ãã)ã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "(1) ×¢ÖŽ×ã×ֶת ã®å
šæ¥å°ŸèŸãš ×ÖµÖŒ×× ã®åæ°æ¥å°ŸèŸã¯ Ié¡ãããªãã¡åæ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "(2) ×¢ÖŽ× ã®èªå¹¹ã¯ ×¢ÖŽ×ÖŒ `imm- 6.4.2ã×ֶת ã®èªå¹¹ã¯ ×֎ת֌ 'itt- ã ãããããã㯠×Öµ×ãæ¯ãã×Öµ×ãå¿ããšååã®åè©ã§ã×ֶת 㯠×ֵת ã®é£èªåœ¢ã§ããã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(3) ×ÖµÖŒ×× ã®è€æ°æ¥å°ŸèŸãš ×Ö¶×ã×¢Ö·×ã×¢Ö·×ãתַ֌×ַת ã®å
šæ¥å°ŸèŸã¯IIé¡ãããªãã¡è€æ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "(4) åŸã£ãŠããããã®å眮è©ã«æ¥å°ŸèŸãä»ãã圢ã¯å®ã¯ *×ÖµÖŒ×× ÖŽ××ã*×Öµ×ÖŽ××ã*×¢Öž×ÖŽ××ã*×¢Öž×ÖŽ××ã*תַ֌×ְת֎֌×× ãšããè€æ°åè©ã«æ¥å°ŸèŸãä»ãã圢ã§ãããå®éããããããå°ãã ãããè€æ°é£èªåœ¢ã®ãã¡ã×Ö±×Öµ×ã×¢Ö²×Öµ×ã×¢Ö²×Öµ× ãšãã圢ã¯ãäž»ã«è©©æã«ããããã ×Ö¶×ã×¢Ö·×ã×¢Ö·× ãšåãæå³ãæ
ã£ãŠçšããããŠããããããã®è€æ°ç¬ç«åœ¢ãã ×Öµ×ã×¢Öž×ã×¢Öž× ãšããåæ°ç¬ç«åœ¢ãåæ§ããããã×Ö¶×ã×¢Ö·×ã×¢Ö·× ã¯ãããã®é£èªåœ¢ã§ããã(תַ֌×ַת ã«ã€ããŠã¯ãã»ãŽãŒã«åè©ãã®é
ã§è¿°ã¹ãã)",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "äºæå以äžã§æžãããå眮è©ã¯æ¬¡ã®èªãšã®éã空ããŠæžãããäžåããæã ã 以å€ã¯ããã±ãŒãã§é£çµãããã®ãæ®éã§ãããããã®éãèªåœ¢ã«å€åãåããããšã¯ãªãã",
"title": ""
}
]
| 11.5 æ¥å°Ÿäººç§°ä»£åè©ã®ä»ãã圢 ãã®è¡šããåè©ã«æ¥å°Ÿãã人称代åè©ã«ã€ããŠã® 9.4.1 ã®èšè¿°ãšç
§åãããšãäŸãã°æ¬¡ã®ããšãåããïŒããã§ã¯æ¥å°Ÿäººç§°ä»£åè©ãæ¥å°ŸèŸãšç¥ç§°ããïŒã (1) â×¢ÖŽ×âãâ×ֶתâ ã®å
šæ¥å°ŸèŸãš â×ÖµÖŒ××â ã®åæ°æ¥å°ŸèŸã¯ â
é¡ãããªãã¡åæ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã (2) â×¢ÖŽ×â ã®èªå¹¹ã¯ â×¢ÖŽ×ÖŒâ `imm- 6.4.2ãâ×ֶתâ ã®èªå¹¹ã¯ â×֎ת֌â 'itt- ã ãããããã㯠â×Öµ×âãæ¯ããâ×Öµ×âãå¿ããšååã®åè©ã§ãâ×ֶתâ 㯠â×ֵתâ ã®é£èªåœ¢ã§ããã (3) â×ÖµÖŒ××â ã®è€æ°æ¥å°ŸèŸãš ââ×Ö¶×ââãâ×¢Ö·×âãââ×¢Ö·×ââãââתַ֌×ַתââ ã®å
šæ¥å°ŸèŸã¯â
¡é¡ãããªãã¡è€æ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã (4) åŸã£ãŠããããã®å眮è©ã«æ¥å°ŸèŸãä»ãã圢ã¯å®ã¯ *â×ÖµÖŒ×× ÖŽ××âã*â×Öµ×ÖŽ××âã*ââ×¢Öž×ÖŽ××âã*ââ×¢Öž×ÖŽ××âã*ââתַ֌×ְת֎֌××â ãšããè€æ°åè©ã«æ¥å°ŸèŸãä»ãã圢ã§ãããå®éããããããå°ãã ãããè€æ°é£èªåœ¢ã®ãã¡ãâ×Ö±×Öµ×âãâ×¢Ö²×Öµ×âãâ×¢Ö²×Öµ×â ãšãã圢ã¯ãäž»ã«è©©æã«ããããã â×Ö¶×âãâ×¢Ö·×âãâ×¢Ö·×â ãšåãæå³ãæ
ã£ãŠçšããããŠããããããã®è€æ°ç¬ç«åœ¢ãã â×Öµ×âãâ×¢Öž×âãâ×¢Öž×â ãšããåæ°ç¬ç«åœ¢ãåæ§ãããããâ×Ö¶×âãâ×¢Ö·×âãâ×¢Ö·×â ã¯ãããã®é£èªåœ¢ã§ããã äºæå以äžã§æžãããå眮è©ã¯æ¬¡ã®èªãšã®éã空ããŠæžãããäžåããæã ââãââ 以å€ã¯ããã±ãŒãã§é£çµãããã®ãæ®éã§ãããããã®éãèªåœ¢ã«å€åãåããããšã¯ãªãã | 11.5 æ¥å°Ÿäººç§°ä»£åè©ã®ä»ãã圢
{| class="wikitable" style="text-align:center"
! colspan ="2" | !! ‏×¢ÖŽ×‏ !! ‏×ֶת‏ !! ‏×ÖµÖŒ××‎ !! ‏×Ö¶×‎ !! ‏×¢Ö·×‎ !! ‏×¢Ö·×‎ !! ‏תַ֌×ַת‎
|-
! rowspan="5" | åæ° !! äžäººç§°
| ‏×¢ÖŽ×ÖŽÖŒ×‏|| ‏×֎ת֎֌×‎ || ‏×ÖµÖŒ×× ÖŽ×‎ || ‏×Öµ×Ö·×‎ || ‏×¢Öž×Ö·×‎ || ‏×¢Öž×Ö·×‎ || ‏תַ֌×ְתַ֌×‎
|-
! äºäººç§°ç·æ§
| ‏×¢ÖŽ×Ö°ÖŒ×Öž‏|| ‏×֎תְ֌×Öž‎ || ‏×ÖµÖŒ×× Ö°×Öž‎ || ‏×Öµ×Ö¶Ö«××Öž‎ || ‏×¢Öž×Ö¶Ö«××Öž‎ || ‏×¢Öž×Ö¶Ö«××Öž‎ || ‏תַ֌×ְתֶ֌֫××Öž‎
|-
! äºäººç§°å¥³æ§
| ‏×¢ÖŽ×ÖžÖŒ×Ö°‏|| ‏×֎ת֞֌×Ö°‎ || ‏×ÖµÖŒ×× Öµ×Ö°‎ || ‏×Öµ×Ö·Ö«×ÖŽ×Ö°‎ || ‏×¢Öž×Ö·Ö«×ÖŽ×Ö°‎ || ‏×¢Öž×Ö·Ö«×ÖŽ×Ö°‎ || ‏תַ֌×ְתַ֌֫×ÖŽ×Ö°‎
|-
! äžäººç§°ç·æ§
| ‏×¢ÖŽ×ÖŒ×Ö¹‎|| ‏×֎ת֌×Ö¹‎ || ‏×ÖµÖŒ×× ×Ö¹‎ || ‏×Öµ×Öž××‎ || ‏×¢Öž×Öž××‎ || ‏×¢Öž×Öž××‎ || ‏תַ֌×ְת֞֌××‎
|-
! äžäººç§°å¥³æ§
| ‏×¢ÖŽ×ÖžÖŒ×ÖŒ‎|| ‏×֎ת֞֌×ÖŒ‎ || ‏×ÖµÖŒ×× Öž×ÖŒ‎ || ‏×Öµ×Ö¶Ö«××Öž‎ || ‏×¢Öž×Ö¶Ö«××Öž‎ || ‏×¢Öž×Ö¶Ö«××Öž‎ || ‏ת֞֌×ְתֶ֌֫××Öž‎
|-
! rowspan="5" | è€æ° !! äžäººç§°
|‏×¢ÖŽ×ÖžÖŒÖ«× ×ÖŒ‎|| ‏×ÖŽ×ªÖžÖŒÖ«× ×ÖŒ‎ || ‏×ÖµÖŒ×× ÖµÖ«×× ×ÖŒ‎ || ‏×Öµ×ÖµÖ«×× ×ÖŒ‎ || ‏×¢Öž×ÖµÖ«×× ×ÖŒ‎ || ‏×¢Öž×ÖµÖ«×× ×ÖŒ‎ || ‏תַ֌×ְתֵ֌֫×× ×ÖŒ‎
|-
! äºäººç§°ç·æ§
|‏×¢ÖŽ×ÖžÖŒ×Ö¶×‎|| ‏×֎תְ֌×Ö¶×‎ || ‏×ÖµÖŒ×× Öµ××Ö¶×‎ || ‏×Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏×¢Öž×Öµ××Ö¶×‎ || ‏תַ֌×ְתֵ֌××Ö¶×‎
|-
! äºäººç§°å¥³æ§
| ‏×¢ÖŽ×ÖžÖŒ×Ö¶×‎|| ‏×֎תְ֌×Ö¶×‎ || ‏×ÖµÖŒ×× Öµ××Ö¶×‎ || ‏×Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏תַ֌×ְתֵ֌××Ö¶×‎
|-
! äžäººç§°ç·æ§
| ‏×¢ÖŽ×ÖžÖŒ×‎|| ‏×֎ת֞֌×‎ || ‏×ÖµÖŒ×× Öµ××Ö¶×‎ || ‏×Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏תַ֌×ְתֵ֌××Ö¶×‎
|-
! äžäººç§°å¥³æ§
| ‏×¢ÖŽ×ÖžÖŒ×‎|| ‏×֎ת֞֌×‎ || ‏×ÖµÖŒ×× Öµ××Ö¶×‎ || ‏×Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏×¢Ö²×Öµ××Ö¶×‎ || ‏תַ֌×ְתֵ֌××Ö¶×‎
|}
ãã®è¡šããåè©ã«æ¥å°Ÿãã人称代åè©ã«ã€ããŠã® [[èæžããã©ã€èªå
¥é/æ¥å°Ÿäººç§°ä»£åè©/æ¥å°Ÿäººç§°ä»£åè©/æ¥å°Ÿäººç§°ä»£åè©ã«ããåè©ã®èªåœ¢å€å|9.4.1]] ã®èšè¿°ãšç
§åãããšãäŸãã°æ¬¡ã®ããšãåããïŒããã§ã¯æ¥å°Ÿäººç§°ä»£åè©ãæ¥å°ŸèŸãšç¥ç§°ããïŒã
(1) ‏×¢ÖŽ×‎ã‏×ֶת‎ ã®å
šæ¥å°ŸèŸãš ‏×ÖµÖŒ××‎ ã®åæ°æ¥å°ŸèŸã¯ â
é¡ãããªãã¡åæ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã
(2) ‏×¢ÖŽ×‎ ã®èªå¹¹ã¯ ‏×¢ÖŽ×ÖŒ‎ `imm- [[èæžããã©ã€èªå
¥é/è€æ°/女æ§åœ¢ã»è€æ°åœ¢ã®åœ¢æ#6.4.2|6.4.2]]ã‏×ֶת‎ ã®èªå¹¹ã¯ ‏×֎ת֌‏ 'itt- ã ãããããã㯠‏×Öµ×‎ãæ¯ãã‏×Öµ×‎ãå¿ããšååã®åè©ã§ã‏×ֶת‎ 㯠‏×ֵת‎ ã®é£èªåœ¢ã§ããã
(3) ‏×ÖµÖŒ××‎ ã®è€æ°æ¥å°ŸèŸãš ‏â×Ö¶×â‎ã‏×¢Ö·×‎ã‏â×¢Ö·×â‎ã‏âתַ֌×ַתâ‎ ã®å
šæ¥å°ŸèŸã¯â
¡é¡ãããªãã¡è€æ°åè©ã«ä»ãæ¥å°ŸèŸã§ããã
(4) åŸã£ãŠããããã®å眮è©ã«æ¥å°ŸèŸãä»ãã圢ã¯å®ã¯ *‏×ÖµÖŒ×× ÖŽ××‎ã*‏×Öµ×ÖŽ××‎ã*‏â×¢Öž×ÖŽ××‎ã*‏â×¢Öž×ÖŽ××‎ã*‏âתַ֌×ְת֎֌××‎ ãšããè€æ°åè©ã«æ¥å°ŸèŸãä»ãã圢ã§ãããå®éããããããå°ãã ãããè€æ°é£èªåœ¢ã®ãã¡ã‏×Ö±×Öµ×‎ã‏×¢Ö²×Öµ×‎ã‏×¢Ö²×Öµ×‎ ãšãã圢ã¯ãäž»ã«è©©æã«ããããã ‏×Ö¶×‎ã‏×¢Ö·×‎ã‏×¢Ö·×‎ ãšåãæå³ãæ
ã£ãŠçšããããŠããããããã®è€æ°ç¬ç«åœ¢ãã ‏×Öµ×‎ã‏×¢Öž×‎ã‏×¢Öž×‎ ãšããåæ°ç¬ç«åœ¢ãåæ§ããããã‏×Ö¶×‎ã‏×¢Ö·×‎ã‏×¢Ö·×‎ ã¯ãããã®é£èªåœ¢ã§ãããïŒ‏âתַ֌×ַתâ‎ ã«ã€ããŠã¯ãã»ãŽãŒã«åè©ãã®é
ã§è¿°ã¹ããïŒ
äºæå以äžã§æžãããå眮è©ã¯æ¬¡ã®èªãšã®éã空ããŠæžãããäžåããæã ‏‎ã‏‎ 以å€ã¯[[èæžããã©ã€èªå
¥é/é³ç¯æ§é ã»ã¢ã¯ã»ã³ãã»ã·ã§ã¯ãŒ/ã¢ã¯ã»ã³ã/ããã±ãŒã|ããã±ãŒã]]ã§é£çµãããã®ãæ®éã§ãããããã®éãèªåœ¢ã«å€åãåããããšã¯ãªãã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:34Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E6%8E%A5%E5%B0%BE%E4%BA%BA%E7%A7%B0%E4%BB%A3%E5%90%8D%E8%A9%9E%E3%81%AE%E4%BB%98%E3%81%84%E3%81%9F%E5%BD%A2 |
25,044 | ç宀å
žç¯ | æ³åŠ>ç宀æ³>ã³ã³ã¡ã³ã¿ãŒã«>ç宀å
žç¯
ç宀å
žç¯(æå22幎æ³åŸç¬¬3å·ãæçµæ¹æ£:å¹³æ29幎æ³åŸç¬¬63å·)ã®éæ¡è§£èª¬æžãæ¬æ¥ã®æ³æã«ã¯èŠåºããéãããŠããªããããè¡æ²è³95å·(å¹³æ29幎6æ)ã第äžç« (倩ç)ãã«é¢ããè³æ(PDF)ãã®ãè³æ5 åç
§æ¡æããåèã«åæ¡ã«èŠåºããéããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³åŠ>ç宀æ³>ã³ã³ã¡ã³ã¿ãŒã«>ç宀å
žç¯",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç宀å
žç¯(æå22幎æ³åŸç¬¬3å·ãæçµæ¹æ£:å¹³æ29幎æ³åŸç¬¬63å·)ã®éæ¡è§£èª¬æžãæ¬æ¥ã®æ³æã«ã¯èŠåºããéãããŠããªããããè¡æ²è³95å·(å¹³æ29幎6æ)ã第äžç« (倩ç)ãã«é¢ããè³æ(PDF)ãã®ãè³æ5 åç
§æ¡æããåèã«åæ¡ã«èŠåºããéããŠããã",
"title": ""
}
]
| æ³åŠïŒç宀æ³ïŒã³ã³ã¡ã³ã¿ãŒã«ïŒç宀å
žç¯ ç宀å
žç¯ã®éæ¡è§£èª¬æžãæ¬æ¥ã®æ³æã«ã¯èŠåºããéãããŠããªããããè¡æ²è³95å·ïŒå¹³æ29幎6æïŒã第äžç« ïŒå€©çïŒãã«é¢ããè³æ(PDF)ãã®ãè³æ5 åç
§æ¡æããåèã«åæ¡ã«èŠåºããéããŠããã | [[æ³åŠ]]ïŒ[[ç宀æ³]]ïŒ[[ã³ã³ã¡ã³ã¿ãŒã«]]ïŒ[[ç宀å
žç¯]]
ç宀å
žç¯ïŒæå22幎æ³åŸç¬¬3å·ãæçµæ¹æ£ïŒå¹³æ29幎æ³åŸç¬¬63å·ïŒã®éæ¡è§£èª¬æžã</br>æ¬æ¥ã®æ³æã«ã¯èŠåºããéãããŠããªãããã[http://www.shugiin.go.jp/internet/itdb_kenpou.nsf/html/kenpou/shukenshi095.pdf/$File/shukenshi095.pdf è¡æ²è³95å·ïŒå¹³æ29幎6æïŒã第äžç« ïŒå€©çïŒãã«é¢ããè³æ(PDF)]ãã®ãè³æ5 åç
§æ¡æããåèã«åæ¡ã«èŠåºããéããŠãã<ref>{{Cite web |url=http://www.shugiin.go.jp/internet/itdb_kenpou.nsf/html/kenpou/shukenshi.htm |title=è¡æ²è³ |website=æ²æ³å¯©æ»äŒ |publisher=è¡è°é¢ |accessdate=2021-02-21}}</ref>ã
{{Wikipedia|ç宀å
žç¯}}
==第1ç« çäœç¶æ¿ïŒç¬¬1æ¡ïœç¬¬4æ¡ïŒ==
:[[ç宀å
žç¯ç¬¬1æ¡|第1æ¡]]ãç·ç³»äž»çŸ©ã
:[[ç宀å
žç¯ç¬¬2æ¡|第2æ¡]]ãé åºã
:[[ç宀å
žç¯ç¬¬3æ¡|第3æ¡]]ãé åºã®å€æŽã
:[[ç宀å
žç¯ç¬¬4æ¡|第4æ¡]]ãå³äœã
==第2ç« çæïŒç¬¬5æ¡ïœç¬¬15æ¡ïŒ==
:[[ç宀å
žç¯ç¬¬5æ¡|第5æ¡]]ãçæã®ç¯å²ã
:[[ç宀å
žç¯ç¬¬6æ¡|第6æ¡]]ã芪çã»å
芪çã»çã»å¥³çã
:[[ç宀å
žç¯ç¬¬7æ¡|第7æ¡]]
:[[ç宀å
žç¯ç¬¬8æ¡|第8æ¡]]ãç倪åã»ç倪å«ã
:[[ç宀å
žç¯ç¬¬9æ¡|第9æ¡]]ãé€åã®çŠæ¢ã
:[[ç宀å
žç¯ç¬¬10æ¡|第10æ¡]]ãç«ååã³å©å§»ã
:[[ç宀å
žç¯ç¬¬11æ¡|第11æ¡]]ãçæã®èº«åã®é¢è±ã
:[[ç宀å
žç¯ç¬¬12æ¡|第12æ¡]]
:[[ç宀å
žç¯ç¬¬13æ¡|第13æ¡]]
:[[ç宀å
žç¯ç¬¬14æ¡|第14æ¡]]
:[[ç宀å
žç¯ç¬¬15æ¡|第15æ¡]]ãäžè¬äººã®çæèº«åã®ååŸã
==第3ç« ææ¿ïŒç¬¬16æ¡ïœç¬¬21æ¡ïŒ==
:[[ç宀å
žç¯ç¬¬16æ¡|第16æ¡]]ãèšçœ®äºç±ã
:[[ç宀å
žç¯ç¬¬17æ¡|第17æ¡]]ã就任ã®è³æ Œåã³é åºã
:[[ç宀å
žç¯ç¬¬18æ¡|第18æ¡]]ã就任é åºã®å€æŽã
:[[ç宀å
žç¯ç¬¬19æ¡|第19æ¡]]ãé åºå€æŽäºç±äºåŸæ¶æ»
ã®å¹æã
:[[ç宀å
žç¯ç¬¬20æ¡|第20æ¡]]ãææ¿å»æ¢ã
:[[ç宀å
žç¯ç¬¬21æ¡|第21æ¡]]ã蚎远ã®å¶éã
==第4ç« æå¹Žãæ¬ç§°ãå³äœã®ç€Œã倧åªã®ç€Œãççµ±èåã³éµå¢ïŒç¬¬22æ¡ïœç¬¬27æ¡ïŒ==
:[[ç宀å
žç¯ç¬¬22æ¡|第22æ¡]]ãæå¹Žã
:[[ç宀å
žç¯ç¬¬23æ¡|第23æ¡]]ãæ¬ç§°ã
:[[ç宀å
žç¯ç¬¬24æ¡|第24æ¡]]ãå³äœã®ç€Œã
:[[ç宀å
žç¯ç¬¬25æ¡|第25æ¡]]ã倧åªã®ç€Œã
:[[ç宀å
žç¯ç¬¬26æ¡|第26æ¡]]ãççµ±èã
:[[ç宀å
žç¯ç¬¬27æ¡|第27æ¡]]ãéµå¢ã
==第5ç« ç宀äŒè°ïŒç¬¬28æ¡ïœç¬¬37æ¡ïŒ==
:[[ç宀å
žç¯ç¬¬28æ¡|第28æ¡]]ãçµç¹ã
:[[ç宀å
žç¯ç¬¬29æ¡|第29æ¡]]ãè°é·ã
:[[ç宀å
žç¯ç¬¬30æ¡|第30æ¡]]ãäºåè°å¡ã
:[[ç宀å
žç¯ç¬¬31æ¡|第31æ¡]]ãè¡è°é¢è§£æ£ã®å Žåã®ç¹äŸã
:[[ç宀å
žç¯ç¬¬32æ¡|第32æ¡]]ãè°å¡åã³äºåè°å¡ã®ä»»æã
:[[ç宀å
žç¯ç¬¬33æ¡|第33æ¡]]ãæéã
:[[ç宀å
žç¯ç¬¬34æ¡|第34æ¡]]ãå®è¶³æ°ã
:[[ç宀å
žç¯ç¬¬35æ¡|第35æ¡]]ãè°æ±ºæ¹æ³ã
:[[ç宀å
žç¯ç¬¬36æ¡|第36æ¡]]ã逿¥ã
:[[ç宀å
žç¯ç¬¬37æ¡|第37æ¡]]ãæš©éã
==éå==
<!--æåäºåäºå¹Žæ³åŸç¬¬äžå·-->
<!--
===éåïŒæåäºåå¹Žäºæäžäžæ¥æ³åŸç¬¬äžäžåå·ïŒ æ===
-->
<!--
===éåïŒå¹³æäžåäžå¹Žåæäžåæ¥æ³åŸç¬¬ããå·ïŒ===
-->
==èæ³š==
{{reflist}}
==å€éšãªã³ã¯==
*[https://elaws.e-gov.go.jp/document?lawid=322AC0000000003 ç宀å
žç¯] | [[w:e-Govæ³ä»€æ€çŽ¢|e-Govæ³ä»€æ€çŽ¢]]
[[Category:ç宀å
žç¯|*]]
[[Category:ã³ã³ã¡ã³ã¿ãŒã«|ãããã€ãŠãã¯ã]] | null | 2021-02-21T10:09:31Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Reflist",
"ãã³ãã¬ãŒã:Cite web"
]
| https://ja.wikibooks.org/wiki/%E7%9A%87%E5%AE%A4%E5%85%B8%E7%AF%84 |
25,046 | ç宀å
žç¯ç¬¬2æ¡ | ãçæãã«ã€ããŠã¯ç¬¬2ç« ã§å®ããããŠããããæ¬æ¡ã¯ããã«å
ç«ã£ãŠçäœç¶æ¿é äœãèŠå®ããŠãããæ§ç宀å
žç¯ãšç°ãªãéå«¡åºåã¯çæãšãããªãããçŽç³»ã»é·ç³»ãåªå
ãåçå
ã§ã¯å¹Žé·è
ãåªå
ãããšããèãæ¹ã¯æ§ç宀å
žç¯ãšåãã§ãã
ãçé·åãã¯å€©ç(ãã®æç¹ã§çäœã«ãã倩ç)ã®é·ç·ããçé·å«ãã¯çé·åã®é·ç·ããåå«ãã¯ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçæ¬¡åãã¯å€©çã®æ¬¡ç·ããçåå«ãã¯å€©çã®ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçå
åŒãã¯å€©çã®å
ãŸãã¯åŒããç䌯åç¶ãã¯å€©çã®äŒ¯ç¶ãŸãã¯äŒ¯ç¶ã®ããšãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãçæãã«ã€ããŠã¯ç¬¬2ç« ã§å®ããããŠããããæ¬æ¡ã¯ããã«å
ç«ã£ãŠçäœç¶æ¿é äœãèŠå®ããŠãããæ§ç宀å
žç¯ãšç°ãªãéå«¡åºåã¯çæãšãããªãããçŽç³»ã»é·ç³»ãåªå
ãåçå
ã§ã¯å¹Žé·è
ãåªå
ãããšããèãæ¹ã¯æ§ç宀å
žç¯ãšåãã§ãã",
"title": "解説"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãçé·åãã¯å€©ç(ãã®æç¹ã§çäœã«ãã倩ç)ã®é·ç·ããçé·å«ãã¯çé·åã®é·ç·ããåå«ãã¯ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçæ¬¡åãã¯å€©çã®æ¬¡ç·ããçåå«ãã¯å€©çã®ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçå
åŒãã¯å€©çã®å
ãŸãã¯åŒããç䌯åç¶ãã¯å€©çã®äŒ¯ç¶ãŸãã¯äŒ¯ç¶ã®ããšãããã",
"title": "解説"
}
]
| null | {{Pathnav|æ³åŠ|ç宀æ³|ç宀å
žç¯||frame=1}}
== æ¡æ ==
; 第2æ¡
# çäœã¯ãå·Šã®é åºã«ãããçæã«ããããäŒããã
## çé·å
## çé·å«
## ãã®ä»ã®çé·åã®åå«
## çæ¬¡ååã³ãã®åå«
## ãã®ä»ã®çåå«
## çå
åŒåã³ãã®åå«
## ç䌯åç¶åã³ãã®åå«
# åé
åå·ã®çæããªããšãã¯ãçäœã¯ããã以äžã§ãæè¿èŠªã®ç³»çµ±ã®çæã«ããããäŒããã
# å2é
ã®å Žåã«ãããŠã¯ãé·ç³»ãå
ã«ããåçå
ã§ã¯ãé·ãå
ã«ããã
=== æ§ç宀å
žç¯ ===
; 第2æ¡
: çäœãçé·åãå³ã
; 第3æ¡
: çé·ååšã©ãµã«ãããçé·å«ãå³ãçé·ååå
¶ãåå«çåšã©ãµã«ãããçæ¬¡ååå
¶ãåå«ãå³ã以äžçä¹ãäŸã¹
; 第4æ¡
: çåå«ãçäœã²ç¹Œæ¿ã¹ã«ãå«¡åºã²å
ãã¹ç庶åå«ãçäœã²ç¹Œæ¿ã¹ã«ãçå«¡åå«çåšã©ãµã«ãããéã«
; 第5æ¡
: çåå«çåšã©ãµã«ãããçå
åŒåå
¶ãåå«ãå³ã
; 第6æ¡
: çå
åŒåå
¶ãåå«çåšã©ãµã«ãããç䌯åç¶åå
¶ãåå«ãå³ã
; 第7æ¡
: ç䌯åç¶åå
¶ãåå«çåšã©ãµã«ãããå
¶ã以äžãæŒãæè¿èŠªãçæãå³ã
; 第8æ¡
: çå
åŒä»¥äžãåçå
ãæŒãå«¡ã²å
ãã·åº¶ã²åŸãã·é·ã²å
ãã·å¹Œã²åŸãã¹
== 解説 ==
ã[[w:çæ|çæ]]ãã«ã€ããŠã¯ç¬¬2ç« ã§å®ããããŠããããæ¬æ¡ã¯ããã«å
ç«ã£ãŠ[[w:çäœç¶æ¿é äœ|çäœç¶æ¿é äœ]]ãèŠå®ããŠããã[[w:ç宀å
žç¯ (1889幎)|æ§ç宀å
žç¯]]ãšç°ãªã[[w:å«¡åº|éå«¡åºå]]ã¯çæãšãããªãããçŽç³»ã»é·ç³»ãåªå
ãåçå
ã§ã¯å¹Žé·è
ãåªå
ãããšããèãæ¹ã¯æ§ç宀å
žç¯ãšåãã§ãã
ãçé·åãã¯[[w:ä»äžå€©ç|倩ç]]ïŒãã®æç¹ã§[[w:çäœ|çäœ]]ã«ãã[[w:倩ç|倩ç]]ïŒã®é·ç·ããçé·å«ãã¯çé·åã®é·ç·ããåå«ãã¯ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçæ¬¡åãã¯å€©çã®æ¬¡ç·ããçåå«ãã¯å€©çã®ç·ç³»ç·åã®æŸå«ä»¥äžã®è
ããçå
åŒãã¯å€©çã®å
ãŸãã¯åŒããç䌯åç¶ãã¯å€©çã®äŒ¯ç¶ãŸãã¯äŒ¯ç¶ã®ããšãããã
== èæ³š ==
{{reflist}}
== åèæç® ==
* {{Cite book |åæž |author1=[[w:èŠéšä¿¡å|èŠéšä¿¡å]] |author2=[[w:é«èŠåå©|é«èŠåå©]]ç·šè |date=1990-09-28 |title=ç宀å
žç¯ ãæå22幎ã |publisher=[[w:信山瀟åºç|信山瀟åºç]] |isbn=9784882612001}}
* {{Cite book |åæž |author=[[w:åéšéžå€«|åéšéžå€«]] |date=2002-04-10 |title=çå®€æ³æŠè« ââç宀å¶åºŠã®æ³çãšéçšââ |publisher=[[w:ç¬¬äžæ³èŠåºç|ç¬¬äžæ³èŠåºç]] |isbn=9784474016859}}
{{stub}}
{{ååŸ
|[[ç宀å
žç¯]]
|第1ç« çäœç¶æ¿
|[[ç宀å
žç¯ç¬¬1æ¡]]
|[[ç宀å
žç¯ç¬¬3æ¡]]
}}
[[category:ç宀å
žç¯|002]] | null | 2022-12-30T03:50:48Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Reflist",
"ãã³ãã¬ãŒã:Cite book",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:ååŸ"
]
| https://ja.wikibooks.org/wiki/%E7%9A%87%E5%AE%A4%E5%85%B8%E7%AF%84%E7%AC%AC2%E6%9D%A1 |
25,050 | èæžããã©ã€èªå
¥é/å眮è©(2)/×Öµ×©× ×Öµ×× | 11.6 ×Öµ×©× ×Öµ××
×Öµ×©× ã¯ãååšããæå³ããèªã§ãè¿°éšã®åãããããã®äž»éšããªãåè©å¥ã«ãã£ãŠè¡šããããã®ãçŸã«ååšããããšã瀺ãããããææ³çã«ã¿ãŠåè©ã§ã¯ãªããéå»ãšãæªæ¥ãšãã£ãæå¶ã®æå³ãå«ãŸããçºè©±ã®æç¹ã«ãããŠååšããããšãèšãã ãã ããããããããããååšãããã®ããã«èš³ããä»ã¯ãªããèæžã§ã¯äŒè©±ãšããäžè¬çççãè¿°ã¹ãç¥æµæåŠã«å€ãçŸããã®ãããã®ããã§ãããããã®ç¹ã§ã×Öµ×©× ãå«ãŸãªãåè©æãäŸãã° æ2 ããéå»ã®ç©èªã®æèã«ããããŠããã°ããã«äŸåããŠãã...倧ããªç³ããã£ãããšèš³ããªããã°ãªããªãã®ãšã¯ãäºæ
ãç°ã«ããã
×Öµ×©× ã«å¯Ÿã ×Öµ×× ã¯ãã®åŠå®ãããªãã¡ãéååšããæå³ããã×Öµ×©× ã ×Öµ×× ã«çœ®ãæãããšãååšã®åŠå®ã衚ãããã§ããã
åè©æã®è¿°èªãšããŠæ©èœããããäžè¬ã®åè©ã®ããã«æ§ã»æ°ã»å®âäžå®ã«é¢ããŠå€åããããšã¯ãªããäŸãã°
×Öµ×©× ×Ö¶Ö«×Ö¶×Ö°ãããäžäººã®çãããã
×Öµ×©× ×ַ֌֫×֎תãããäžè»ã®å®¶ãããã
×Öµ×©× × Ö·×¢Ö²×šÖž×ãäžäººã®è¥ã女ãããã
×Öµ×©× ×Ö°×Öž×ÖŽ××ãäœäººãã®çãããã
×Öµ×©× ×¢Öµ×ŠÖŽ××ãäœæ¬ãæš¹ãããã
×Öµ×× ×Ö¶Ö«×Ö¶×Ö°ãäžäººã®çãããªãã
×Öµ×× × Öž×©ÖŽ×××ã女ãã¡ã¯ããªãã
äŸ6, 7 ã®ããã«å眮è©å¥ãå«ãæã«çŸããããšãå€ãã
×Öž×Öµ× ×Öµ×©× ×××× ×Ö·ÖŒ×֞֌ק×Ö¹× ×Ö·×Ö¶ÖŒ×ãæ¬åœã«ãã®å Žæã«ã¯ã€ããŠã§ãå±
絊ãã
×Öµ×× ×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒãæã
ã«ã¯çãç¡ãã
èæžã« ×Öµ×× ã¯ 800 åè¿ãçŸããã®ã«å¯Ÿãã×Öµ×©× ã¯ 140 åããçŸããªããååšãããšããããšã¯ã×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒãæã
ã«ã¯çããããã®ããã« ×Öµ×©× ãªãã§ã衚ãããããã©ããååšããªããšããããšã¯ ×Öµ×× ä»¥å€ã«è¡šçŸã®æ¹æ³ãç¡ãããã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.6 ×Öµ×©× ×Öµ××",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "×Öµ×©× ã¯ãååšããæå³ããèªã§ãè¿°éšã®åãããããã®äž»éšããªãåè©å¥ã«ãã£ãŠè¡šããããã®ãçŸã«ååšããããšã瀺ãããããææ³çã«ã¿ãŠåè©ã§ã¯ãªããéå»ãšãæªæ¥ãšãã£ãæå¶ã®æå³ãå«ãŸããçºè©±ã®æç¹ã«ãããŠååšããããšãèšãã ãã ããããããããããååšãããã®ããã«èš³ããä»ã¯ãªããèæžã§ã¯äŒè©±ãšããäžè¬çççãè¿°ã¹ãç¥æµæåŠã«å€ãçŸããã®ãããã®ããã§ãããããã®ç¹ã§ã×Öµ×©× ãå«ãŸãªãåè©æãäŸãã° æ2 ããéå»ã®ç©èªã®æèã«ããããŠããã°ããã«äŸåããŠãã...倧ããªç³ããã£ãããšèš³ããªããã°ãªããªãã®ãšã¯ãäºæ
ãç°ã«ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "×Öµ×©× ã«å¯Ÿã ×Öµ×× ã¯ãã®åŠå®ãããªãã¡ãéååšããæå³ããã×Öµ×©× ã ×Öµ×× ã«çœ®ãæãããšãååšã®åŠå®ã衚ãããã§ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åè©æã®è¿°èªãšããŠæ©èœããããäžè¬ã®åè©ã®ããã«æ§ã»æ°ã»å®âäžå®ã«é¢ããŠå€åããããšã¯ãªããäŸãã°",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "×Öµ×©× ×Ö¶Ö«×Ö¶×Ö°ãããäžäººã®çãããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "×Öµ×©× ×ַ֌֫×֎תãããäžè»ã®å®¶ãããã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "×Öµ×©× × Ö·×¢Ö²×šÖž×ãäžäººã®è¥ã女ãããã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "×Öµ×©× ×Ö°×Öž×ÖŽ××ãäœäººãã®çãããã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "×Öµ×©× ×¢Öµ×ŠÖŽ××ãäœæ¬ãæš¹ãããã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "×Öµ×× ×Ö¶Ö«×Ö¶×Ö°ãäžäººã®çãããªãã",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "×Öµ×× × Öž×©ÖŽ×××ã女ãã¡ã¯ããªãã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äŸ6, 7 ã®ããã«å眮è©å¥ãå«ãæã«çŸããããšãå€ãã",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "×Öž×Öµ× ×Öµ×©× ×××× ×Ö·ÖŒ×֞֌ק×Ö¹× ×Ö·×Ö¶ÖŒ×ãæ¬åœã«ãã®å Žæã«ã¯ã€ããŠã§ãå±
絊ãã",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "×Öµ×× ×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒãæã
ã«ã¯çãç¡ãã",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "èæžã« ×Öµ×× ã¯ 800 åè¿ãçŸããã®ã«å¯Ÿãã×Öµ×©× ã¯ 140 åããçŸããªããååšãããšããããšã¯ã×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒãæã
ã«ã¯çããããã®ããã« ×Öµ×©× ãªãã§ã衚ãããããã©ããååšããªããšããããšã¯ ×Öµ×× ä»¥å€ã«è¡šçŸã®æ¹æ³ãç¡ãããã§ããã",
"title": ""
}
]
| 11.6 â×ֵש×â â×Öµ××â â×ֵש×â ã¯ãååšããæå³ããèªã§ãè¿°éšã®åãããããã®äž»éšããªãåè©å¥ã«ãã£ãŠè¡šããããã®ãçŸã«ååšããããšã瀺ãããããææ³çã«ã¿ãŠåè©ã§ã¯ãªããéå»ãšãæªæ¥ãšãã£ãæå¶ã®æå³ãå«ãŸããçºè©±ã®æç¹ã«ãããŠååšããããšãèšãã ãã ããããããããããååšãããã®ããã«èš³ããä»ã¯ãªããèæžã§ã¯äŒè©±ãšããäžè¬çççãè¿°ã¹ãç¥æµæåŠã«å€ãçŸããã®ãããã®ããã§ãããããã®ç¹ã§ãâ×ֵש×â ãå«ãŸãªãåè©æãäŸãã° æ2 ããéå»ã®ç©èªã®æèã«ããããŠããã°ããã«äŸåããŠããâŠå€§ããªç³ããã£ãããšèš³ããªããã°ãªããªãã®ãšã¯ãäºæ
ãç°ã«ããã â×ֵש×â ã«å¯Ÿã â×Öµ××â ã¯ãã®åŠå®ãããªãã¡ãéååšããæå³ãããâ×ֵש×â ã â×Öµ××â ã«çœ®ãæãããšãååšã®åŠå®ã衚ãããã§ããã åè©æã®è¿°èªãšããŠæ©èœããããäžè¬ã®åè©ã®ããã«æ§ã»æ°ã»å®âäžå®ã«é¢ããŠå€åããããšã¯ãªããäŸãã° â×Öµ×©× ×Ö¶Ö«×Ö¶×Ö°âãããäžäººã®çãããã â×Öµ×©× ×ַ֌֫×֎תâãããäžè»ã®å®¶ãããã â×Öµ×©× × Ö·×¢Ö²×šÖž×âãäžäººã®è¥ã女ãããã â×Öµ×©× ×Ö°×Öž×ÖŽ××âãäœäººãã®çãããã â×Öµ×©× ×¢Öµ×ŠÖŽ××âãäœæ¬ãæš¹ãããã â×Öµ×× ×Ö¶Ö«×Ö¶×Ö°âãäžäººã®çãããªãã â×Öµ×× × Öž×©ÖŽ×××âã女ãã¡ã¯ããªãã äŸ6, 7 ã®ããã«å眮è©å¥ãå«ãæã«çŸããããšãå€ãã â×Öž×Öµ× ×Öµ×©× ×××× ×Ö·ÖŒ×֞֌ק×Ö¹× ×Ö·×Ö¶ÖŒ×âãæ¬åœã«ãã®å Žæã«ã¯ã€ããŠã§ãå±
絊ãã â×Öµ×× ×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒâãæã
ã«ã¯çãç¡ãã èæžã« â×Öµ××â 㯠800 åè¿ãçŸããã®ã«å¯Ÿããâ×ֵש×â 㯠140 åããçŸããªããååšãããšããããšã¯ãâ×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒâãæã
ã«ã¯çããããã®ããã« â×ֵש×â ãªãã§ã衚ãããããã©ããååšããªããšããããšã¯ â×Öµ××â 以å€ã«è¡šçŸã®æ¹æ³ãç¡ãããã§ããã | 11.6 ‏×ֵש×‎ ‏×Öµ××‎
‏×ֵש×‎ ã¯ãååšããæå³ããèªã§ãè¿°éšã®åãããããã®äž»éšããªãåè©å¥ã«ãã£ãŠè¡šããããã®ãçŸã«ååšããããšã瀺ãããããææ³çã«ã¿ãŠåè©ã§ã¯ãªããéå»ãšãæªæ¥ãšãã£ãæå¶ã®æå³ãå«ãŸããçºè©±ã®æç¹ã«ãããŠååšããããšãèšãã ãã ããããããããããååšãããã®ããã«èš³ããä»ã¯ãªããèæžã§ã¯äŒè©±ãšããäžè¬çççãè¿°ã¹ã[[w:%E7%9F%A5%E6%81%B5%E6%96%87%E5%AD%A6|ç¥æµæåŠ]]ã«å€ãçŸããã®ãããã®ããã§ãããããã®ç¹ã§ã‏×ֵש×‎ ãå«ãŸãªãåè©æãäŸãã° [[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ2|æ2 ]]ããéå»ã®ç©èªã®æèã«ããããŠããã°ããã«äŸåããŠããâŠå€§ããªç³ããã£ãããšèš³ããªããã°ãªããªãã®ãšã¯ãäºæ
ãç°ã«ããã
‏×ֵש×‎ ã«å¯Ÿã ‏×Öµ××‎ ã¯ãã®åŠå®ãããªãã¡ãéååšããæå³ããã‏×ֵש×‎ ã ‏×Öµ××‎ ã«çœ®ãæãããšãååšã®åŠå®ã衚ãããã§ããã
åè©æã®è¿°èªãšããŠæ©èœããããäžè¬ã®åè©ã®ããã«æ§ã»æ°ã»å®âäžå®ã«é¢ããŠå€åããããšã¯ãªããäŸãã°
‏×Öµ×©× ×Ö¶Ö«×Ö¶×Ö°‎ãããäžäººã®çãããã
‏×Öµ×©× ×ַ֌֫×֎ת‎ãããäžè»ã®å®¶ãããã
‏×Öµ×©× × Ö·×¢Ö²×šÖž×‎ãäžäººã®è¥ã女ãããã
‏×Öµ×©× ×Ö°×Öž×ÖŽ××‎ãäœäººãã®çãããã
‏×Öµ×©× ×¢Öµ×ŠÖŽ××‎ãäœæ¬ãæš¹ãããã
‏×Öµ×× ×Ö¶Ö«×Ö¶×Ö°‎ãäžäººã®çãããªãã
‏×Öµ×× × Öž×©ÖŽ×××‎ã女ãã¡ã¯ããªãã
[[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ6|äŸ6]], [[èæžããã©ã€èªå
¥é/å眮è©(2)/äŸæ#11.1.æ7|7 ]]ã®ããã«å眮è©å¥ãå«ãæã«çŸããããšãå€ãã
‏×Öž×Öµ× ×Öµ×©× ×××× ×Ö·ÖŒ×֞֌ק×Ö¹× ×Ö·×Ö¶ÖŒ×‎ãæ¬åœã«ãã®å Žæã«ã¯ã€ããŠã§ãå±
絊ãã
‏×Öµ×× ×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒ‎ãæã
ã«ã¯çãç¡ãã
èæžã« ‏×Öµ××‎ 㯠800 åè¿ãçŸããã®ã«å¯Ÿãã‏×ֵש×‎ 㯠140 åããçŸããªããååšãããšããããšã¯ã‏×Ö¶Ö«×Ö¶×Ö° ×Öž× ×ÖŒ‎ãæã
ã«ã¯çããããã®ããã« ‏×ֵש×‎ ãªãã§ã衚ãããããã©ããååšããªããšããããšã¯ ‏×Öµ××‎ 以å€ã«è¡šçŸã®æ¹æ³ãç¡ãããã§ããã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:10Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%D7%99%D6%B5%D7%A9%D7%81_%D7%90%D6%B5%D7%99%D7%9F |
25,117 | é«çåŠæ ¡æ¥æ¬å²B/éåå¹åºã®æ»
亡 | åæ¡æ³°æã®åŸæŒããåããŠå³äœããåŸåµ¯å³šå€©çã¯ã1246幎ã«åŸæ·±è倩çã«è²äœããŠé¢æ¿ããããããããã1259幎ã«ã¯åŸåµ¯å³šäžçã®æç€ºã§åŸæ·±è倩çã®çåã§ã¯ãªããåŒãå³äœããŠäºå±±å€©çãšãªã£ãã1268幎ã«åŸåµ¯å³šæ³çã¯æ»å»ãããããã®ãšãã«æ¬¡ã®æ²»å€©ã®åãå®ããªãã£ãããã®ããã倩çå®¶ã¯åŸæ·±èäžçç³»ã®ççµ±ææé¢çµ±ãšäºå±±å€©çç³»ã®ç統倧èŠå¯ºçµ±ã«åè£ããã䞡統ã¯çäœç¶æ¿ã颿¿æš©ãç宀èåé ã®çžç¶ãªã©ãããã£ãŠå¯Ÿç«ããã䞡統ãšãéåå¹åºã«åããããŠæ¬¡ä»£ã®å€©çãèªçµ±ããåºãããšãããå¹åºã¯äž¡çµ±ã亀代ããŠçäœãç¶æ¿ãã䞡統è¿ç«ãææ¡ãã1317幎ã«ã¯å¹åºã®æèµ·ã«ãã£ãŠäž¡çµ±ã®åè°ããªããã(æä¿ã®åè«)ããããŠãå¹åºã¯ãã以éãçäœç¶æ¿ã«ã¯é¢äžããªããšããã
æä¿ã®åè«ã®åŸã«ã倧èŠå¯ºçµ±ããå³äœããåŸéé倩çã¯ç¶ã®åŸå®å€äžçã®é¢æ¿ãæããŠèŠªæ¿ãæ·ãããåŸéé倩çã¯å¹³å®æä»£ã®å»¶åã»å€©æŠã®æä»£ã倩çã«ãã芪æ¿ãè¡ãããçæ³çãªæä»£ãšèããŠããããããŠãåœæã®ææ°åŠèª¬ã§ãã£ãå®åŠ(æ±ååŠ)ãåè£ã®å¥ã説ããŠãã(倧矩ååè«)ããšããã£ãŠã倩çã¯å¹åºæ¿æ²»ã«äžæºãæ±ããŠããã
å
å¯ãè²šå¹£çµæžã®æµžéã¯åŸ¡å®¶äººãã¡ã®çª®ä¹ãå éããããããã«å¯ŸããŠãå¹åºã¯åŸå®å°å¶ã匷åããŠå¹åºã®æå°åãé«ããããšã§å¯ŸåŠããããšãããããããããã«ãã£ãŠåŸ¡å®¶äººãã¡ã¯å¹æ¿ããæé€ãããŠããŸã£ãã
ãŸããè¥ãããŠæ»å»ããåŸå®ãçžæ¬¡ããè¥å¹Žã§åŸå®ã«ãªãè
ãå€ããªã£ãããã®ãããåŸå®è¢«å®ã«ãããªãã£ã埡å
人ãå¹åºæ¿åã®åŠçã«ã倧ããããããããã«ãªãããŸããåŸå®å®¶ä»¥å€ã®åæ¡äžæã®çºèšåã倧ãããªããåŸå®ã®å°äœããã圢骞åãã€ã€ãã£ãã
9代ç®åŸå®(14代巿š©)ã®åæ¡é«æã®é ã«ã¯ãæ¿æ²»ãå
管é ã®é·åŽé«è³ãšãã®ç¶ã»é·åŽé«ç¶±(åå)ãæ
ã£ãŠãããé·åŽèŠªåãäžå¿ãšãã埡å
äººã®æš©å¢ã¯çµ¶å€§ãªãã®ãšãªãã埡家人ãã®äžæºãé«ãŸã£ãŠããã
å¹åºã¯åŸ¡å®¶äººãã¡ã®æ¯æã倱ãã€ã€ãã£ãäžãæ°ããªæµéãç£æ¥ãåºç€ãšããæ°èæŠå£«ããäžå¿ãšããæªå
ã®æŽ»åãæŽ»çºåããŠãããå¹åºã¯æªå
ãžã®å¯Ÿå¿ã«ã远ããããŸããŸãæ··ä¹±ããŠãã£ãã
ããããç¶æ³ãèŠãŠãåŸéé倩çã¯èšå¹ã®åããé²ããã1324幎ã«ã¯å€©çãšåŽè¿ã®æ¥éè³æã»ä¿åºãããç¿å
ã®æŠå£«ãšå§å
µã峿¹ã«ã€ããŠå
æ³¢çŸ
æ¢é¡ã襲æããèšç»ãè¬è°ãããã®ã®ããã®èšç»ã¯é²èŠããŠããŸã(æ£äžã®å€)ããããããã®ãšãã®å¹åºã®å¯Ÿå¿ã¯æ¥éè³æãäœæž¡ãžã®æµçœªã«åŠããã ãã§ãä¿åºã¯èš±ããåŸéé倩çã責任ãåãããªãã£ãã
ããããåŸéé倩çã¯èšå¹ããããããŠã¯ããªãã£ããè·è¯èŠªçã»å®è¯èŠªçãæ¯å¡å±±ã®é·ã§ãã倩å°åº§äž»ãšããå§å
µã®åãåã蟌ãããšããããŸããæ£äžã®å€ã§èš±ãããæ¥éä¿åºã¯å±±äŒã«å€è£
ããç¿å
ã®æŠå£«ããŸãšããããšè©Šã¿ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åæ¡æ³°æã®åŸæŒããåããŠå³äœããåŸåµ¯å³šå€©çã¯ã1246幎ã«åŸæ·±è倩çã«è²äœããŠé¢æ¿ããããããããã1259幎ã«ã¯åŸåµ¯å³šäžçã®æç€ºã§åŸæ·±è倩çã®çåã§ã¯ãªããåŒãå³äœããŠäºå±±å€©çãšãªã£ãã1268幎ã«åŸåµ¯å³šæ³çã¯æ»å»ãããããã®ãšãã«æ¬¡ã®æ²»å€©ã®åãå®ããªãã£ãããã®ããã倩çå®¶ã¯åŸæ·±èäžçç³»ã®ççµ±ææé¢çµ±ãšäºå±±å€©çç³»ã®ç統倧èŠå¯ºçµ±ã«åè£ããã䞡統ã¯çäœç¶æ¿ã颿¿æš©ãç宀èåé ã®çžç¶ãªã©ãããã£ãŠå¯Ÿç«ããã䞡統ãšãéåå¹åºã«åããããŠæ¬¡ä»£ã®å€©çãèªçµ±ããåºãããšãããå¹åºã¯äž¡çµ±ã亀代ããŠçäœãç¶æ¿ãã䞡統è¿ç«ãææ¡ãã1317幎ã«ã¯å¹åºã®æèµ·ã«ãã£ãŠäž¡çµ±ã®åè°ããªããã(æä¿ã®åè«)ããããŠãå¹åºã¯ãã以éãçäœç¶æ¿ã«ã¯é¢äžããªããšããã",
"title": "䞡統è¿ç«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æä¿ã®åè«ã®åŸã«ã倧èŠå¯ºçµ±ããå³äœããåŸéé倩çã¯ç¶ã®åŸå®å€äžçã®é¢æ¿ãæããŠèŠªæ¿ãæ·ãããåŸéé倩çã¯å¹³å®æä»£ã®å»¶åã»å€©æŠã®æä»£ã倩çã«ãã芪æ¿ãè¡ãããçæ³çãªæä»£ãšèããŠããããããŠãåœæã®ææ°åŠèª¬ã§ãã£ãå®åŠ(æ±ååŠ)ãåè£ã®å¥ã説ããŠãã(倧矩ååè«)ããšããã£ãŠã倩çã¯å¹åºæ¿æ²»ã«äžæºãæ±ããŠããã",
"title": "䞡統è¿ç«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å
å¯ãè²šå¹£çµæžã®æµžéã¯åŸ¡å®¶äººãã¡ã®çª®ä¹ãå éããããããã«å¯ŸããŠãå¹åºã¯åŸå®å°å¶ã匷åããŠå¹åºã®æå°åãé«ããããšã§å¯ŸåŠããããšãããããããããã«ãã£ãŠåŸ¡å®¶äººãã¡ã¯å¹æ¿ããæé€ãããŠããŸã£ãã",
"title": "埡å
人ã®å°æšª"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸããè¥ãããŠæ»å»ããåŸå®ãçžæ¬¡ããè¥å¹Žã§åŸå®ã«ãªãè
ãå€ããªã£ãããã®ãããåŸå®è¢«å®ã«ãããªãã£ã埡å
人ãå¹åºæ¿åã®åŠçã«ã倧ããããããããã«ãªãããŸããåŸå®å®¶ä»¥å€ã®åæ¡äžæã®çºèšåã倧ãããªããåŸå®ã®å°äœããã圢骞åãã€ã€ãã£ãã",
"title": "埡å
人ã®å°æšª"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "9代ç®åŸå®(14代巿š©)ã®åæ¡é«æã®é ã«ã¯ãæ¿æ²»ãå
管é ã®é·åŽé«è³ãšãã®ç¶ã»é·åŽé«ç¶±(åå)ãæ
ã£ãŠãããé·åŽèŠªåãäžå¿ãšãã埡å
äººã®æš©å¢ã¯çµ¶å€§ãªãã®ãšãªãã埡家人ãã®äžæºãé«ãŸã£ãŠããã",
"title": "埡å
人ã®å°æšª"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å¹åºã¯åŸ¡å®¶äººãã¡ã®æ¯æã倱ãã€ã€ãã£ãäžãæ°ããªæµéãç£æ¥ãåºç€ãšããæ°èæŠå£«ããäžå¿ãšããæªå
ã®æŽ»åãæŽ»çºåããŠãããå¹åºã¯æªå
ãžã®å¯Ÿå¿ã«ã远ããããŸããŸãæ··ä¹±ããŠãã£ãã",
"title": "埡å
人ã®å°æšª"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããããç¶æ³ãèŠãŠãåŸéé倩çã¯èšå¹ã®åããé²ããã1324幎ã«ã¯å€©çãšåŽè¿ã®æ¥éè³æã»ä¿åºãããç¿å
ã®æŠå£«ãšå§å
µã峿¹ã«ã€ããŠå
æ³¢çŸ
æ¢é¡ã襲æããèšç»ãè¬è°ãããã®ã®ããã®èšç»ã¯é²èŠããŠããŸã(æ£äžã®å€)ããããããã®ãšãã®å¹åºã®å¯Ÿå¿ã¯æ¥éè³æãäœæž¡ãžã®æµçœªã«åŠããã ãã§ãä¿åºã¯èš±ããåŸéé倩çã責任ãåãããªãã£ãã",
"title": "åŸéé倩çã®æå
µ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããããåŸéé倩çã¯èšå¹ããããããŠã¯ããªãã£ããè·è¯èŠªçã»å®è¯èŠªçãæ¯å¡å±±ã®é·ã§ãã倩å°åº§äž»ãšããå§å
µã®åãåã蟌ãããšããããŸããæ£äžã®å€ã§èš±ãããæ¥éä¿åºã¯å±±äŒã«å€è£
ããç¿å
ã®æŠå£«ããŸãšããããšè©Šã¿ãã",
"title": "åŸéé倩çã®æå
µ"
}
]
| null | {{Nav}}
== 䞡統è¿ç« ==
åæ¡æ³°æã®åŸæŒããåããŠå³äœãã{{ruby|åŸåµ¯å³š|ããã}}倩çã¯ã1246幎ã«åŸæ·±è倩çã«è²äœããŠé¢æ¿ããããããããã1259幎ã«ã¯åŸåµ¯å³šäžçã®æç€ºã§åŸæ·±è倩çã®çåã§ã¯ãªããåŒãå³äœããŠäºå±±å€©çãšãªã£ãã1268幎ã«åŸåµ¯å³šæ³çã¯æ»å»ãããããã®ãšãã«æ¬¡ã®æ²»å€©ã®åãå®ããªãã£ãããã®ããã倩çå®¶ã¯åŸæ·±èäžçç³»ã®ççµ±{{ruby|'''ææé¢çµ±'''|ãã¿ãããããšã}}ãšäºå±±å€©çç³»ã®ççµ±{{ruby|'''倧èŠå¯ºçµ±'''|ã ãããããšã}}ã«åè£ããã䞡統ã¯çäœç¶æ¿ã颿¿æš©ãç宀èåé ã®çžç¶ãªã©ãããã£ãŠå¯Ÿç«ãã<ref>倧èŠå¯ºçµ±ã¯'''å
«æ¡é¢é '''ãšãã°ãã220ã®èå矀ããææé¢çµ±ã¯'''é·è¬å é '''ãšãã°ãã180ãã®èå矀ãç²åŸãããããããå€ãã®èåã®çžç¶ã䞡統ã®å¯Ÿç«ã®åå ã§ããã£ãã</ref>ã䞡統ãšãéåå¹åºã«åããããŠæ¬¡ä»£ã®å€©çãèªçµ±ããåºãããšãããå¹åºã¯äž¡çµ±ã亀代ããŠçäœãç¶æ¿ãã{{ruby|'''䞡統è¿ç«'''|ããããšããŠã€ãã€}}ãææ¡ãã1317幎ã«ã¯å¹åºã®æèµ·ã«ãã£ãŠäž¡çµ±ã®åè°ããªããã(æä¿ã®åè«)ããããŠãå¹åºã¯ãã以éãçäœç¶æ¿ã«ã¯é¢äžããªããšããã
æä¿ã®åè«ã®åŸã«ã倧èŠå¯ºçµ±ããå³äœãã{{ruby|'''åŸéé倩ç'''|ãã ãããŠãã®ã}}ã¯ç¶ã®åŸå®å€äžçã®é¢æ¿ãæããŠèŠªæ¿ãæ·ãããåŸéé倩çã¯å¹³å®æä»£ã®å»¶åã»å€©æŠã®æä»£ã倩çã«ãã芪æ¿ãè¡ãããçæ³çãªæä»£ãšèããŠããããããŠãåœæã®ææ°åŠèª¬ã§ãã£ãå®åŠ(æ±ååŠ)ãåè£ã®å¥ã説ããŠãã(倧矩ååè«)ããšããã£ãŠã倩çã¯å¹åºæ¿æ²»ã«äžæºãæ±ããŠããã
== 埡å
人ã®å°æšª ==
å
å¯ãè²šå¹£çµæžã®æµžéã¯åŸ¡å®¶äººãã¡ã®çª®ä¹ãå éããããããã«å¯ŸããŠãå¹åºã¯åŸå®å°å¶ã匷åããŠå¹åºã®æå°åãé«ããããšã§å¯ŸåŠããããšãããããããããã«ãã£ãŠåŸ¡å®¶äººãã¡ã¯å¹æ¿ããæé€ãããŠããŸã£ãã
ãŸããè¥ãããŠæ»å»ããåŸå®ãçžæ¬¡ã<ref>7代æå®ã¯32æ³ã8代æè²ã¯39æ³ã§æ²¡ããã</ref>ãè¥å¹Žã§åŸå®ã«ãªãè
ãå€ããªã£ãããã®ãããåŸå®è¢«å®ã«ãããªãã£ã埡å
人ãå¹åºæ¿åã®åŠçã«ã倧ããããããããã«ãªãããŸããåŸå®å®¶ä»¥å€ã®åæ¡äžæã®çºèšåã倧ãããªããåŸå®ã®å°äœããã圢骞åãã€ã€ãã£ãã
9代ç®åŸå®(14代巿š©)ã®{{ruby|忡髿|ã»ãããããããšã}}ã®é ã«ã¯ãæ¿æ²»ãå
管é ã®é·åŽ{{ruby|é«è³|ãããã}}ãšãã®ç¶ã»é·åŽé«ç¶±(åå)ãæ
ã£ãŠãããé·åŽèŠªåãäžå¿ãšãã埡å
äººã®æš©å¢ã¯çµ¶å€§ãªãã®ãšãªãã埡家人ãã®äžæºãé«ãŸã£ãŠããã
å¹åºã¯åŸ¡å®¶äººãã¡ã®æ¯æã倱ãã€ã€ãã£ãäžãæ°ããªæµéãç£æ¥ãåºç€ãšããæ°èæŠå£«ããäžå¿ãšãã'''æªå
'''ã®æŽ»åãæŽ»çºåããŠãããå¹åºã¯æªå
ãžã®å¯Ÿå¿ã«ã远ããããŸããŸãæ··ä¹±ããŠãã£ãã
== åŸéé倩çã®æå
µ ==
ããããç¶æ³ãèŠãŠãåŸéé倩çã¯èšå¹ã®åããé²ããã1324幎ã«ã¯å€©çãšåŽè¿ã®æ¥é{{ruby|è³æ|ãããšã}}ã»{{ruby|ä¿åº|ãšãããš}}ãããç¿å
ã®æŠå£«ãšå§å
µã峿¹ã«ã€ããŠå
æ³¢çŸ
æ¢é¡ã襲æããèšç»ãè¬è°ãããã®ã®ããã®èšç»ã¯é²èŠããŠããŸã('''æ£äžã®å€''')ããããããã®ãšãã®å¹åºã®å¯Ÿå¿ã¯æ¥éè³æãäœæž¡ãžã®æµçœªã«åŠããã ãã§ãä¿åºã¯èš±ããåŸéé倩çã責任ãåãããªãã£ãã
ããããåŸéé倩çã¯èšå¹ããããããŠã¯ããªãã£ãã{{ruby|è·è¯|ãããã/ãããªã}}芪çã»{{ruby|å®è¯|ãããã/ãããªã}}芪çãæ¯å¡å±±ã®é·ã§ãã倩å°åº§äž»ãšããå§å
µã®åãåã蟌ãããšããããŸããæ£äžã®å€ã§èš±ãããæ¥éä¿åºã¯å±±äŒã«å€è£
ããç¿å
ã®æŠå£«ããŸãšããããšè©Šã¿ãã
== éåçäž ==
== 泚 ==
<references/>
[[category:é«çåŠæ ¡æ¥æ¬å²|ããŸããã¯ããµã®ãã€ã»ã]] | null | 2022-08-14T14:07:43Z | [
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:Ruby"
]
| https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%97%A5%E6%9C%AC%E5%8F%B2B/%E9%8E%8C%E5%80%89%E5%B9%95%E5%BA%9C%E3%81%AE%E6%BB%85%E4%BA%A1 |
25,119 | èæžããã©ã€èªå
¥é/å眮è©(2)/æ°è©ãšåè©ãšã®çµ±å | 11.7 æ°è©ãšåè©ãšã®çµ±å
×ַךְ×֞֌ע֎××ãååãã×Ö·×֎ש֎֌×××ãäºåãã®ãããªæ°è©(=æ°ã衚ãåè©)ã¯ãæ°ãããããã®ã衚ãåè©ãåæ°åœ¢ã§åŸã«åŸããã®ãæ®éã§ããã詳ããã¯æ°è©ãšãšãã«åŸã§è¿°ã¹ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.7 æ°è©ãšåè©ãšã®çµ±å",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "×ַךְ×֞֌ע֎××ãååãã×Ö·×֎ש֎֌×××ãäºåãã®ãããªæ°è©(=æ°ã衚ãåè©)ã¯ãæ°ãããããã®ã衚ãåè©ãåæ°åœ¢ã§åŸã«åŸããã®ãæ®éã§ããã詳ããã¯æ°è©ãšãšãã«åŸã§è¿°ã¹ãã",
"title": ""
}
]
| 11.7 æ°è©ãšåè©ãšã®çµ±å â×ַךְ×֞֌ע֎××âãååããâ×Ö·×֎ש֎֌×××âãäºåãã®ãããªæ°è©ïŒïŒæ°ã衚ãåè©ïŒã¯ãæ°ãããããã®ã衚ãåè©ãåæ°åœ¢ã§åŸã«åŸããã®ãæ®éã§ããã詳ããã¯æ°è©ãšãšãã«åŸã§è¿°ã¹ãã | 11.7 æ°è©ãšåè©ãšã®çµ±å
‏×ַךְ×֞֌ע֎××‎ãååãã‏×Ö·×֎ש֎֌×××‎ãäºåãã®ãããªæ°è©ïŒïŒæ°ã衚ãåè©ïŒã¯ãæ°ãããããã®ã衚ãåè©ãåæ°åœ¢ã§åŸã«åŸããã®ãæ®éã§ããã詳ããã¯æ°è©ãšãšãã«åŸã§è¿°ã¹ãã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:37Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E6%95%B0%E8%A9%9E%E3%81%A8%E5%90%8D%E8%A9%9E%E3%81%A8%E3%81%AE%E7%B5%B1%E5%90%88 |
25,126 | èæžããã©ã€èªå
¥é/å眮è©(2)/åèª2 | 11.8 åèª2 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.8 åèª2",
"title": ""
}
]
| 11.8 åèª2 | 11.8 åèª2
{|
|-
|style="text-align:left" |‏×Öµ×Öž×‎
|style="text-align:left" |(女ãè€æ°‏×Ö°×Öž××ת‎)=‏×Öµ×‎, å¿
|-
|style="text-align:left" |‏×ÖžÖŒ××Ö¹×‎
|style="text-align:left" |(åã®ã¿ïŒæ å
ãæ èª
|-
|style="text-align:left" |‏×ֵש×‎
|style="text-align:left" |(åã®ã¿ïŒç«
|-
|style="text-align:left" |‏ך××ש×‎
|style="text-align:left" |é ãé äž
|-
|style="text-align:left" |‏×ַך‎
|style="text-align:left" |(è€:‏×֞ך֎××‎)å±±
|-
|style="text-align:left" |‏ש֞××Öµ×‎
|style="text-align:left" |å¹³ç©ãªãæ¬ ããæã®ç¡ã
|-
|style="text-align:left" |‏ך֞ע֞×‎
|style="text-align:left" |飢é€
|-
|style="text-align:left" |‏×ÖŽÖŒ×‎
|style="text-align:left" |ãªããªãã°ããŸããšã«
|-
|style="text-align:left" |‏×Ö¶Ö«×Ö¶×‎
|style="text-align:left" |(åã®ã¿ïŒããã³ããé£ã¹ç©
|-
|style="text-align:left" |‏×Ö·Ö«×ÖŽ×‎
|style="text-align:left" |(é£ïŒ‏×Öµ×‎ãæ¥å°Ÿä»£åè©ã¯ ‏×Öµ××‎ ãèªå¹¹ãšãâ
¡é¡ãä»ãïŒæ°Ž
|-
|style="text-align:left" |
|style="text-align:left" |
|-
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:30Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E5%8D%98%E8%AA%9E2 |
25,131 | å€å
žã®ãªã·ã¢èª/第äžé¡/åºæ¬ææ³/ã®ãªã·ã£èªã®æåãšçºé³ | ã®ãªã·ã£èªã¯ 24 æåããã®ãªã·ã£æåã§ç¶Žãããã çŸåšã®ãªã·ã£æåã«ã¯å€§æåãšå°æåãããããå€ä»£ã®ãªã·ã£ã«ã¯å°æåã¯ãªãã倧æåãããªãã£ãã å°æåã¯äžäžã«ãªã£ãŠäœãããã 仿¥ã§ã¯å€ä»£ã®ãªã·ã£èªãç¶Žãã®ã«ã¯åºæåè©ã®èªé ãªã©ãé€ããŠå°æåãçšããã®ãæ®éã§ããã ã®ãªã·ã£æåã®å€§æå(Î-Ω)ãšå°æå(α-Ï)ã®åç§°ãšè¡šãé³ã¯ä»¥äžã®ãšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã®ãªã·ã£èªã¯ 24 æåããã®ãªã·ã£æåã§ç¶Žãããã çŸåšã®ãªã·ã£æåã«ã¯å€§æåãšå°æåãããããå€ä»£ã®ãªã·ã£ã«ã¯å°æåã¯ãªãã倧æåãããªãã£ãã å°æåã¯äžäžã«ãªã£ãŠäœãããã 仿¥ã§ã¯å€ä»£ã®ãªã·ã£èªãç¶Žãã®ã«ã¯åºæåè©ã®èªé ãªã©ãé€ããŠå°æåãçšããã®ãæ®éã§ããã ã®ãªã·ã£æåã®å€§æå(Î-Ω)ãšå°æå(α-Ï)ã®åç§°ãšè¡šãé³ã¯ä»¥äžã®ãšããã",
"title": ""
}
]
| ã®ãªã·ã£èªã¯ 24 æåããã®ãªã·ã£æåã§ç¶Žãããã
çŸåšã®ãªã·ã£æåã«ã¯å€§æåãšå°æåãããããå€ä»£ã®ãªã·ã£ã«ã¯å°æåã¯ãªãã倧æåãããªãã£ãã
å°æåã¯äžäžã«ãªã£ãŠäœãããã
仿¥ã§ã¯å€ä»£ã®ãªã·ã£èªãç¶Žãã®ã«ã¯åºæåè©ã®èªé ãªã©ãé€ããŠå°æåãçšããã®ãæ®éã§ããã
ã®ãªã·ã£æåã®å€§æåïŒÎ-ΩïŒãšå°æåïŒÎ±-ÏïŒã®åç§°ãšè¡šãé³ã¯ä»¥äžã®ãšããã | ã®ãªã·ã£èªã¯ 24 æåããã®ãªã·ã£æåã§ç¶Žãããã
çŸåšã®ãªã·ã£æåã«ã¯å€§æåãšå°æåãããããå€ä»£ã®ãªã·ã£ã«ã¯å°æåã¯ãªãã倧æåãããªãã£ãã
å°æåã¯äžäžã«ãªã£ãŠäœãããã
仿¥ã§ã¯å€ä»£ã®ãªã·ã£èªãç¶Žãã®ã«ã¯åºæåè©ã®èªé ãªã©ãé€ããŠå°æåãçšããã®ãæ®éã§ããã
ã®ãªã·ã£æåã®å€§æåïŒÎ-ΩïŒãšå°æåïŒÎ±-ÏïŒã®åç§°ãšè¡šãé³ã¯ä»¥äžã®ãšããã
{| class="wikitable" style="text-align:center"
! å圢 !! 転å !! colspan="2" | åç§°
|-
! Îα
| a, Ä || áŒÎ»Ïα|| ã¢ã«ã
|-
! Îβ
| b || βá¿Ïα|| ããŒã¿
|-
! Îγ
| g || γάΌΌα|| ã¬ã³ã
|-
! ÎÎŽ
| d || ÎŽÎλÏα|| ãã«ã¿
|-
! Îε
| e || áŒÏ<span class="Unicode">á¿</span>λÏΜ|| ãšãã¹ã£ãŒãã³
|-
! Îζ
| z || ζá¿Ïα|| ãŒãŒã¿
|-
! Îη
| Ä || ጊÏα|| ãšãŒã¿
|-
! ÎΞ
| th || Ξá¿Ïα|| ããŒã¿
|-
! Îι
| i, Ä« || ιῶÏα|| ã€ãªãŒã¿
|-
! Îκ
| k || κάÏÏα|| ã«ãã
|-
! Îλ
| l || λάΌβΎα|| ã©ã ã
|-
! ÎÎŒ
| m || ΌῊ|| ãã¥ãŒ
|-
! ÎΜ
| n || ΜῊ|| ãã¥ãŒ
|-
! ÎΟ
| ks || Οá¿|| ã¯ã¹ã£ãŒ
|-
! Îο
| o || áœÎŒ<span class="Unicode">á¿</span>κÏÏΜ|| ãªããŒã¯ãã³
|-
! Î Ï
| p || Ïá¿|| ããŒ
|-
! ΡÏ
| r || ῀ῶ|| ããŒ
|-
! ΣÏÏ
| s || ÏίγΌα|| ã·ã°ã
|-
! ΀Ï
| t || ÏαῊ|| ã¿ãŠ
|-
! Î¥Ï
| y || áœÏ<span class="Unicode">á¿</span>λÏΜ|| ãŠãŒãã¹ã£ãŒãã³
|-
! ΊÏ
| ph || Ïá¿|| ããŒ
|-
! ΧÏ
| kh || Ïá¿|| ããŒ
|-
! ΚÏ
| ps || Ïá¿|| ãã·ã£ãŒ
|-
! ΩÏ
| Å || ᜊΌÎγα|| ãªãŒã¡ã¬
|}
[[ã«ããŽãª:ææ³]]
[[ã«ããŽãª:å€å
žã®ãªã·ã¢èª]] | null | 2022-12-01T15:11:50Z | []
| https://ja.wikibooks.org/wiki/%E5%8F%A4%E5%85%B8%E3%82%AE%E3%83%AA%E3%82%B7%E3%82%A2%E8%AA%9E/%E7%AC%AC%E4%B8%80%E9%A1%9E/%E5%9F%BA%E6%9C%AC%E6%96%87%E6%B3%95/%E3%82%AE%E3%83%AA%E3%82%B7%E3%83%A3%E8%AA%9E%E3%81%AE%E6%96%87%E5%AD%97%E3%81%A8%E7%99%BA%E9%9F%B3 |
25,134 | èæžããã©ã€èªå
¥é/å眮è©(2)/ç·Žç¿ | 11.9 ç·Žç¿(è§£ç)
(1) æ¥æ¬èªã«èš³ãã
×. ק֞ך××× ×Öµ×Ö¶Ö«××Öž ×Ö·×ÖžÖŒ×֞ך ×Ö°××× ×ְ֌׀֎××Öž ×ÖŒ×ÖŽ×Ö°×Öž×Ö°×Öž
×. ×Ö¶Ö«×Ö¶×Ö° ×ÖžÖŒ×××× ×××× ×¢Ö·×ÖŸ×ÖžÖŒ×ÖŸ×Ö±××ÖŽ×××
×. ×ÖŒ×ַךְ×Öµ× ×Ö°ÖŒ×××× ×××× ×Ö°ÖŒ×Öµ×©× ×ְ֌ך×××©× ×Öž×֞ך ×Ö°×¢Öµ×× Öµ× ×Ö°× Öµ× ×֎ש×ך֞×Öµ×
×. ×Öž×Ö²× Öž×©ÖŽ××× ×Öž×Öµ×Ö¶ÖŒ× ×©Ö°××Öµ×ÖŽ×× ×Öµ× ×ÖŽ×ªÖžÖŒ× ×ÖŒ
×. ×××ת ×××ת ×Ö·×ְ֌ך֎ת ×ÖµÖŒ×× ÖŽ× ×ÖŒ×Öµ×× Öµ××Ö¶×
×. ×Öµ×©× ×Öž× ×ÖŒ ×Öž× ×Öž×§Öµ× ×Ö°×Ö·× ×§Öž×××
×. ×Öµ×× ×Ö¶Ö«×Ö¶× ×Ö°×Öµ×× ×Ö·Ö«×ÖŽ×, ×ÖŽÖŒ× ×Öž×Öµ× ×Öž×šÖž×¢Öž× ×ÖžÖŒ×֞֫ךֶץ
×. ×¢ÖŽ×ÖžÖŒ× ×ÖŒ ×Öµ×
(2)ããã©ã€èªã«èš³ã
1. ç§ã«ã¯éãéãç¡ã(=éããªãããããŠéããªã)ã
2. ç¥ã®èšèãæ±ãšãšãã«ããã
3. ç·ãã女ã«ããããŸã§ãã¹ãŠã®äººã¯ç¥ã«å¯ŸããŠçœªäººã ã
4. ã€ã¹ã©ãšã«ã®ã¢ãŒã»(××שֶ××)ã®ãããªé èšè
ã¯ããªãã
5. æ©ã¿ã®æ¥ã«ç¥ã¯æãã«è¿ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "11.9 ç·Žç¿(è§£ç)",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "(1) æ¥æ¬èªã«èš³ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "×. ק֞ך××× ×Öµ×Ö¶Ö«××Öž ×Ö·×ÖžÖŒ×֞ך ×Ö°××× ×ְ֌׀֎××Öž ×ÖŒ×ÖŽ×Ö°×Öž×Ö°×Öž",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "×. ×Ö¶Ö«×Ö¶×Ö° ×ÖžÖŒ×××× ×××× ×¢Ö·×ÖŸ×ÖžÖŒ×ÖŸ×Ö±××ÖŽ×××",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "×. ×ÖŒ×ַךְ×Öµ× ×Ö°ÖŒ×××× ×××× ×Ö°ÖŒ×Öµ×©× ×ְ֌ך×××©× ×Öž×֞ך ×Ö°×¢Öµ×× Öµ× ×Ö°× Öµ× ×֎ש×ך֞×Öµ×",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "×. ×Öž×Ö²× Öž×©ÖŽ××× ×Öž×Öµ×Ö¶ÖŒ× ×©Ö°××Öµ×ÖŽ×× ×Öµ× ×ÖŽ×ªÖžÖŒ× ×ÖŒ",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "×. ×××ת ×××ת ×Ö·×ְ֌ך֎ת ×ÖµÖŒ×× ÖŽ× ×ÖŒ×Öµ×× Öµ××Ö¶×",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "×. ×Öµ×©× ×Öž× ×ÖŒ ×Öž× ×Öž×§Öµ× ×Ö°×Ö·× ×§Öž×××",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "×. ×Öµ×× ×Ö¶Ö«×Ö¶× ×Ö°×Öµ×× ×Ö·Ö«×ÖŽ×, ×ÖŽÖŒ× ×Öž×Öµ× ×Öž×šÖž×¢Öž× ×ÖžÖŒ×֞֫ךֶץ",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "×. ×¢ÖŽ×ÖžÖŒ× ×ÖŒ ×Öµ×",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "(2)ããã©ã€èªã«èš³ã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "1. ç§ã«ã¯éãéãç¡ã(=éããªãããããŠéããªã)ã",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "2. ç¥ã®èšèãæ±ãšãšãã«ããã",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "3. ç·ãã女ã«ããããŸã§ãã¹ãŠã®äººã¯ç¥ã«å¯ŸããŠçœªäººã ã",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "4. ã€ã¹ã©ãšã«ã®ã¢ãŒã»(××שֶ××)ã®ãããªé èšè
ã¯ããªãã",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "5. æ©ã¿ã®æ¥ã«ç¥ã¯æãã«è¿ãã",
"title": ""
}
]
| 11.9 ç·Žç¿(è§£ç) (1) æ¥æ¬èªã«èš³ãã ×. ק֞ך××× ×Öµ×Ö¶Ö«××Öž ×Ö·×ÖžÖŒ×֞ך ×Ö°××× ×ְ֌׀֎××Öž ×ÖŒ×ÖŽ×Ö°×Öž×Ö°×Öž ×. ×Ö¶Ö«×Ö¶×Ö° ×ÖžÖŒ×××× ×××× ×¢Ö·×ÖŸ×ÖžÖŒ×ÖŸ×Ö±××ÖŽ××× ×. ×ÖŒ×ַךְ×Öµ× ×Ö°ÖŒ×××× ×××× ×Ö°ÖŒ×Öµ×©× ×ְ֌ך×××©× ×Öž×֞ך ×Ö°×¢Öµ×× Öµ× ×Ö°× Öµ× ×֎ש×ך֞×Öµ× ×. ×Öž×Ö²× Öž×©ÖŽ××× ×Öž×Öµ×Ö¶ÖŒ× ×©Ö°××Öµ×ÖŽ×× ×Öµ× ×ÖŽ×ªÖžÖŒ× ×ÖŒ ×. ×××ת ×××ת ×Ö·×ְ֌ך֎ת ×ÖµÖŒ×× ÖŽ× ×ÖŒ×Öµ×× Öµ××Ö¶× ×. ×Öµ×©× ×Öž× ×ÖŒ ×Öž× ×Öž×§Öµ× ×Ö°×Ö·× ×§Öž××× ×. ×Öµ×× ×Ö¶Ö«×Ö¶× ×Ö°×Öµ×× ×Ö·Ö«×ÖŽ×, ×ÖŽÖŒ× ×Öž×Öµ× ×Öž×šÖž×¢Öž× ×ÖžÖŒ×֞֫ךֶץ ×. ×¢ÖŽ×ÖžÖŒ× ×ÖŒ ×Öµ× (2)ããã©ã€èªã«èš³ã 1. ç§ã«ã¯éãéãç¡ãïŒïŒéããªãããããŠéããªãïŒã 2. ç¥ã®èšèãæ±ãšãšãã«ããã 3. ç·ãã女ã«ããããŸã§ãã¹ãŠã®äººã¯ç¥ã«å¯ŸããŠçœªäººã ã 4. ã€ã¹ã©ãšã«ã®ã¢ãŒã»ïŒâ××שֶ××âïŒã®ãããªé èšè
ã¯ããªãã 5. æ©ã¿ã®æ¥ã«ç¥ã¯æãã«è¿ãã | 11.9 ç·Žç¿([[èæžããã©ã€èªå
¥é/å眮è©(2)/ç·Žç¿/è§£ç|è§£ç]])
(1) æ¥æ¬èªã«èš³ãã
×. ק֞ך××× ×Öµ×Ö¶Ö«××Öž ×Ö·×ÖžÖŒ×֞ך ×Ö°××× ×ְ֌׀֎××Öž ×ÖŒ×ÖŽ×Ö°×Öž×Ö°×Öž
×. ×Ö¶Ö«×Ö¶×Ö° ×ÖžÖŒ×××× ×××× ×¢Ö·×ÖŸ×ÖžÖŒ×ÖŸ×Ö±××ÖŽ×××
×. ×ÖŒ×ַךְ×Öµ× ×Ö°ÖŒ×××× ×××× ×Ö°ÖŒ×Öµ×©× ×ְ֌ך×××©× ×Öž×֞ך ×Ö°×¢Öµ×× Öµ× ×Ö°× Öµ× ×֎ש×ך֞×Öµ×
×. ×Öž×Ö²× Öž×©ÖŽ××× ×Öž×Öµ×Ö¶ÖŒ× ×©Ö°××Öµ×ÖŽ×× ×Öµ× ×ÖŽ×ªÖžÖŒ× ×ÖŒ
×. ×××ת ×××ת ×Ö·×ְ֌ך֎ת ×ÖµÖŒ×× ÖŽ× ×ÖŒ×Öµ×× Öµ××Ö¶×
×. ×Öµ×©× ×Öž× ×ÖŒ ×Öž× ×Öž×§Öµ× ×Ö°×Ö·× ×§Öž×××
×. ×Öµ×× ×Ö¶Ö«×Ö¶× ×Ö°×Öµ×× ×Ö·Ö«×ÖŽ×, ×ÖŽÖŒ× ×Öž×Öµ× ×Öž×šÖž×¢Öž× ×ÖžÖŒ×֞֫ךֶץ
×. ×¢ÖŽ×ÖžÖŒ× ×ÖŒ ×Öµ×
(2)ããã©ã€èªã«èš³ã
1. ç§ã«ã¯éãéãç¡ãïŒïŒéããªãããããŠéããªãïŒã
2. ç¥ã®èšèãæ±ãšãšãã«ããã
3. ç·ãã女ã«ããããŸã§ãã¹ãŠã®äººã¯ç¥ã«å¯ŸããŠçœªäººã ã
4. ã€ã¹ã©ãšã«ã®ã¢ãŒã»ïŒ‏××שֶ××‎ïŒã®ãããªé èšè
ã¯ããªãã
5. æ©ã¿ã®æ¥ã«ç¥ã¯æãã«è¿ãã
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:45Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E7%B7%B4%E7%BF%92 |
25,138 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿 | f ( t ) {\displaystyle f(t)} ã®äžå®ç©åã¯,次ã®ããã«åæç©
ãšæžããããšã«æ³šæããã.ããªãã¡,ç©åãããšããããšã¯,åæç©ã®æå³ã§ 1 {\displaystyle 1} ãæããããšãæå³ãã. Laplace 倿ã®åºæ¬æ§è³ªã®(1) ãš(3)ãçšãããš,
ãã£ãŠ
ãåŸã.ããªãã¡ t {\displaystyle t} é åã§ã®ç©å㯠s {\displaystyle s} é åã§ã¯ s {\displaystyle s} ã§å²ãããšã«å¯Ÿå¿ãã.
ããŠ,
以äžåæ§ã«ããŠ,åž°çŽçã«,
ãåŸã.ãã®å·ŠèŸºã® Laplace 倿ã¯,åºæ¬æ§è³ªã®Laplace 倿ã®åºæ¬æ§è³ªã®(1)ãš(3)ãçšããã°,
ã§ãããã,
ãåŸã.
äŸ20 {\displaystyle \quad }
åŒ(2.8) ã Laplace 倿ã®å®çŸ©åŒããçŽæ¥å°ã.
è§£çäŸ {\displaystyle \quad }
ããªãã¡
ãããš,åºæ¬æ§è³ª(1)ããªãã¡
ããã³åºæ¬æ§è³ª(2)ãšãååž°çã«é©çšããŠåŒ(2.8)ãåŸããã.å®éã
ããªãã¡
ããã«åºæ¬æ§è³ª(2)ãé©çšããã°,
ãã®å°åºæ¹æ³ã¯åºæ¬æ§è³ª(1)(2)ã䜿ã£ãŠããŸã£ãŠããã,ããš,ããããã®ã¯æ°åŠçåž°çŽæ³ã§èšè¿°ããã¹ãã§ããã,åºæ¬æ§è³ª(1)(2)ã¯å®¹æãªç©åãªããšãããããã§ååŒããŠã»ãã.
⢠{\displaystyle \diamondsuit }
ãããã®çµæãçšããŠã次㮠Cauchey ã®å
¬åŒãšåŒã°ãããã®ã瀺ãã.
蚌æ {\displaystyle \quad }
åæç©ã®èšå·ãçšããŠè¡šãã°äžç®çç¶ã§ãã.ããªãã¡,
ãšãªãã,ãã®åŒã®æ£ããããšã¯åŒ(2.7)ããæããã§ãã. ⢠{\displaystyle \diamondsuit }
ãªã Cauchy ã®å
¬åŒã Laplace 倿ããã°,ãã®åã¯,巊蟺å³èŸºãšãã«,
ã«ãªãããšã泚æããŠããã.
f ( t ) {\displaystyle f(t)} ã®å°é¢æ°ã f â² ( t ) {\displaystyle f'(t)} ãšãã.埮åç©åæ³ã®åºæ¬å
¬åŒ,
ã®äž¡èŸºã Laplace 倿ãããš
ãšãªã. s {\displaystyle s} ãæãã°,
ãšãªã. f ( 0 ) = 0 {\displaystyle f(0)=0} ãªãã°,
ãšãªã, t {\displaystyle t} é åã§ã®åŸ®åã¯, s {\displaystyle s} é åã§ s {\displaystyle s} ãæããããšã«å¯Ÿå¿ã,埮åãšç©åãéæŒç®ã§ããããšãé®®æãšãªã.
åŒ(2.10) ã 2 床繰ãè¿ããš
ãã£ãŠ
以äžåæ§ã«ããŠ, åž°çŽçã«
ãåŸã.åæå€ããã¹ãŠ 0 {\displaystyle 0} ã®å Žå,ãã®å
¬åŒã¯,
ãšã¿ãªããŠããããšã瀺ããŠãã.ãªã f ( n ) {\displaystyle f^{(n)}} 㯠f {\displaystyle f} ã®ç¬¬ n {\displaystyle n} éå°é¢æ°ã§ãã. åŒ(2.11) 㯠Taylor ã®å
¬åŒã瀺ã.äºå®, L [ f ] {\displaystyle {\mathcal {L}}[f]} ã«ã€ããŠè§£ããš,
ãšãªãã,åŒ(2.8)ããã³ Cauchey ã®å
¬åŒ (2.9) ãçšããŠ,ãã®ååãæ±ããã°,
äŸ21 {\displaystyle \quad }
ãè§£ã.
è§£çäŸ
åŒ(2.11a) ã« f ( 0 ) = a 0 , f â² ( 0 ) = a 1 , ⯠f ( n â 1 ) ( 0 ) = a n â 1 {\displaystyle f(0)=a_{0},f'(0)=a_{1},\cdots f^{(n-1)}(0)=a_{n-1}} ã代å
¥ããã°ãã.
⢠{\displaystyle \diamondsuit } | [
{
"paragraph_id": 0,
"tag": "p",
"text": "f ( t ) {\\displaystyle f(t)} ã®äžå®ç©åã¯,次ã®ããã«åæç©",
"title": "§1"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšæžããããšã«æ³šæããã.ããªãã¡,ç©åãããšããããšã¯,åæç©ã®æå³ã§ 1 {\\displaystyle 1} ãæããããšãæå³ãã. Laplace 倿ã®åºæ¬æ§è³ªã®(1) ãš(3)ãçšãããš,",
"title": "§1"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã£ãŠ",
"title": "§1"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãåŸã.ããªãã¡ t {\\displaystyle t} é åã§ã®ç©å㯠s {\\displaystyle s} é åã§ã¯ s {\\displaystyle s} ã§å²ãããšã«å¯Ÿå¿ãã.",
"title": "§1"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããŠ,",
"title": "§1"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "以äžåæ§ã«ããŠ,åž°çŽçã«,",
"title": "§1"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãåŸã.ãã®å·ŠèŸºã® Laplace 倿ã¯,åºæ¬æ§è³ªã®Laplace 倿ã®åºæ¬æ§è³ªã®(1)ãš(3)ãçšããã°,",
"title": "§1"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã§ãããã,",
"title": "§1"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãåŸã.",
"title": "§1"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äŸ20 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åŒ(2.8) ã Laplace 倿ã®å®çŸ©åŒããçŽæ¥å°ã.",
"title": "§1"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "è§£çäŸ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããªãã¡",
"title": "§1"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãããš,åºæ¬æ§è³ª(1)ããªãã¡",
"title": "§1"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããã³åºæ¬æ§è³ª(2)ãšãååž°çã«é©çšããŠåŒ(2.8)ãåŸããã.å®éã",
"title": "§1"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããªãã¡",
"title": "§1"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ããã«åºæ¬æ§è³ª(2)ãé©çšããã°,",
"title": "§1"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãã®å°åºæ¹æ³ã¯åºæ¬æ§è³ª(1)(2)ã䜿ã£ãŠããŸã£ãŠããã,ããš,ããããã®ã¯æ°åŠçåž°çŽæ³ã§èšè¿°ããã¹ãã§ããã,åºæ¬æ§è³ª(1)(2)ã¯å®¹æãªç©åãªããšãããããã§ååŒããŠã»ãã.",
"title": "§1"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãããã®çµæãçšããŠã次㮠Cauchey ã®å
¬åŒãšåŒã°ãããã®ã瀺ãã.",
"title": "§1"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "蚌æ {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "åæç©ã®èšå·ãçšããŠè¡šãã°äžç®çç¶ã§ãã.ããªãã¡,",
"title": "§1"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªãã,ãã®åŒã®æ£ããããšã¯åŒ(2.7)ããæããã§ãã. ⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãªã Cauchy ã®å
¬åŒã Laplace 倿ããã°,ãã®åã¯,巊蟺å³èŸºãšãã«,",
"title": "§1"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã«ãªãããšã泚æããŠããã.",
"title": "§1"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "f ( t ) {\\displaystyle f(t)} ã®å°é¢æ°ã f â² ( t ) {\\displaystyle f'(t)} ãšãã.埮åç©åæ³ã®åºæ¬å
¬åŒ,",
"title": "§1"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ã®äž¡èŸºã Laplace 倿ãããš",
"title": "§1"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãªã. s {\\displaystyle s} ãæãã°,",
"title": "§1"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšãªã. f ( 0 ) = 0 {\\displaystyle f(0)=0} ãªãã°,",
"title": "§1"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãšãªã, t {\\displaystyle t} é åã§ã®åŸ®åã¯, s {\\displaystyle s} é åã§ s {\\displaystyle s} ãæããããšã«å¯Ÿå¿ã,埮åãšç©åãéæŒç®ã§ããããšãé®®æãšãªã.",
"title": "§1"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "åŒ(2.10) ã 2 床繰ãè¿ããš",
"title": "§1"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãã£ãŠ",
"title": "§1"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "以äžåæ§ã«ããŠ, åž°çŽçã«",
"title": "§1"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãåŸã.åæå€ããã¹ãŠ 0 {\\displaystyle 0} ã®å Žå,ãã®å
¬åŒã¯,",
"title": "§1"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãšã¿ãªããŠããããšã瀺ããŠãã.ãªã f ( n ) {\\displaystyle f^{(n)}} 㯠f {\\displaystyle f} ã®ç¬¬ n {\\displaystyle n} éå°é¢æ°ã§ãã. åŒ(2.11) 㯠Taylor ã®å
¬åŒã瀺ã.äºå®, L [ f ] {\\displaystyle {\\mathcal {L}}[f]} ã«ã€ããŠè§£ããš,",
"title": "§1"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãšãªãã,åŒ(2.8)ããã³ Cauchey ã®å
¬åŒ (2.9) ãçšããŠ,ãã®ååãæ±ããã°,",
"title": "§1"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "äŸ21 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "åŒ(2.11a) ã« f ( 0 ) = a 0 , f â² ( 0 ) = a 1 , ⯠f ( n â 1 ) ( 0 ) = a n â 1 {\\displaystyle f(0)=a_{0},f'(0)=a_{1},\\cdots f^{(n-1)}(0)=a_{n-1}} ã代å
¥ããã°ãã.",
"title": "§1"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
}
]
| null | ==§1==
<math>f(t)</math> ã®äžå®ç©åã¯ïŒæ¬¡ã®ããã«[[w:%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF|åæç©]]
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t f(\tau)d\tau = 1 * f(t)</math>}}
ãšæžããããšã«æ³šæãããïŒããªãã¡ïŒç©åãããšããããšã¯ïŒåæç©ã®æå³ã§ <math>1</math> ãæããããšãæå³ããïŒ
[[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ã®åºæ¬æ§è³ªã®[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.1|(1)]]
ãš[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.3|(3)]]ãçšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}\left[ \int_0^t f(\tau)d\tau \right] = \mathcal{L}[1]\cdot\mathcal{L}[f] = \frac{1}{s}\mathcal{L}[f]</math>}}
ãã£ãŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t f(\tau)d\tau \sqsupset \frac{1}{s} \mathcal{L}[f]</math>|tag=(2.6)|label=eq:2.6}}
ãåŸãïŒããªãã¡ <math>t</math> é åã§ã®ç©å㯠<math>s</math> é å<ref>Laplace 倿ããé åããã®ããã«ç¥ç§°ããïŒ</ref>ã§ã¯ <math>s</math> ã§å²ãããšã«å¯Ÿå¿ããïŒ
ããŠïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>1*1 = \int_0^t 1d\tau = t</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>1*1*1 = 1 * t = \int_0^t \tau d\tau = \frac{t^2}{2!}</math>}}
以äžåæ§ã«ããŠïŒåž°çŽçã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\underbrace{1*1*\cdots *1}_{n\text{å}} = \frac{t^{n - 1}}{(n - 1)!}</math>|tag=(2.7)|label=eq:2.7}}
ãåŸãïŒãã®å·ŠèŸºã® Laplace 倿ã¯ïŒåºæ¬æ§è³ªã®[[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ã®åºæ¬æ§è³ªã®[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.1|(1)]]ãš[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.3|(3)]]ãçšããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[1*1*\cdots*1] = (\mathcal{L}[1])^n = \frac{1}{s^n}</math>}}
ã§ããããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{t^{n - 1}}{(n - 1)!} \sqsupset \frac{1}{s^n}</math>|tag=(2.8)|label=eq:2.8}}
ãåŸãïŒ
<!-- ex:020:start-->
<div id="ex:20">
<strong>äŸ20</strong><math>\quad</math>
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.8|(2.8)]] ã Laplace 倿ã®å®çŸ©åŒããçŽæ¥å°ãïŒ
<strong>è§£çäŸ</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^n] = \int_0^{\infty} t^n e^{-st}dt = \left[ t^n \left( -\frac{1}{s} \right) e^{-st} \right]_0^{\infty} - \int_0^{\infty} nt^{n - 1} \left( \frac{-1}{s} \right)e^{-st}dt</math>|tag=(2.8b)|label=eq:2.8b}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \frac{n}{s}\int_0^t t^{n - 1}e^{-st}dt</math>}}
ããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^n] = \frac{n}{s}\mathcal{L}[t^{n - 1}]</math>}}
ãããšïŒåºæ¬æ§è³ª[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.1|(1)]]ããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^0] = \frac{1}{s}</math>}}
ããã³åºæ¬æ§è³ª[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.2|(2)]]ãšãååž°çã«é©çšããŠåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.8|(2.8)]]ãåŸãããïŒå®éã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^1] = \frac{1}{s}\cdot\frac{1}{s}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^2] = \frac{1}{s}\cdot\frac{1}{s}\cdot\frac{2}{s}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^3] = \frac{1}{s}\cdot\frac{1}{s}\cdot\frac{2}{s}\cdot\frac{3}{s}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[t^4] = \frac{1}{s}\cdot\frac{1}{s}\cdot\frac{2}{s}\cdot\frac{3}{s}\cdot\frac{4}{s}</math>}}
ããªãã¡
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{\mathcal{L}[t^n]}{n!} = \frac{1}{s^{n + 1}}</math>}}
ããã«åºæ¬æ§è³ª[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.2|(2)]]ãé©çšããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}\left[ \frac{t^n}{n!} \right] = \frac{1}{s^{n + 1}}</math>}}
ãã®å°åºæ¹æ³ã¯[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª|åºæ¬æ§è³ª]][[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.1|(1)]][[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª#eq:2.5.2|(2)]]ã䜿ã£ãŠããŸã£ãŠãããïŒããšïŒããããã®ã¯æ°åŠçåž°çŽæ³ã§èšè¿°ããã¹ãã§ãããïŒåºæ¬æ§è³ª(1)(2)ã¯å®¹æãªç©åãªããšãããããã§ååŒããŠã»ããïŒ
<math>\diamondsuit</math>
<!-- ex:020:end-->
<div id="Cauchey ã®å
¬åŒ">
ãããã®çµæãçšããŠã次㮠[[w:%E5%8F%8D%E5%BE%A9%E7%A9%8D%E5%88%86%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F|Cauchey ã®å
¬åŒ]]ãšåŒã°ãããã®ã瀺ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\underbrace{\int_0^t \int_0^t \cdots \int_0^t f(t)dt dt \cdots dt}_{n \text{å}} = \int_0^t \frac{(t-\tau)^{n-1}}{(n-1)!}f(\tau)d\tau</math>|tag=(2.9)|label=eq:2.9}}
<strong>蚌æ</strong><math>\quad</math>
åæç©ã®èšå·ãçšããŠè¡šãã°äžç®çç¶ã§ããïŒããªãã¡ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\underbrace{1*1*\cdots *1}_{n\text{å}}*f(t) = \frac{t^{n-1}}{(n-1)!}*f(t)</math>}}
ãšãªããïŒãã®åŒã®æ£ããããšã¯åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.7|(2.7)]]ããæããã§ããïŒ
<math>\diamondsuit</math>
ãªã [[w:%E3%82%AA%E3%83%BC%E3%82%AE%E3%83%A5%E3%82%B9%E3%82%BF%E3%83%B3%EF%BC%9D%E3%83%AB%E3%82%A4%E3%83%BB%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC|Cauchy]] ã®å
¬åŒã Laplace 倿ããã°ïŒãã®åã¯ïŒå·ŠèŸºå³èŸºãšãã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s^n}\mathcal{L}[f]</math>}}
ã«ãªãããšã泚æããŠãããïŒ
==§2==
<math>f(t)</math> ã®å°é¢æ°ã <math>f'(t)</math> ãšããïŒåŸ®åç©åæ³ã®åºæ¬å
¬åŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^t f'(\tau)d\tau = f(t) - f(0)</math>}}
ã®äž¡èŸºã Laplace 倿ãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s}\mathcal{L}[f'] = \mathcal{L}[f] - \frac{f(0)}{s}</math><ref>
<math>\int_0^t f'(\tau)d\tau = 1*f' \sqsupset \frac{1}{s}\mathcal{L}[f']</math>
</ref>}}
ãšãªãïŒ<math>s</math> ãæãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f'] = s\mathcal{L}[f] - f(0)</math>|tag=(2.10)|label=eq:2.10}}
ãšãªãïŒ<math>f(0) = 0</math> ãªãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f'] = s\mathcal{L}[f]</math>}}
ãšãªãïŒ<math>t</math> é åã§ã®åŸ®åã¯ïŒ<math>s</math> é åã§ <math>s</math> ãæããããšã«å¯Ÿå¿ãïŒåŸ®åãšç©åãéæŒç®ã§ããããšãé®®æãšãªãïŒ
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.10|(2.10)]] ã 2 床繰ãè¿ããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f''] = s\mathcal{L}[f'] - f'(0) = s \left \{ s \mathcal{L}[f]- f'(0) \right \} - f(0)</math>}}
ãã£ãŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f''] = s^2\mathcal{L}[F] - sf(0) - f'(0)</math>}}
以äžåæ§ã«ããŠïŒ<ref>
<math>\mathcal{L}[f^{(3)}] = s^3\mathcal{L}[f] - s^2f(0)-sf^{(1)}(0) - f^{(2)}(0)</math><br />
<math>\mathcal{L}[f^{(4)}] = s^4\mathcal{L}[f] - s^3f(0)-s^2f^{(1)}(0) - sf^{(2)}(0) - f^{(3)}(0)</math><br />
<math>\mathcal{L}[f^{(5)}] = s^5\mathcal{L}[f] - s^4f(0)-s^3f^{(1)}(0) - s^2f^{(2)}(0) - sf^{(3)}(0) - f^{(4)}(0)</math><br />
</ref>
åž°çŽçã«
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f^{(n)}] = s^n \mathcal{L}[f] - s^{n - 1}f(0)-f^{n-2}f'(0)-\cdots-f^{(n-1)}(0)</math>|tag=(2.11)|label=eq:2.11}}
ãåŸãïŒåæå€ããã¹ãŠ <math>0</math> ã®å ŽåïŒãã®å
¬åŒã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d}{dt} \sqsupset s, \quad \frac{d^n}{dt^n} \sqsupset s^n</math>}}
ãšã¿ãªããŠããããšã瀺ããŠããïŒãªã <math>f^{(n)}</math> 㯠<math>f</math> ã®ç¬¬ <math>n</math> éå°é¢æ°ã§ããïŒ
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.11|(2.11)]] 㯠[[w:%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B|Taylor ã®å
¬åŒ]]ã瀺ãïŒäºå®ïŒ<math>\mathcal{L}[f]</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f] = \frac{f(0)}{s} + \frac{f'(0)}{s^2} + \frac{f''(0)}{s^3} + \cdots + \frac{f^{(n-1)}(0)}{s^n} + \frac{1}{s^n}\mathcal{L}[f^{(n)}(t)]</math>}}
ãšãªããïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.8|(2.8)]]ããã³[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#Cauchey ã®å
¬åŒ| Cauchey ã®å
¬åŒ (2.9)]] ãçšããŠïŒãã®ååãæ±ããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 + \frac{f'''(0)}{3!}t^3 + \cdots \frac{f^{(n-1)}(0)}{(n-1)!}t^{n-1} + \int_0^t \frac{(t-\tau)^{n-1}}{(n-1)!}f^{(n)}(\tau)d\tau</math><ref>
<math>\frac{1}{s^n}\mathcal{L}[f^{(n)}(t)] \sqsubset \frac{t^{n-1}}{(n-1)!} * f^{(n)}(t) = \int_0^t \frac{(t-\tau)^{n-1}}{(n-1)!}f^{(n)}(\tau)d\tau</math>
</ref><ref>
Taylor å±éã®å°äœé
ã®ç©å衚瀺ã«ã€ããŠåŸ©ç¿ããïŒå®ç©åã®å®çŸ©ãã<br />
<math>\int_{x_0}^x f'(\tau)d\tau = f(x) - f(x_0)</math><br />
ãã£ãŠ<br />
<math>f(x) = f(x_0) + \int_{x_0}^x f'(\tau)d\tau</math><br />
ãã以éã<math>x, x_0</math> ã¯å®æ°ãšããïŒæåŸã®ç©åã®é
ãéšåç©åããã<math>1</math> ã <math>\tau</math> ã§ç©åãããš <math>-(x-\tau)</math> ã«ãªããšããïŒå®é <math>-(x-\tau)</math> ã <math>\tau</math> ã§åŸ®åãããš <math>1</math>ïŒ<br />
<math>f(x) = f(x_0) + \left[ f'(\tau)(x-\tau)\right]_{\tau=x}^{\tau=x_0} + \int_{x_0}^x f''(x-\tau)d\tau</math><br />
<math>f(x) = f(x_0) + f'(x_0)(x-x_0) + \int_{x_0}^x f''(x-\tau)d\tau</math><br />
ããã«ç©åã®é
ãéšåç©åããã<math>(x-\tau)</math> ã <math>\tau</math> ã§ç©åãããš <math>-\frac{(x-\tau)^2}{2!}</math> ã«ãªããšããïŒå®é <math>-\frac{(x-\tau)^2}{2!}</math> ã <math>\tau</math> ã§åŸ®åãããš <math>(x-\tau)</math>ïŒ<br />
<math>f(x) = f(x_0) + f'(x_0)(x-x_0) + \left[ f''(\tau)\frac{(x-\tau)^2}{2!}\right]_{\tau=x}^{\tau=x_0} + \int_{x_0}^x f^{(3)}(\tau)\frac{(x-\tau)^2}{2!}d\tau</math><br />
<math>f(x) = f(x_0) + f'(x_0)(x-x_0) + f''(x_0)\frac{(x-x_0)^2}{2!} + \int_{x_0}^x f^{(3)}(\tau)\frac{(x-\tau)^2}{2!}d\tau</math><br />
ããã«ç©åã®é
ãéšåç©åããã<math>\frac{(x-\tau)^2}{2!}</math> ã <math>\tau</math> ã§ç©åãããš <math>-\frac{(x-\tau)^3}{3!}</math> ã«ãªããšããïŒ<br />
<math>f(x) = f(x_0) + f'(x_0)(x-x_0) + f''(x_0)\frac{(x-x_0)^2}{2!} + f^{(3)}(x_0)\frac{(x-x_0)^3}{3!} + \int_{x_0}^x f^{(4)}(\tau)\frac{(x-\tau)^3}{3!}d\tau</math><br />
<math>(x-x_0)</math> ã®ææ°ã <math>n - 1</math> ã«ãªããŸã§ãã®éçšãç¹°ãè¿ããšæ¬¡ã®æçµåœ¢ã«ãªãïŒ<br />
<math>f(x) = f(x_0) + f'(x_0)(x-x_0) + f''(x_0)\frac{(x-x_0)^2}{2!} + f^{(3)}(x_0)\frac{(x-x_0)^3}{3!} + \cdots + f^{(n-1)}(x_0)\frac{(x-x_0)^{n - 1}}{(n - 1)!}+ \int_{x_0}^x f^{(n)}(\tau)\frac{(x-\tau)^{n-1}}{(n-1)!}d\tau</math><br />
å³å¯ã«ã¯æ°åŠçåž°çŽæ³ã§èšè¿°ããã¹ãã§ãããïŒããã§ååŒããŠã»ããâŠïŒ
</ref>|tag=(2.11a)|label=eq:2.11a}}
<!-- ex:020:start-->
<div id="ex:21">
<strong>äŸ21</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^n x}{dt^n} = f(t), \quad x(0) = a_0, x'(0) = a_1, \cdots x^{(n-1)} = a_{n-1}</math>}}
ãè§£ãïŒ
<strong>è§£çäŸ</strong>
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.11a|(2.11a)]] ã« <math>f(0) = a_0, f'(0) = a_1, \cdots f^{(n-1)}(0) = a_{n-1}</math> ã代å
¥ããã°ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = a_0 + a_1t + \frac{a_2}{2!}t^2 + \frac{a_3}{3!}t^3 + \cdots \frac{a_{n-1}}{(n-1)!}t^{n-1} + \int_0^t \frac{(t-\tau)^{n-1}}{(n-1)!}f(\tau)d\tau</math>}}
<math>\diamondsuit</math>
<!-- ex:021:end-->
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:24:11Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/f(t)_%E3%81%AE%E7%A9%8D%E5%88%86%E3%81%8A%E3%82%88%E3%81%B3%E5%BE%AE%E5%88%86%E3%81%AE_Laplace_%E5%A4%89%E6%8F%9B |
25,139 | å°çæž©æå鲿¢å¯Ÿç | å°çæž©æåãšã¯ã倧ãŸãã«èª¬æãããšã人åã³ããã«ããè¡åã»æ©æ¢°ãåºãæž©å®€å¹æã¬ã¹ã«ãããæ°åå€åã®äžéšã§ãå°ç衚é¢ã®å€§æ°ãæµ·æŽã®å¹³å枩床ãé·æçã«äžæããçŸè±¡ããšãããŠããã(詳ããã¯Wikipediaã®èšäºãåç
§)ãã®æ¬ã§ã¯ãã®å°çæž©æåã鲿¢ããããã®å¯Ÿçã説æããããããã察çã¯å°çæž©æåãæ ¹æ¬çã«ãã以äžåºãããªãããã«ããŠæåŸã¯å°çæž©æåããªãã£ãæ¹åã«åãããç·©åããšãæž©æåã«æ
£ããããã«ãã£ãè¡åããããé©å¿ããããããã®æ¬ã§ã¯ãããŸã§ã鲿¢ãã®ããããç·©åãã®å
容ãè¿°ã¹ãã çŸåšèããããŠãã察çã¯ãäž»ã«æž©å®€å¹æã¬ã¹ã®æåºéåæžãåã¯ãã®ååãããã
æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ( CO2 )ãäœ¿çšæã«å€ãæåºããç³æ²¹ãç³çãªã©ä»¥å€ã®ãäºé
žåççŽ æåºéãå°ãªãçæã®äœ¿çš(ããããããã£ãåç³çæã¯ä»åŸ75幎以å
ã«åºãå°œãããšãç¥ãããŠãã)ã
æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ã¯æ€ç©ã®å
åæã«ããé
žçŽ ã«å€æã§ãããããªãã¡ããããå¿çšãæ€æãªã©ãæšãé²ããããšã«ããäºé
žåççŽ ãæžããããšãã§ãããããããè¿å¹Žã®æ£®æäŒæ¡ãæ¡å€§ããçŸç¶ã§ã¯é£ãããããããç æŒ åã«ããæ€æããå Žæãããªããæ¥æ¬ã¯å€åœããå®ãæšæã茞å
¥ããŠããããšã幞ãäžå¹žã幞ããå€åœã«æ¯ã¹æ£®æãåœåã«å ããå²åãå€ãããŸãæ¥æ¬äººã¯æ£®æäŒæ¡ã«é¢ããçŸç¶ãçè§£ããŠããªãããšå€åœã®å°éå®¶ããææãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å°çæž©æåãšã¯ã倧ãŸãã«èª¬æãããšã人åã³ããã«ããè¡åã»æ©æ¢°ãåºãæž©å®€å¹æã¬ã¹ã«ãããæ°åå€åã®äžéšã§ãå°ç衚é¢ã®å€§æ°ãæµ·æŽã®å¹³å枩床ãé·æçã«äžæããçŸè±¡ããšãããŠããã(詳ããã¯Wikipediaã®èšäºãåç
§)ãã®æ¬ã§ã¯ãã®å°çæž©æåã鲿¢ããããã®å¯Ÿçã説æããããããã察çã¯å°çæž©æåãæ ¹æ¬çã«ãã以äžåºãããªãããã«ããŠæåŸã¯å°çæž©æåããªãã£ãæ¹åã«åãããç·©åããšãæž©æåã«æ
£ããããã«ãã£ãè¡åããããé©å¿ããããããã®æ¬ã§ã¯ãããŸã§ã鲿¢ãã®ããããç·©åãã®å
容ãè¿°ã¹ãã çŸåšèããããŠãã察çã¯ãäž»ã«æž©å®€å¹æã¬ã¹ã®æåºéåæžãåã¯ãã®ååãããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ( CO2 )ãäœ¿çšæã«å€ãæåºããç³æ²¹ãç³çãªã©ä»¥å€ã®ãäºé
žåççŽ æåºéãå°ãªãçæã®äœ¿çš(ããããããã£ãåç³çæã¯ä»åŸ75幎以å
ã«åºãå°œãããšãç¥ãããŠãã)ã",
"title": "æåºéåæž"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ã¯æ€ç©ã®å
åæã«ããé
žçŽ ã«å€æã§ãããããªãã¡ããããå¿çšãæ€æãªã©ãæšãé²ããããšã«ããäºé
žåççŽ ãæžããããšãã§ãããããããè¿å¹Žã®æ£®æäŒæ¡ãæ¡å€§ããçŸç¶ã§ã¯é£ãããããããç æŒ åã«ããæ€æããå Žæãããªããæ¥æ¬ã¯å€åœããå®ãæšæã茞å
¥ããŠããããšã幞ãäžå¹žã幞ããå€åœã«æ¯ã¹æ£®æãåœåã«å ããå²åãå€ãããŸãæ¥æ¬äººã¯æ£®æäŒæ¡ã«é¢ããçŸç¶ãçè§£ããŠããªãããšå€åœã®å°éå®¶ããææãããã",
"title": "眮æ"
}
]
| å°çæž©æåãšã¯ã倧ãŸãã«èª¬æãããšã人åã³ããã«ããè¡åã»æ©æ¢°ãåºãæž©å®€å¹æã¬ã¹ã«ãããæ°åå€åã®äžéšã§ãå°ç衚é¢ã®å€§æ°ãæµ·æŽã®å¹³å枩床ãé·æçã«äžæããçŸè±¡ããšãããŠããã(詳ããã¯Wikipediaã®èšäºãåç
§)ãã®æ¬ã§ã¯ãã®å°çæž©æåã鲿¢ããããã®å¯Ÿçã説æããããããã察çã¯å°çæž©æåãæ ¹æ¬çã«ãã以äžåºãããªãããã«ããŠæåŸã¯å°çæž©æåããªãã£ãæ¹åã«åãããç·©åããšãæž©æåã«æ
£ããããã«ãã£ãè¡åããããé©å¿ããããããã®æ¬ã§ã¯ãããŸã§ã鲿¢ãã®ããããç·©åãã®å
容ãè¿°ã¹ãã
çŸåšèããããŠãã察çã¯ãäž»ã«æž©å®€å¹æã¬ã¹ã®æåºéåæžãåã¯ãã®ååãããã | {{Pathnav|ã¡ã€ã³ããŒãž|ãã®ä»ã®æ¬|frame=1}}
{{Wikipedia|å°çæž©æå}}
{{Wikipedia|å°çæž©æåãžã®å¯Ÿç}}
{{wikiversity|å°çæž©æå}}
å°çæž©æåãšã¯ã倧ãŸãã«èª¬æãããšã人åã³ããã«ããè¡åã»æ©æ¢°ãåºãæž©å®€å¹æã¬ã¹ã«ãããæ°åå€åã®äžéšã§ãå°ç衚é¢ã®å€§æ°ãæµ·æŽã®å¹³å枩床ãé·æçã«äžæããçŸè±¡ããšãããŠããã(詳ããã¯[[W:å°çæž©æå|Wikipediaã®èšäº]]ãåç
§)ãã®æ¬ã§ã¯ãã®[[å°çæž©æå鲿¢å¯Ÿç|å°çæž©æåã鲿¢ããããã®å¯Ÿç]]ã説æããããããã察çã¯å°çæž©æåãæ ¹æ¬çã«ãã以äžåºãããªãããã«ããŠæåŸã¯å°çæž©æåããªãã£ãæ¹åã«åãããç·©åããšãæž©æåã«æ
£ããããã«ãã£ãè¡åããããé©å¿ããããããã®æ¬ã§ã¯ãããŸã§ã鲿¢ãã®ããããç·©åãã®å
容ãè¿°ã¹ãã<!-- ãšãããããã§ããå
å®ã次第ãé©å¿ãã®æŽåãããŠããã¹ãã§ãã -->
çŸåšèããããŠãã察çã¯ãäž»ã«[[W:æž©å®€å¹æã¬ã¹|æž©å®€å¹æã¬ã¹]]ã®æåºéåæžãåã¯ãã®ååãããã
== æåºéåæž ==
=== è³æºã®å€æŽ ===
æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ( CO<sub>2</sub> )ãäœ¿çšæã«å€ãæåºããç³æ²¹ãç³çãªã©ä»¥å€ã®ãäºé
žåççŽ æåºéãå°ãªãçæã®äœ¿çš({{èŠåºå
žç¯å²|ããããããã£ã[[w:åç³çæ|åç³çæ]]ã¯ä»åŸ75幎以å
ã«åºãå°œãããšãç¥ãããŠãã|date=2019幎6æ}})ã
==== æ¥åžžçã«ã§ããããš ====
* [[W:黿°èªåè»|黿°èªåè»]]ã[[W:æ°ŽçŽ èªåè»|æ°ŽçŽ èªåè»]]ã®äœ¿çš
* éé貚ç©èŒžéã«ããééãããååã®è³Œå
¥
** éé貚ç©ã«ãã茞éã¯ä»ã«æ¯ã¹å§åçã«å¹çãããããã©ãã¯ã«æ¯ã¹æåºéã11åã®1ã§æžã<ref>ã2019è²šç©æå»è¡šãã17è²¢ã2019幎3æ16æ¥çºè¡ãæ¥æ¬è²šç©ééæ ªåŒäŒç€Ÿãæ¥æ¬éé貚ç©åäŒåºçã2019幎9æ26æ¥é²èЧã</ref>ã
* èªå®
ãªã©ãžã®[[W:ãœãŒã©ãŒããã«|ãœãŒã©ãŒããã«]]ã®èšçœ®
** [[W:ç«åçºé»æ|ç«åçºé»æ]]ã䜿çšããªããªã)</small>
==== ã§ãã人ã«åãçµãã§ãããããããš ====
* ç³æ²¹ãªã©ãçæãšããæ©æ¢°ã»è£
眮ã®é»åãªã©
* 颚åãªã©[[W:åçå¯èœãšãã«ã®ãŒ|åçå¯èœãšãã«ã®ãŒ]]ã®å©çšä¿é²
== 眮æ ==
æž©å®€å¹æã¬ã¹ã®å€§éšåãå ããäºé
žåççŽ ã¯æ€ç©ã®[[w:å
åæ|å
åæ]]ã«ããé
žçŽ ã«å€æã§ãããããªãã¡ããããå¿çšãæ€æãªã©ãæšãé²ããããšã«ããäºé
žåççŽ ãæžããããšãã§ããããããã{{èŠåºå
žç¯å²|è¿å¹Žã®[[w:森æäŒæ¡|森æäŒæ¡]]ãæ¡å€§ããçŸç¶|date=2019幎6æ}}ã§ã¯é£ããããããã[[w:ç æŒ å|ç æŒ å]]ã«ããæ€æããå Žæãããªãã{{èŠåºå
žç¯å²|æ¥æ¬ã¯å€åœããå®ãæšæã茞å
¥ããŠããããšã[[d:幞ãäžå¹žã|幞ãäžå¹žã]]幞ããå€åœã«æ¯ã¹æ£®æãåœåã«å ããå²åãå€ãããŸãæ¥æ¬äººã¯æ£®æäŒæ¡ã«é¢ããçŸç¶ãçè§£ããŠããªãããšå€åœã®å°éå®¶ããææãããã|date=2019幎6æ}}
== èæ³š ==
{{Reflist}}
== é¢é£é
ç® ==
* çŸåšã®æž©æåã®é²è¡ç¶æ³ããã³ãã®å
·äœçãªå
容ã«ã€ããŠã¯åŠæ ¡æç§æžã§ããã以äžãåç
§ã
** [[äžåŠæ ¡ç€ŸäŒ å°ç/äžçãšæ¯ã¹ãŠã¿ãæ¥æ¬ ç°å¢åé¡]]
** [[äžåŠæ ¡ç€ŸäŒ å
¬æ°/å°çç°å¢åé¡]]
* ãã®ä»
{{Stub}}
[[ã«ããŽãª:ç°å¢åé¡]]
[[ã«ããŽãª:å°ç|*]]
{{DEFAULTSORT:ã¡ããããããããã»ãããããã}} | null | 2022-12-18T08:20:24Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:èŠåºå
žç¯å²",
"ãã³ãã¬ãŒã:Reflist"
]
| https://ja.wikibooks.org/wiki/%E5%9C%B0%E7%90%83%E6%B8%A9%E6%9A%96%E5%8C%96%E9%98%B2%E6%AD%A2%E5%AF%BE%E7%AD%96 |
25,187 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš | åç¯ã§å°ããå
¬åŒ
ã«ãããŠ, f ( t ) = e α t {\displaystyle f(t)=e^{\alpha t}} ãšãããš, f â² ( t ) = α e α t , f ( 0 ) = 1 {\displaystyle f'(t)=\alpha e^{\alpha t},f(0)=1} ã§ãããã,
ãšãªã.
ãã£ãŠå
¬åŒ,
ãåŸã. ããã§äžåŒã®å³èŸºã 1 s {\displaystyle {\frac {1}{s}}} ã§å±éããŠã¿ããš,
ããªãã¡,
ãšãªãã,ãã®ååã¯,åŒ(2.8)ãã,
ã§ãã.ãã㯠e α t {\displaystyle e^{\alpha t}} ã® Taylor å±éã«ã»ããªããªã.
次ã«å
¬åŒ(2.12) ã®å¿çšãšã㊠C ã«ãã幎代枬å®ã説æããã. 詊æã«å«ãŸããŠãã C ã®æ¿åºŠã c ( t ) {\displaystyle c(t)} ãšãããš,
ãªãåŸ®åæ¹çšåŒãæºãã.ããªãã¡ççŽ ã®æŸå°æ§åäœå
çŽ C ã®å£å€ã®éãã¯,ãã®æã®æ¿åºŠã«æ¯äŸãã.ãã®åŒã Laplace 倿ãããš
ãã®ååã¯ã
ã§ãã.ããããçµé幎æ°ã¯,
ãšæ±ãŸã. c ( t ) = 1 2 c ( 0 ) {\displaystyle c(t)={\frac {1}{2}}c(0)} ãšãªãæéãåæžæãšãã T 1 / 2 {\displaystyle T_{1/2}} ã§è¡šã.C ã®å Žåã¯,
ã§ãã.åæžæãåããã°ãå£å€å®æ°ãåãã. ãããã£ãŠ,åææ¿åºŠ c ( 0 ) {\displaystyle c(0)} ãåããã°çŸåšã®æ¿åºŠ c ( t ) {\displaystyle c(t)} ãæž¬å®ããããšã«ãã£ãŠçµé幎æ°ãåãã.ããã C ã«ãã幎代枬å®ã®åçã§ãã.
äŸ22 {\displaystyle \quad }
c ( 0 ) {\displaystyle c(0)} ã®æ±ºå®ã倧åé¡ã§ãã. c ( 0 ) {\displaystyle c(0)} ãšããŠã¯,1950幎代ã®å€§æ°äžã® C ã®æ¿åºŠããšã.ããã¯å¥æªã§ãã.çç±ã調ã¹ãŠã¿ã.
è§£çäŸ
äžæ.
⢠{\displaystyle \diamondsuit }
äŸ23 {\displaystyle \quad }
ããã«
ãè§£ã.ãã ã a , b {\displaystyle a,b} ã¯å®æ°ã§ãã.
è§£
Laplace 倿ãããš
ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã«ã€ããŠè§£ã,
ããã«å³èŸºãéšååæ°åè§£ãããš,
ãã®ååãæ±ãããš,
ãåŸã.
ãã®äŸã¯,æå» t = 0 {\displaystyle t=0} ã«ã¹ã€ãããå
¥ããŠéšå±ãææ¿ãããšãã®æž©åºŠå€åã衚ã. x {\displaystyle x} ã¯ææ¿åã®å®€æž©(å€çã®æž©åºŠã«çãããšä»®å®ããŠãã)ããã®åäœã衚ã. å®åžžç¶æ
ã®æž©åºŠã¯,
ã§ãã£ãŠ,ããã¯äŸçµŠç±éãšå€çã«éããç±éãšã平衡ãä¿ã€ç¶æ
ã§ã®æž©åºŠã瀺ã. ããã¯å¹³è¡¡ç¶æ
ã®åŒ,ããªãã¡åŒ(2.13) ã§ d x d t = 0 {\displaystyle {\frac {dx}{dt}}=0} ãšãããåŒ,
ã®è§£ãšäžèŽããŠãã.
⢠{\displaystyle \diamondsuit }
äŸ24 {\displaystyle \quad }
ãè§£ã.
è§£
Laplace 倿ãããš,
ãšããã§,
ãšãªãããšãæ³ãèµ·ãããš,ååã¯,
ãšãªã.
⢠{\displaystyle \diamondsuit }
åŒ(2.15)ã¯å®æ°å€åã®å
¬åŒãšåŒã°ããŠããéèŠãªå
¬åŒã§ãã. ãã®ååã®ç±æ¥ã¯æ¬¡ã®ãšããã§ãã. 忬¡åŒ,
ã®è§£ã¯,
ã§ãã£ã.宿° c {\displaystyle c} ã倿° u ( t ) {\displaystyle u(t)} ã«çœ®ãæããŠãé忬¡ã®åŒ(2.14) ã®è§£ãæ¢ã.ããªãã¡,
ãåŒ(2.14)ã«ä»£å
¥ãããš,
ãšãªã.ããã 0 {\displaystyle 0} ãã t {\displaystyle t} ãŸã§ç©åã,
ãã®çµæãåŒ(2.16)ã«ä»£å
¥ãããš,
ãšãªãæ±ããçµæãåŸã.
⢠{\displaystyle \diamondsuit }
ãã®å
¬åŒã¯éèŠã§ãããã,èªå°æ³ãšãšãã«èŠããŠããããšãæãŸãã.
äŸ25 {\displaystyle \quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.
è§£çäŸ
s L [ x ] â 2 + L [ x ] = 1 s 2 {\displaystyle s{\mathcal {L}}[x]-2+{\mathcal {L}}[x]={\frac {1}{s^{2}}}} L [ x ] = 1 s 2 ( s + 1 ) + 2 s + 1 = â 1 s + 1 s 2 + 3 s + 1 {\displaystyle {\mathcal {L}}[x]={\frac {1}{s^{2}(s+1)}}+{\frac {2}{s+1}}={\frac {-1}{s}}+{\frac {1}{s^{2}}}+{\frac {3}{s+1}}} ⎠x = t â 1 + 3 e â t {\displaystyle \therefore x=t-1+3e^{-t}} ãã®ãšã x â² = 1 â 3 e â t {\displaystyle x'=1-3e^{-t}} ⎠x + x â² = t â 1 + 3 e â t + 1 â 3 e â t = t {\displaystyle \therefore x+x'=t-1+3e^{-t}+1-3e^{-t}=t} x ( 0 ) = â 1 + 3 0 = 2 {\displaystyle x(0)=-1+3^{0}=2} ãã£ãŠè§£ x {\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.
⢠{\displaystyle \diamondsuit }
äŸ26 {\displaystyle \quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.
è§£çäŸ
s 2 L [ x ] â 1 â 3 s L [ x ] + 2 L [ x ] = 0 {\displaystyle s^{2}{\mathcal {L}}[x]-1-3s{\mathcal {L}}[x]+2{\mathcal {L}}[x]=0} L [ x ] = 1 ( s â 1 ) ( s â 2 ) = 1 s â 2 â 1 s â 1 {\displaystyle {\mathcal {L}}[x]={\frac {1}{(s-1)(s-2)}}={\frac {1}{s-2}}-{\frac {1}{s-1}}} ⎠x = e 2 t â e t {\displaystyle \therefore x=e^{2t}-e^{t}} ãã®ãšã x â² = 2 e 2 t â e t {\displaystyle x'=2e^{2t}-e^{t}} x â²â² = 4 e 2 t â e t {\displaystyle x''=4e^{2t}-e^{t}} ⎠x â²â² â 3 x â² + 2 x = 4 e 2 t â e t â 3 ( 2 e 2 t â e t ) + 2 ( e 2 t â e t ) = 0 {\displaystyle \therefore x''-3x'+2x=4e^{2t}-e^{t}-3(2e^{2t}-e^{t})+2(e^{2t}-e^{t})=0} x ( 0 ) = e 2 â
0 â e 0 = 0 {\displaystyle x(0)=e^{2\cdot 0}-e^{0}=0} x â² ( 0 ) = 2 e 2 â
0 â e 0 = 1 {\displaystyle x'(0)=2e^{2\cdot 0}-e^{0}=1} ãã£ãŠè§£ x {\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.
⢠{\displaystyle \diamondsuit }
äŸ27 {\displaystyle \quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.
è§£çäŸ
s 2 L [ x ] â 4 L [ x ] = 8 s {\displaystyle s^{2}{\mathcal {L}}[x]-4{\mathcal {L}}[x]={\frac {8}{s}}} L [ x ] = 8 s ( s + 2 ) ( s â 2 ) = â 2 s + 1 s â 2 + 1 s + 2 {\displaystyle {\mathcal {L}}[x]={\frac {8}{s(s+2)(s-2)}}={\frac {-2}{s}}+{\frac {1}{s-2}}+{\frac {1}{s+2}}} ⎠x = e 2 t + e â 2 t â 2 {\displaystyle \therefore x=e^{2t}+e^{-2t}-2} ãã®ãšã x â² = 2 e 2 t â 2 e â 2 t {\displaystyle x'=2e^{2t}-2e^{-2t}} x â²â² = 4 e 2 t + 4 e â 2 t {\displaystyle x''=4e^{2t}+4e^{-2t}} ⎠x â²â² â 4 x = 4 e 2 t + 4 e â 2 t â 4 ( e 2 t + e â 2 t â 2 ) = 8 {\displaystyle \therefore x''-4x=4e^{2t}+4e^{-2t}-4(e^{2t}+e^{-2t}-2)=8} x ( 0 ) = e 0 + e 0 â 2 = 0 {\displaystyle x(0)=e^{0}+e^{0}-2=0} x â² ( 0 ) = 2 e 0 â e 0 = 0 {\displaystyle x'(0)=2e^{0}-e^{0}=0} ãã£ãŠè§£ x {\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.
⢠{\displaystyle \diamondsuit }
äŸ28 {\displaystyle \quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.
è§£çäŸ
L [ x ] = x 0 s + ( v 0 + 5 x 0 ) ( s + 2 ) ( s + 3 ) + L [ f ] ( s + 2 ) ( s + 3 ) {\displaystyle {\mathcal {L}}[x]={\frac {x_{0}s+(v_{0}+5x_{0})}{(s+2)(s+3)}}+{\frac {{\mathcal {L}}[f]}{(s+2)(s+3)}}}
éæž¡è§£ã u ( t ) {\displaystyle u(t)} ãšãããš, u {\displaystyle u} ã«ã€ããŠã¯ L [ u ] = x 0 s ( s + 2 ) ( s + 3 ) + ( v 0 + 5 x 0 ) ( s + 2 ) ( s + 3 ) {\displaystyle {\mathcal {L}}[u]={\frac {x_{0}s}{(s+2)(s+3)}}+{\frac {(v_{0}+5x_{0})}{(s+2)(s+3)}}} = x 0 ( â 2 s + 2 + 3 s + 3 ) + ( v 0 + 5 x 0 ) ( 1 s + 2 â 1 s + 3 ) {\displaystyle =x_{0}\left({\frac {-2}{s+2}}+{\frac {3}{s+3}}\right)+(v_{0}+5x_{0})\left({\frac {1}{s+2}}-{\frac {1}{s+3}}\right)} ãã®åå㯠u ( t ) = x 0 ( â 2 e â 2 t + 3 e â 3 t ) + ( v 0 + 5 x 0 ) ( e â 2 t â e â 3 t ) {\displaystyle u(t)=x_{0}\left(-2e^{-2t}+3e^{-3t}\right)+(v_{0}+5x_{0})\left(e^{-2t}-e^{-3t}\right)} = x 0 ( â 2 e â 2 t + 3 e â 3 t + 5 e â 2 t â 5 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\displaystyle =x_{0}\left(-2e^{-2t}+3e^{-3t}+5e^{-2t}-5e^{-3t}\right)+v_{0}\left(e^{-2t}-e^{-3t}\right)} = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\displaystyle =x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})} å®åžžè§£ã v ( t ) {\displaystyle v(t)} ãšãããš, v {\displaystyle v} ã«ã€ããŠã¯ L [ v ] = L [ f ] ( s + 2 ) ( s + 3 ) {\displaystyle {\mathcal {L}}[v]={\frac {{\mathcal {L}}[f]}{(s+2)(s+3)}}} = ( 1 s + 2 â 1 s + 3 ) â
L [ f ] {\displaystyle =\left({\frac {1}{s+2}}-{\frac {1}{s+3}}\right)\cdot {\mathcal {L}}[f]} ãã®åå㯠v ( t ) = ( e â 2 t â e â 3 t ) â f ( t ) {\displaystyle v(t)=(e^{-2t}-e^{-3t})*f(t)} = â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\displaystyle =\int _{0}^{t}\left\{e^{-2(t-\tau )}-e^{-3(t-\tau )}\right\}f(\tau )d\tau } ãã£ãŠè§£ã¯ x ( t ) = u ( t ) + v ( t ) = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) + â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\displaystyle x(t)=u(t)+v(t)=x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})+\int _{0}^{t}\left\{e^{-2(t-\tau )}-e^{-3(t-\tau )}\right\}f(\tau )d\tau }
ç¶ããŠæ€ç®ã宿œãã.ç©åç¯å²ã®äžç«¯ã倿°ã§ããå®ç©åã®åŸ®åã«ã€ããŠåŸ©ç¿ãããš, d d t â« 0 t f ( Ï ) d Ï = f ( t ) , {\displaystyle {\frac {d}{dt}}\int _{0}^{t}f(\tau )d\tau =f(t),\quad } ãã ã, â« 0 t f ( Ï ) d Ï {\displaystyle \int _{0}^{t}f(\tau )d\tau } ã®è¢«ç©å圢 f ( Ï ) {\displaystyle f(\tau )} ã®äžã«ãã§ã«å€æ° t {\displaystyle t} ãå
¥ã£ãŠããŠã¯ãããªã.
å®åžžè§£ v ( t ) {\displaystyle v(t)} ã«ã€ããŠã¯ v ( t ) = â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\displaystyle v(t)=\int _{0}^{t}\left\{e^{-2(t-\tau )}-e^{-3(t-\tau )}\right\}f(\tau )d\tau } = â« 0 t { e â 2 t â
e 2 Ï â e â 3 t â
e 3 Ï } f ( Ï ) d Ï {\displaystyle =\int _{0}^{t}\left\{e^{-2t}\cdot e^{2\tau }-e^{-3t}\cdot e^{3\tau }\right\}f(\tau )d\tau } = e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï {\displaystyle =e^{-2t}\int _{0}^{t}e^{2\tau }f(\tau )d\tau -e^{-3t}\int _{0}^{t}e^{3\tau }f(\tau )d\tau } v â² ( t ) = â 2 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï + e â 2 t e 2 t f ( t ) + 3 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï â e â 3 t e 3 t f ( t ) {\displaystyle v'(t)=-2e^{-2t}\int _{0}^{t}e^{2\tau }f(\tau )d\tau +e^{-2t}e^{2t}f(t)+3e^{-3t}\int _{0}^{t}e^{3\tau }f(\tau )d\tau -e^{-3t}e^{3t}f(t)} = â 2 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï + 3 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï {\displaystyle =-2e^{-2t}\int _{0}^{t}e^{2\tau }f(\tau )d\tau +3e^{-3t}\int _{0}^{t}e^{3\tau }f(\tau )d\tau } v â²â² ( t ) = 4 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â 2 e â 2 t â
e 2 t f ( t ) â 9 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï + 3 e â 3 t e 3 t f ( t ) {\displaystyle v''(t)=4e^{-2t}\int _{0}^{t}e^{2\tau }f(\tau )d\tau -2e^{-2t}\cdot e^{2t}f(t)-9e^{-3t}\int _{0}^{t}e^{3\tau }f(\tau )d\tau +3e^{-3t}e^{3t}f(t)} = 4 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â 9 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï + f ( t ) {\displaystyle =4e^{-2t}\int _{0}^{t}e^{2\tau }f(\tau )d\tau -9e^{-3t}\int _{0}^{t}e^{3\tau }f(\tau )d\tau +f(t)} ãã£ãŠ v â²â² + 5 v â² + 6 v = { 4 + 5 ( â 2 ) + 6 â
1 } â« 0 t e 2 Ï f ( Ï ) d Ï + { ( â 9 ) + 5 â
3 + 6 ( â 1 ) } â« 0 t e 3 Ï f ( Ï ) d Ï + f ( t ) {\displaystyle v''+5v'+6v=\left\{4+5(-2)+6\cdot 1\right\}\int _{0}^{t}e^{2\tau }f(\tau )d\tau +\left\{(-9)+5\cdot 3+6(-1)\right\}\int _{0}^{t}e^{3\tau }f(\tau )d\tau +f(t)} = f ( t ) {\displaystyle =f(t)}
éæž¡è§£ u ( t ) {\displaystyle u(t)} ã«ã€ããŠã¯ u ( t ) = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\displaystyle u(t)=x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})} u â² ( t ) = x 0 ( â 6 e â 2 t + 6 e â 3 t ) + v 0 ( â 2 e â 2 t + 3 e â 3 t ) {\displaystyle u'(t)=x_{0}(-6e^{-2t}+6e^{-3t})+v_{0}(-2e^{-2t}+3e^{-3t})} u â²â² ( t ) = x 0 ( 12 e â 2 t â 18 e â 3 t ) + v 0 ( 4 e â 2 t â 9 e â 3 t ) {\displaystyle u''(t)=x_{0}(12e^{-2t}-18e^{-3t})+v_{0}(4e^{-2t}-9e^{-3t})} ãã£ãŠ u â²â² + 5 u â² + 6 u = x 0 [ { 12 + 5 ( â 6 ) + 6 â
3 } e â 2 t + { ( â 18 ) + 5 â
6 + 6 ( â 2 ) } ] + v 0 [ { 4 + 5 ( â 2 ) + 6 â
1 } e â 2 t + { â 9 + 5 â
3 + 6 ( â 1 ) } e â 3 t ] {\displaystyle u''+5u'+6u=x_{0}\left[\left\{12+5(-6)+6\cdot 3\right\}e^{-2t}+\left\{(-18)+5\cdot 6+6(-2)\right\}\right]+v_{0}\left[\left\{4+5(-2)+6\cdot 1\right\}e^{-2t}+\left\{-9+5\cdot 3+6(-1)\right\}e^{-3t}\right]} = 0 {\displaystyle =0} x ( 0 ) = u ( 0 ) = x 0 ( 3 e 0 â 2 e 0 ) + v 0 ( e 0 â e 0 ) = x 0 {\displaystyle x(0)=u(0)=x_{0}(3e^{0}-2e^{0})+v_{0}(e^{0}-e^{0})=x_{0}} x â² ( 0 ) = u â² ( 0 ) = x 0 ( â 6 e 0 + 6 e 0 ) + v 0 ( â 2 e 0 + 3 e 0 ) = v 0 {\displaystyle x'(0)=u'(0)=x_{0}(-6e^{0}+6e^{0})+v_{0}(-2e^{0}+3e^{0})=v_{0}} ãã£ãŠ x {\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.
⢠{\displaystyle \diamondsuit }
è£é¡
蚌æ
åæç©ã®å®çŸ©ãã
ãåŸã.
⢠{\displaystyle \diamondsuit }
ãã®è£é¡(2.17a)ãé©çšããã°,
ãåŸã.ãšããã§,
ãã£ãŠæ¬¡ã®å
¬åŒãåŸã.
ãã®å
¬åŒãåã®çµæ
ãšæ¯èŒãããš, t {\displaystyle t} é åã§ e α t {\displaystyle e^{\alpha t}} ãæããããšãš, s {\displaystyle s} é å㧠α {\displaystyle \alpha } ã ãç§»åããããšãšã察å¿ããŠãã. ãã®ããšã¯,ãã£ãšäžè¬çã«æç«ããäºå®ã§ãã.
第äžç§»åå®ç
蚌æ
⢠{\displaystyle \diamondsuit }
ãã®å®çãã,çŽã¡ã«,
ãå°ãããã®ã§ãã.
äŸ29 {\displaystyle \quad }
ãè§£ã.
è§£çäŸ
äžåŒã Laplace 倿ãããš,
ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã«ã€ããŠè§£ããš,
ãšãªããã,ãã®ååã¯,
ã§ãã.
⢠{\displaystyle \diamondsuit }
äŸ30 {\displaystyle \quad }
ãè§£ã.
è§£
ãšãããš,
ãããã,
ãåŸã.
⢠{\displaystyle \diamondsuit }
äŸ31 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
s L [ x ] â 1 + L [ x ] = 1 s + 1 {\displaystyle s{\mathcal {L}}[x]-1+{\mathcal {L}}[x]={\frac {1}{s+1}}}
⎠L [ x ] = 1 s + 1 + 1 ( s + 1 ) 2 {\displaystyle \therefore {\mathcal {L}}[x]={\frac {1}{s+1}}+{\frac {1}{(s+1)^{2}}}}
⎠x = ( 1 + t ) e â t {\displaystyle \therefore x=(1+t)e^{-t}}
⢠{\displaystyle \diamondsuit }
äŸ32 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
s 2 L [ x ] + 2 s L [ x ] + L [ x ] = 1 ( s + 1 ) 2 {\displaystyle s^{2}{\mathcal {L}}[x]+2s{\mathcal {L}}[x]+{\mathcal {L}}[x]={\frac {1}{(s+1)^{2}}}}
L [ x ] = 1 ( s + 1 ) 4 {\displaystyle {\mathcal {L}}[x]={\frac {1}{(s+1)^{4}}}}
⎠x = t 3 3 ! e â t {\displaystyle \therefore x={\frac {t^{3}}{3!}}e^{-t}}
⢠{\displaystyle \diamondsuit }
äŸ33 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
s 2 L [ x ] â 2 s â 1 + 4 ( s L [ x ] â 2 ) + 4 L [ x ] = 3 ( s + 2 ) 2 {\displaystyle s^{2}{\mathcal {L}}[x]-2s-1+4(s{\mathcal {L}}[x]-2)+4{\mathcal {L}}[x]={\frac {3}{(s+2)^{2}}}}
L [ x ] = 2 s + 9 ( s + 2 ) 2 + 3 ( s + 2 ) 4 = 2 s + 2 + 5 ( s + 2 ) 2 + 3 ( s + 2 ) 4 {\displaystyle {\mathcal {L}}[x]={\frac {2s+9}{(s+2)^{2}}}+{\frac {3}{(s+2)^{4}}}={\frac {2}{s+2}}+{\frac {5}{(s+2)^{2}}}+{\frac {3}{(s+2)^{4}}}}
x = ( 2 + 5 t + t 3 2 ) e â 2 t {\displaystyle x=(2+5t+{\frac {t^{3}}{2}})e^{-2t}}
⢠{\displaystyle \diamondsuit }
äŸ34 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
s 2 L [ x ] + 2 s L [ x ] â 3 L [ x ] = 16 s â 1 {\displaystyle s^{2}{\mathcal {L}}[x]+2s{\mathcal {L}}[x]-3{\mathcal {L}}[x]={\frac {16}{s-1}}}
L [ x ] = 16 ( s â 1 ) 2 ( s + 3 ) = 1 s + 3 â 1 s â 1 + 4 ( s + 1 ) 2 {\displaystyle {\mathcal {L}}[x]={\frac {16}{(s-1)^{2}(s+3)}}={\frac {1}{s+3}}-{\frac {1}{s-1}}+{\frac {4}{(s+1)^{2}}}}
⎠x = e â 3 t + ( 4 t â 1 ) e t {\displaystyle \therefore x=e^{-3t}+(4t-1)e^{t}}
⢠{\displaystyle \diamondsuit } | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åç¯ã§å°ããå
¬åŒ",
"title": "§1"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã«ãããŠ, f ( t ) = e α t {\\displaystyle f(t)=e^{\\alpha t}} ãšãããš, f â² ( t ) = α e α t , f ( 0 ) = 1 {\\displaystyle f'(t)=\\alpha e^{\\alpha t},f(0)=1} ã§ãããã,",
"title": "§1"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãªã.",
"title": "§1"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã£ãŠå
¬åŒ,",
"title": "§1"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãåŸã. ããã§äžåŒã®å³èŸºã 1 s {\\displaystyle {\\frac {1}{s}}} ã§å±éããŠã¿ããš,",
"title": "§1"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããªãã¡,",
"title": "§1"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšãªãã,ãã®ååã¯,åŒ(2.8)ãã,",
"title": "§1"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã§ãã.ãã㯠e α t {\\displaystyle e^{\\alpha t}} ã® Taylor å±éã«ã»ããªããªã.",
"title": "§1"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "次ã«å
¬åŒ(2.12) ã®å¿çšãšã㊠C ã«ãã幎代枬å®ã説æããã. 詊æã«å«ãŸããŠãã C ã®æ¿åºŠã c ( t ) {\\displaystyle c(t)} ãšãããš,",
"title": "§2"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãªãåŸ®åæ¹çšåŒãæºãã.ããªãã¡ççŽ ã®æŸå°æ§åäœå
çŽ C ã®å£å€ã®éãã¯,ãã®æã®æ¿åºŠã«æ¯äŸãã.ãã®åŒã Laplace 倿ãããš",
"title": "§2"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®ååã¯ã",
"title": "§2"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã§ãã.ããããçµé幎æ°ã¯,",
"title": "§2"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšæ±ãŸã. c ( t ) = 1 2 c ( 0 ) {\\displaystyle c(t)={\\frac {1}{2}}c(0)} ãšãªãæéãåæžæãšãã T 1 / 2 {\\displaystyle T_{1/2}} ã§è¡šã.C ã®å Žåã¯,",
"title": "§2"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã§ãã.åæžæãåããã°ãå£å€å®æ°ãåãã. ãããã£ãŠ,åææ¿åºŠ c ( 0 ) {\\displaystyle c(0)} ãåããã°çŸåšã®æ¿åºŠ c ( t ) {\\displaystyle c(t)} ãæž¬å®ããããšã«ãã£ãŠçµé幎æ°ãåãã.ããã C ã«ãã幎代枬å®ã®åçã§ãã.",
"title": "§2"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "äŸ22 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "c ( 0 ) {\\displaystyle c(0)} ã®æ±ºå®ã倧åé¡ã§ãã. c ( 0 ) {\\displaystyle c(0)} ãšããŠã¯,1950幎代ã®å€§æ°äžã® C ã®æ¿åºŠããšã.ããã¯å¥æªã§ãã.çç±ã調ã¹ãŠã¿ã.",
"title": "§2"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äžæ.",
"title": "§2"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "äŸ23 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããã«",
"title": "§2"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãè§£ã.ãã ã a , b {\\displaystyle a,b} ã¯å®æ°ã§ãã.",
"title": "§2"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "è§£",
"title": "§2"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "Laplace 倿ãããš",
"title": "§2"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã«ã€ããŠè§£ã,",
"title": "§2"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ããã«å³èŸºãéšååæ°åè§£ãããš,",
"title": "§2"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãã®ååãæ±ãããš,",
"title": "§2"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãåŸã.",
"title": "§2"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã®äŸã¯,æå» t = 0 {\\displaystyle t=0} ã«ã¹ã€ãããå
¥ããŠéšå±ãææ¿ãããšãã®æž©åºŠå€åã衚ã. x {\\displaystyle x} ã¯ææ¿åã®å®€æž©(å€çã®æž©åºŠã«çãããšä»®å®ããŠãã)ããã®åäœã衚ã. å®åžžç¶æ
ã®æž©åºŠã¯,",
"title": "§2"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ã§ãã£ãŠ,ããã¯äŸçµŠç±éãšå€çã«éããç±éãšã平衡ãä¿ã€ç¶æ
ã§ã®æž©åºŠã瀺ã. ããã¯å¹³è¡¡ç¶æ
ã®åŒ,ããªãã¡åŒ(2.13) ã§ d x d t = 0 {\\displaystyle {\\frac {dx}{dt}}=0} ãšãããåŒ,",
"title": "§2"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã®è§£ãšäžèŽããŠãã.",
"title": "§2"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "äŸ24 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "è§£",
"title": "§2"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "Laplace 倿ãããš,",
"title": "§2"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãšããã§,",
"title": "§2"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšãªãããšãæ³ãèµ·ãããš,ååã¯,",
"title": "§2"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãšãªã.",
"title": "§2"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "åŒ(2.15)ã¯å®æ°å€åã®å
¬åŒãšåŒã°ããŠããéèŠãªå
¬åŒã§ãã. ãã®ååã®ç±æ¥ã¯æ¬¡ã®ãšããã§ãã. 忬¡åŒ,",
"title": "§2"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ã®è§£ã¯,",
"title": "§2"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã§ãã£ã.宿° c {\\displaystyle c} ã倿° u ( t ) {\\displaystyle u(t)} ã«çœ®ãæããŠãé忬¡ã®åŒ(2.14) ã®è§£ãæ¢ã.ããªãã¡,",
"title": "§2"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãåŒ(2.14)ã«ä»£å
¥ãããš,",
"title": "§2"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãšãªã.ããã 0 {\\displaystyle 0} ãã t {\\displaystyle t} ãŸã§ç©åã,",
"title": "§2"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãã®çµæãåŒ(2.16)ã«ä»£å
¥ãããš,",
"title": "§2"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãšãªãæ±ããçµæãåŸã.",
"title": "§2"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã®å
¬åŒã¯éèŠã§ãããã,èªå°æ³ãšãšãã«èŠããŠããããšãæãŸãã.",
"title": "§2"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "äŸ25 {\\displaystyle \\quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.",
"title": "§2"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "s L [ x ] â 2 + L [ x ] = 1 s 2 {\\displaystyle s{\\mathcal {L}}[x]-2+{\\mathcal {L}}[x]={\\frac {1}{s^{2}}}} L [ x ] = 1 s 2 ( s + 1 ) + 2 s + 1 = â 1 s + 1 s 2 + 3 s + 1 {\\displaystyle {\\mathcal {L}}[x]={\\frac {1}{s^{2}(s+1)}}+{\\frac {2}{s+1}}={\\frac {-1}{s}}+{\\frac {1}{s^{2}}}+{\\frac {3}{s+1}}} ⎠x = t â 1 + 3 e â t {\\displaystyle \\therefore x=t-1+3e^{-t}} ãã®ãšã x â² = 1 â 3 e â t {\\displaystyle x'=1-3e^{-t}} ⎠x + x â² = t â 1 + 3 e â t + 1 â 3 e â t = t {\\displaystyle \\therefore x+x'=t-1+3e^{-t}+1-3e^{-t}=t} x ( 0 ) = â 1 + 3 0 = 2 {\\displaystyle x(0)=-1+3^{0}=2} ãã£ãŠè§£ x {\\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.",
"title": "§2"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "äŸ26 {\\displaystyle \\quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.",
"title": "§2"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "s 2 L [ x ] â 1 â 3 s L [ x ] + 2 L [ x ] = 0 {\\displaystyle s^{2}{\\mathcal {L}}[x]-1-3s{\\mathcal {L}}[x]+2{\\mathcal {L}}[x]=0} L [ x ] = 1 ( s â 1 ) ( s â 2 ) = 1 s â 2 â 1 s â 1 {\\displaystyle {\\mathcal {L}}[x]={\\frac {1}{(s-1)(s-2)}}={\\frac {1}{s-2}}-{\\frac {1}{s-1}}} ⎠x = e 2 t â e t {\\displaystyle \\therefore x=e^{2t}-e^{t}} ãã®ãšã x â² = 2 e 2 t â e t {\\displaystyle x'=2e^{2t}-e^{t}} x â²â² = 4 e 2 t â e t {\\displaystyle x''=4e^{2t}-e^{t}} ⎠x â²â² â 3 x â² + 2 x = 4 e 2 t â e t â 3 ( 2 e 2 t â e t ) + 2 ( e 2 t â e t ) = 0 {\\displaystyle \\therefore x''-3x'+2x=4e^{2t}-e^{t}-3(2e^{2t}-e^{t})+2(e^{2t}-e^{t})=0} x ( 0 ) = e 2 â
0 â e 0 = 0 {\\displaystyle x(0)=e^{2\\cdot 0}-e^{0}=0} x â² ( 0 ) = 2 e 2 â
0 â e 0 = 1 {\\displaystyle x'(0)=2e^{2\\cdot 0}-e^{0}=1} ãã£ãŠè§£ x {\\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.",
"title": "§2"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "äŸ27 {\\displaystyle \\quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.",
"title": "§2"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "s 2 L [ x ] â 4 L [ x ] = 8 s {\\displaystyle s^{2}{\\mathcal {L}}[x]-4{\\mathcal {L}}[x]={\\frac {8}{s}}} L [ x ] = 8 s ( s + 2 ) ( s â 2 ) = â 2 s + 1 s â 2 + 1 s + 2 {\\displaystyle {\\mathcal {L}}[x]={\\frac {8}{s(s+2)(s-2)}}={\\frac {-2}{s}}+{\\frac {1}{s-2}}+{\\frac {1}{s+2}}} ⎠x = e 2 t + e â 2 t â 2 {\\displaystyle \\therefore x=e^{2t}+e^{-2t}-2} ãã®ãšã x â² = 2 e 2 t â 2 e â 2 t {\\displaystyle x'=2e^{2t}-2e^{-2t}} x â²â² = 4 e 2 t + 4 e â 2 t {\\displaystyle x''=4e^{2t}+4e^{-2t}} ⎠x â²â² â 4 x = 4 e 2 t + 4 e â 2 t â 4 ( e 2 t + e â 2 t â 2 ) = 8 {\\displaystyle \\therefore x''-4x=4e^{2t}+4e^{-2t}-4(e^{2t}+e^{-2t}-2)=8} x ( 0 ) = e 0 + e 0 â 2 = 0 {\\displaystyle x(0)=e^{0}+e^{0}-2=0} x â² ( 0 ) = 2 e 0 â e 0 = 0 {\\displaystyle x'(0)=2e^{0}-e^{0}=0} ãã£ãŠè§£ x {\\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.",
"title": "§2"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "äŸ28 {\\displaystyle \\quad } 次ã®åŸ®åæ¹çšåŒãè§£ã.è§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ããã.",
"title": "§2"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "L [ x ] = x 0 s + ( v 0 + 5 x 0 ) ( s + 2 ) ( s + 3 ) + L [ f ] ( s + 2 ) ( s + 3 ) {\\displaystyle {\\mathcal {L}}[x]={\\frac {x_{0}s+(v_{0}+5x_{0})}{(s+2)(s+3)}}+{\\frac {{\\mathcal {L}}[f]}{(s+2)(s+3)}}}",
"title": "§2"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "éæž¡è§£ã u ( t ) {\\displaystyle u(t)} ãšãããš, u {\\displaystyle u} ã«ã€ããŠã¯ L [ u ] = x 0 s ( s + 2 ) ( s + 3 ) + ( v 0 + 5 x 0 ) ( s + 2 ) ( s + 3 ) {\\displaystyle {\\mathcal {L}}[u]={\\frac {x_{0}s}{(s+2)(s+3)}}+{\\frac {(v_{0}+5x_{0})}{(s+2)(s+3)}}} = x 0 ( â 2 s + 2 + 3 s + 3 ) + ( v 0 + 5 x 0 ) ( 1 s + 2 â 1 s + 3 ) {\\displaystyle =x_{0}\\left({\\frac {-2}{s+2}}+{\\frac {3}{s+3}}\\right)+(v_{0}+5x_{0})\\left({\\frac {1}{s+2}}-{\\frac {1}{s+3}}\\right)} ãã®åå㯠u ( t ) = x 0 ( â 2 e â 2 t + 3 e â 3 t ) + ( v 0 + 5 x 0 ) ( e â 2 t â e â 3 t ) {\\displaystyle u(t)=x_{0}\\left(-2e^{-2t}+3e^{-3t}\\right)+(v_{0}+5x_{0})\\left(e^{-2t}-e^{-3t}\\right)} = x 0 ( â 2 e â 2 t + 3 e â 3 t + 5 e â 2 t â 5 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\\displaystyle =x_{0}\\left(-2e^{-2t}+3e^{-3t}+5e^{-2t}-5e^{-3t}\\right)+v_{0}\\left(e^{-2t}-e^{-3t}\\right)} = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\\displaystyle =x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})} å®åžžè§£ã v ( t ) {\\displaystyle v(t)} ãšãããš, v {\\displaystyle v} ã«ã€ããŠã¯ L [ v ] = L [ f ] ( s + 2 ) ( s + 3 ) {\\displaystyle {\\mathcal {L}}[v]={\\frac {{\\mathcal {L}}[f]}{(s+2)(s+3)}}} = ( 1 s + 2 â 1 s + 3 ) â
L [ f ] {\\displaystyle =\\left({\\frac {1}{s+2}}-{\\frac {1}{s+3}}\\right)\\cdot {\\mathcal {L}}[f]} ãã®åå㯠v ( t ) = ( e â 2 t â e â 3 t ) â f ( t ) {\\displaystyle v(t)=(e^{-2t}-e^{-3t})*f(t)} = â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\\displaystyle =\\int _{0}^{t}\\left\\{e^{-2(t-\\tau )}-e^{-3(t-\\tau )}\\right\\}f(\\tau )d\\tau } ãã£ãŠè§£ã¯ x ( t ) = u ( t ) + v ( t ) = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) + â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\\displaystyle x(t)=u(t)+v(t)=x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})+\\int _{0}^{t}\\left\\{e^{-2(t-\\tau )}-e^{-3(t-\\tau )}\\right\\}f(\\tau )d\\tau }",
"title": "§2"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ç¶ããŠæ€ç®ã宿œãã.ç©åç¯å²ã®äžç«¯ã倿°ã§ããå®ç©åã®åŸ®åã«ã€ããŠåŸ©ç¿ãããš, d d t â« 0 t f ( Ï ) d Ï = f ( t ) , {\\displaystyle {\\frac {d}{dt}}\\int _{0}^{t}f(\\tau )d\\tau =f(t),\\quad } ãã ã, â« 0 t f ( Ï ) d Ï {\\displaystyle \\int _{0}^{t}f(\\tau )d\\tau } ã®è¢«ç©å圢 f ( Ï ) {\\displaystyle f(\\tau )} ã®äžã«ãã§ã«å€æ° t {\\displaystyle t} ãå
¥ã£ãŠããŠã¯ãããªã.",
"title": "§2"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "å®åžžè§£ v ( t ) {\\displaystyle v(t)} ã«ã€ããŠã¯ v ( t ) = â« 0 t { e â 2 ( t â Ï ) â e â 3 ( t â Ï ) } f ( Ï ) d Ï {\\displaystyle v(t)=\\int _{0}^{t}\\left\\{e^{-2(t-\\tau )}-e^{-3(t-\\tau )}\\right\\}f(\\tau )d\\tau } = â« 0 t { e â 2 t â
e 2 Ï â e â 3 t â
e 3 Ï } f ( Ï ) d Ï {\\displaystyle =\\int _{0}^{t}\\left\\{e^{-2t}\\cdot e^{2\\tau }-e^{-3t}\\cdot e^{3\\tau }\\right\\}f(\\tau )d\\tau } = e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï {\\displaystyle =e^{-2t}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau -e^{-3t}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau } v â² ( t ) = â 2 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï + e â 2 t e 2 t f ( t ) + 3 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï â e â 3 t e 3 t f ( t ) {\\displaystyle v'(t)=-2e^{-2t}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau +e^{-2t}e^{2t}f(t)+3e^{-3t}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau -e^{-3t}e^{3t}f(t)} = â 2 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï + 3 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï {\\displaystyle =-2e^{-2t}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau +3e^{-3t}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau } v â²â² ( t ) = 4 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â 2 e â 2 t â
e 2 t f ( t ) â 9 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï + 3 e â 3 t e 3 t f ( t ) {\\displaystyle v''(t)=4e^{-2t}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau -2e^{-2t}\\cdot e^{2t}f(t)-9e^{-3t}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau +3e^{-3t}e^{3t}f(t)} = 4 e â 2 t â« 0 t e 2 Ï f ( Ï ) d Ï â 9 e â 3 t â« 0 t e 3 Ï f ( Ï ) d Ï + f ( t ) {\\displaystyle =4e^{-2t}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau -9e^{-3t}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau +f(t)} ãã£ãŠ v â²â² + 5 v â² + 6 v = { 4 + 5 ( â 2 ) + 6 â
1 } â« 0 t e 2 Ï f ( Ï ) d Ï + { ( â 9 ) + 5 â
3 + 6 ( â 1 ) } â« 0 t e 3 Ï f ( Ï ) d Ï + f ( t ) {\\displaystyle v''+5v'+6v=\\left\\{4+5(-2)+6\\cdot 1\\right\\}\\int _{0}^{t}e^{2\\tau }f(\\tau )d\\tau +\\left\\{(-9)+5\\cdot 3+6(-1)\\right\\}\\int _{0}^{t}e^{3\\tau }f(\\tau )d\\tau +f(t)} = f ( t ) {\\displaystyle =f(t)}",
"title": "§2"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "éæž¡è§£ u ( t ) {\\displaystyle u(t)} ã«ã€ããŠã¯ u ( t ) = x 0 ( 3 e â 2 t â 2 e â 3 t ) + v 0 ( e â 2 t â e â 3 t ) {\\displaystyle u(t)=x_{0}(3e^{-2t}-2e^{-3t})+v_{0}(e^{-2t}-e^{-3t})} u â² ( t ) = x 0 ( â 6 e â 2 t + 6 e â 3 t ) + v 0 ( â 2 e â 2 t + 3 e â 3 t ) {\\displaystyle u'(t)=x_{0}(-6e^{-2t}+6e^{-3t})+v_{0}(-2e^{-2t}+3e^{-3t})} u â²â² ( t ) = x 0 ( 12 e â 2 t â 18 e â 3 t ) + v 0 ( 4 e â 2 t â 9 e â 3 t ) {\\displaystyle u''(t)=x_{0}(12e^{-2t}-18e^{-3t})+v_{0}(4e^{-2t}-9e^{-3t})} ãã£ãŠ u â²â² + 5 u â² + 6 u = x 0 [ { 12 + 5 ( â 6 ) + 6 â
3 } e â 2 t + { ( â 18 ) + 5 â
6 + 6 ( â 2 ) } ] + v 0 [ { 4 + 5 ( â 2 ) + 6 â
1 } e â 2 t + { â 9 + 5 â
3 + 6 ( â 1 ) } e â 3 t ] {\\displaystyle u''+5u'+6u=x_{0}\\left[\\left\\{12+5(-6)+6\\cdot 3\\right\\}e^{-2t}+\\left\\{(-18)+5\\cdot 6+6(-2)\\right\\}\\right]+v_{0}\\left[\\left\\{4+5(-2)+6\\cdot 1\\right\\}e^{-2t}+\\left\\{-9+5\\cdot 3+6(-1)\\right\\}e^{-3t}\\right]} = 0 {\\displaystyle =0} x ( 0 ) = u ( 0 ) = x 0 ( 3 e 0 â 2 e 0 ) + v 0 ( e 0 â e 0 ) = x 0 {\\displaystyle x(0)=u(0)=x_{0}(3e^{0}-2e^{0})+v_{0}(e^{0}-e^{0})=x_{0}} x â² ( 0 ) = u â² ( 0 ) = x 0 ( â 6 e 0 + 6 e 0 ) + v 0 ( â 2 e 0 + 3 e 0 ) = v 0 {\\displaystyle x'(0)=u'(0)=x_{0}(-6e^{0}+6e^{0})+v_{0}(-2e^{0}+3e^{0})=v_{0}} ãã£ãŠ x {\\displaystyle x} ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€.",
"title": "§2"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "è£é¡",
"title": "§2"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "蚌æ",
"title": "§2"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "åæç©ã®å®çŸ©ãã",
"title": "§2"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãåŸã.",
"title": "§2"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãã®è£é¡(2.17a)ãé©çšããã°,",
"title": "§2"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãåŸã.ãšããã§,",
"title": "§2"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãã£ãŠæ¬¡ã®å
¬åŒãåŸã.",
"title": "§2"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãã®å
¬åŒãåã®çµæ",
"title": "§2"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãšæ¯èŒãããš, t {\\displaystyle t} é åã§ e α t {\\displaystyle e^{\\alpha t}} ãæããããšãš, s {\\displaystyle s} é å㧠α {\\displaystyle \\alpha } ã ãç§»åããããšãšã察å¿ããŠãã. ãã®ããšã¯,ãã£ãšäžè¬çã«æç«ããäºå®ã§ãã.",
"title": "§2"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "第äžç§»åå®ç",
"title": "§2"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "蚌æ",
"title": "§2"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãã®å®çãã,çŽã¡ã«,",
"title": "§2"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãå°ãããã®ã§ãã.",
"title": "§2"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "äŸ29 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "äžåŒã Laplace 倿ãããš,",
"title": "§2"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã«ã€ããŠè§£ããš,",
"title": "§2"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãšãªããã,ãã®ååã¯,",
"title": "§2"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã§ãã.",
"title": "§2"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "äŸ30 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "è§£",
"title": "§2"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãšãããš,",
"title": "§2"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãããã,",
"title": "§2"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãåŸã.",
"title": "§2"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "äŸ31 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "s L [ x ] â 1 + L [ x ] = 1 s + 1 {\\displaystyle s{\\mathcal {L}}[x]-1+{\\mathcal {L}}[x]={\\frac {1}{s+1}}}",
"title": "§2"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "⎠L [ x ] = 1 s + 1 + 1 ( s + 1 ) 2 {\\displaystyle \\therefore {\\mathcal {L}}[x]={\\frac {1}{s+1}}+{\\frac {1}{(s+1)^{2}}}}",
"title": "§2"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "⎠x = ( 1 + t ) e â t {\\displaystyle \\therefore x=(1+t)e^{-t}}",
"title": "§2"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "äŸ32 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "s 2 L [ x ] + 2 s L [ x ] + L [ x ] = 1 ( s + 1 ) 2 {\\displaystyle s^{2}{\\mathcal {L}}[x]+2s{\\mathcal {L}}[x]+{\\mathcal {L}}[x]={\\frac {1}{(s+1)^{2}}}}",
"title": "§2"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "L [ x ] = 1 ( s + 1 ) 4 {\\displaystyle {\\mathcal {L}}[x]={\\frac {1}{(s+1)^{4}}}}",
"title": "§2"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "⎠x = t 3 3 ! e â t {\\displaystyle \\therefore x={\\frac {t^{3}}{3!}}e^{-t}}",
"title": "§2"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "äŸ33 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "s 2 L [ x ] â 2 s â 1 + 4 ( s L [ x ] â 2 ) + 4 L [ x ] = 3 ( s + 2 ) 2 {\\displaystyle s^{2}{\\mathcal {L}}[x]-2s-1+4(s{\\mathcal {L}}[x]-2)+4{\\mathcal {L}}[x]={\\frac {3}{(s+2)^{2}}}}",
"title": "§2"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "L [ x ] = 2 s + 9 ( s + 2 ) 2 + 3 ( s + 2 ) 4 = 2 s + 2 + 5 ( s + 2 ) 2 + 3 ( s + 2 ) 4 {\\displaystyle {\\mathcal {L}}[x]={\\frac {2s+9}{(s+2)^{2}}}+{\\frac {3}{(s+2)^{4}}}={\\frac {2}{s+2}}+{\\frac {5}{(s+2)^{2}}}+{\\frac {3}{(s+2)^{4}}}}",
"title": "§2"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "x = ( 2 + 5 t + t 3 2 ) e â 2 t {\\displaystyle x=(2+5t+{\\frac {t^{3}}{2}})e^{-2t}}",
"title": "§2"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "",
"title": "§2"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "äŸ34 {\\displaystyle \\quad }",
"title": "§2"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§2"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "è§£çäŸ",
"title": "§2"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "s 2 L [ x ] + 2 s L [ x ] â 3 L [ x ] = 16 s â 1 {\\displaystyle s^{2}{\\mathcal {L}}[x]+2s{\\mathcal {L}}[x]-3{\\mathcal {L}}[x]={\\frac {16}{s-1}}}",
"title": "§2"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "L [ x ] = 16 ( s â 1 ) 2 ( s + 3 ) = 1 s + 3 â 1 s â 1 + 4 ( s + 1 ) 2 {\\displaystyle {\\mathcal {L}}[x]={\\frac {16}{(s-1)^{2}(s+3)}}={\\frac {1}{s+3}}-{\\frac {1}{s-1}}+{\\frac {4}{(s+1)^{2}}}}",
"title": "§2"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "⎠x = e â 3 t + ( 4 t â 1 ) e t {\\displaystyle \\therefore x=e^{-3t}+(4t-1)e^{t}}",
"title": "§2"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§2"
}
]
| null | ==§1==
åç¯ã§å°ããå
¬åŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f'] = s\mathcal{L}[f] - f(0)</math>}}
ã«ãããŠïŒ<math>f(t) = e^{\alpha t}</math> ãšãããšïŒ<math>f'(t) = \alpha e^{\alpha t}, f(0) = 1</math> ã§ããããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\alpha \mathcal{L}[e^{\alpha t}] = s \mathcal{L}[e^{\alpha t}] - 1</math>}}
ãšãªãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \mathcal{L}[e^{\alpha t}] = \frac{1}{s - \alpha}</math>}}
ãã£ãŠå
¬åŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t} \sqsupset \frac{1}{s - \alpha}</math>|tag=(2.12)|label=eq:2.12}}
ãåŸãïŒ
ããã§äžåŒã®å³èŸºã <math>\frac{1}{s}</math> ã§å±éããŠã¿ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s-\alpha} = \frac{1}{s(1 - \frac{\alpha}{s})} = \frac{1}{s} + \frac{\alpha}{s^2} + \frac{\alpha^2}{s^3} + \cdots</math><ref>
åé
<math>\frac{1}{s}</math>ïŒå
¬æ¯ <math>\frac{\alpha}{s}</math> ã®ç¡éçæ¯çŽæ°ïŒ
</ref>}}
ããªãã¡ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s-\alpha} = \sum_{n=1}^{\infty} \frac{\alpha^n}{s^{n + 1}}</math>}}
ãšãªããïŒãã®ååã¯ïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.8|(2.8)]]ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t} = \sum_{n=1}^{\infty} \frac{\alpha^n t^n}{n!}</math>}}
ã§ããïŒãã㯠<math>e^{\alpha t}</math> ã® [[w:%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B|Taylor å±é]]ã«ã»ããªããªãïŒ
==§2==
次ã«å
¬åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.12|(2.12)]] ã®å¿çšãšã㊠[[w:%E7%82%AD%E7%B4%A014|{{sup|14}}C]] ã«ãã幎代枬å®ã説æãããïŒ
詊æã«å«ãŸããŠãã {{sup|14}}C ã®æ¿åºŠã <math>c(t)</math> ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dc}{dt} = -\lambda c\quad \lambda</math> ã¯å£å€å®æ°}}
ãªãåŸ®åæ¹çšåŒãæºããïŒããªãã¡ççŽ ã®æŸå°æ§åäœå
çŽ {{sup|14}}C ã®å£å€ã®éãã¯ïŒãã®æã®æ¿åºŠã«æ¯äŸããïŒãã®åŒã [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s\mathcal{L}[c] - c(0) = -\lambda\mathcal{L}[c]</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore\mathcal{L}[c] = \frac{c(0)}{s + \lambda}</math>}}
ãã®ååã¯ã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>c(t) = c(0)e^{-\lambda t}</math>}}
ã§ããïŒããããçµé幎æ°ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>t = \frac{1}{\lambda}\log\frac{c(0)}{c(t)}</math>}}
ãšæ±ãŸãïŒ<math>c(t) = \frac{1}{2}c(0)</math> ãšãªãæéãåæžæãšãã <math>T_{1/2}</math> ã§è¡šãïŒ{{sup|14}}C ã®å Žåã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>T_{1/2} = 5730</math> 幎 <math>\pm 40</math> 幎}}
ã§ããïŒåæžæãåããã°ãå£å€å®æ°ãåããïŒ<ref>
<math>\lambda T_{1/2} = \log_e 2 \fallingdotseq 0.693</math>
</ref>
ãããã£ãŠïŒåææ¿åºŠ <math>c(0)</math> ãåããã°çŸåšã®æ¿åºŠ <math>c(t)</math> ãæž¬å®ããããšã«ãã£ãŠçµé幎æ°ãåããïŒããã {{sup|14}}C ã«ãã幎代枬å®ã®åçã§ããïŒ
<!-- ex:022:start-->
<div id="ex:22">
<strong>äŸ22</strong><math>\quad</math>
<math>c(0)</math> ã®æ±ºå®ã倧åé¡ã§ããïŒ<math>c(0)</math> ãšããŠã¯ïŒ1950幎代ã®å€§æ°äžã® {{sup|14}}C ã®æ¿åºŠããšãïŒããã¯å¥æªã§ããïŒçç±ã調ã¹ãŠã¿ãïŒ
<strong>è§£çäŸ</strong>
äžæïŒ
<math>\diamondsuit</math>
<!-- ex:022:end-->
<!-- ex:023:start-->
<div id="ex:23">
<strong>äŸ23</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + ax = f(t), \quad x(0) = 0</math>|tag=(2.13)|label=eq:2.13}}
ããã«
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
f(t) =
\begin{cases}
b, & t \geqq 0\\
0, & t < 0
\end{cases}
</math>}}
ãè§£ãïŒãã ã <math>a, b</math> ã¯å®æ°ã§ããïŒ
<strong>è§£</strong>
Laplace 倿ãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s\mathcal{L}[x] + a\mathcal{L}[x] = \frac{b}{s}</math>}}
ããã <math>\mathcal{L}[x]</math> ã«ã€ããŠè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{b}{s(s + a)}</math>}}
ããã«å³èŸºãéšååæ°åè§£ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{b}{a}\left(\frac{1}{s}-\frac{1}{s + a}\right)</math><ref>
<math>\frac{1}{s(s + a)} = \frac{A}{s} + \frac{B}{s + a}</math> ãšãã㊠<br />
<math>\frac{1}{s(s + a)} = \frac{(A + B)s + Aa}{s(s + a)}</math><br />
<math>\therefore A + B = 0, Aa = 1 \therefore A = \frac{1}{a}, B = -\frac{1}{a}</math><br />
</ref>}}
ãã®ååãæ±ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \frac{b}{a}\left(1 - e^{-at}\right)</math>}}
ãåŸãïŒ
ãã®äŸã¯ïŒæå» <math>t=0</math> ã«ã¹ã€ãããå
¥ããŠéšå±ãææ¿ãããšãã®æž©åºŠå€åã衚ãïŒ
<math>x</math> ã¯ææ¿åã®å®€æž©ïŒå€çã®æž©åºŠã«çãããšä»®å®ããŠããïŒããã®åäœã衚ãïŒ
å®åžžç¶æ
ã®æž©åºŠã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\lim_{t \to \infty}(t)=\frac{b}{a}</math>}}
ã§ãã£ãŠïŒããã¯äŸçµŠç±éãšå€çã«éããç±éãšã平衡ãä¿ã€ç¶æ
ã§ã®æž©åºŠã瀺ãïŒ
ããã¯å¹³è¡¡ç¶æ
ã®åŒïŒããªãã¡åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.13|(2.13)]] ã§ <math>\frac{dx}{dt} = 0</math> ãšãããåŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>ax = b</math>}}
ã®è§£ãšäžèŽããŠããïŒ
<math>\diamondsuit</math>
<!-- ex:023:end-->
==§3==
<!-- ex:024:start-->
<div id="ex:24">
<strong>äŸ24</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + ax = f(t), \quad x(0) = x_0</math>|tag=(2.14)|label=eq:2.14}}
ãè§£ãïŒ
<strong>è§£</strong>
Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s\mathcal{L}[x]-x_0 + a\mathcal{L}[x] = \mathcal{L}[f]</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \mathcal{L}[x] = \frac{x_0}{s + a} + \frac{\mathcal{L}[f]}{s + a}</math>}}
ãšããã§ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{\mathcal{L}[f]}{s + a} = \frac{1}{s + a}\cdot\mathcal{L}[f] \sqsubset e^{-at} * f(t)</math>}}
ãšãªãããšãæ³ãèµ·ãããšïŒååã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = e^{-at}x_0 + \int_0^t e^{-a(t-\tau)}f(\tau)d\tau</math>|tag=(2.15)|label=eq:2.15}}
ãšãªãïŒ
<math>\diamondsuit</math>
<!-- ex:024:end-->
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.15|(2.15)]]ã¯[[w:%E5%AE%9A%E6%95%B0%E5%A4%89%E5%8C%96%E6%B3%95|宿°å€åã®å
¬åŒ]]ãšåŒã°ããŠããéèŠãªå
¬åŒã§ããïŒ
ãã®ååã®ç±æ¥ã¯æ¬¡ã®ãšããã§ããïŒ
忬¡åŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + ax = 0,\quad x(0)=c</math>}}
ã®è§£ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = ce^{-at}</math>}}
ã§ãã£ãïŒå®æ° <math>c</math> ã倿° <math>u(t)</math> ã«çœ®ãæããŠãé忬¡ã®åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.14|(2.14)]]
ã®è§£ãæ¢ãïŒããªãã¡ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t)=u(t)e^{-at}</math>|tag=(2.16)|label=eq:2.16}}
ãåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.14|(2.14)]]ã«ä»£å
¥ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{-at}\frac{du}{dt} - ae^{-at}u + ae^{-at}u = f(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \frac{du}{dt} = e^{at}f(t)</math>}}
ãšãªãïŒããã <math>0</math> ãã <math>t</math> ãŸã§ç©åãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>u(t) = \int_0^t e^{a\tau}f(\tau)d\tau + u(0), \quad u(0) = x(0)</math>}}
ãã®çµæãåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.16|(2.16)]]ã«ä»£å
¥ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = e^{-at}u(t) = e^{-at}\left(\int_0^t e^{a\tau}f(\tau)d\tau + x(0)\right)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \int_0^t e^{a\tau-at}f(\tau)d\tau + e^{-at}x(0)</math>}}
ãšãªãæ±ããçµæãåŸãïŒ
<math>\diamondsuit</math>
ãã®å
¬åŒã¯éèŠã§ããããïŒèªå°æ³ãšãšãã«èŠããŠããããšãæãŸããïŒ
<!-- ex:025:start-->
<div id="ex:25">
<strong>äŸ25</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒè§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + x = t;\quad x(0) = 2</math>}}
<strong>è§£çäŸ</strong>
<math>s\mathcal{L}[x]-2+\mathcal{L}[x]=\frac{1}{s^2}</math><br />
<math>\mathcal{L}[x]=\frac{1}{s^2(s+1)}+\frac{2}{s+1}=\frac{-1}{s}+\frac{1}{s^2}+\frac{3}{s+1}</math><br />
<math>\therefore x = t-1+3e^{-t}</math><br />
ãã®ãšã<br />
<math>x' = 1-3e^{-t}</math><br />
<math>\therefore x+x'=t-1+3e^{-t}+1-3e^{-t}=t</math><br />
<math>x(0)=-1+3^0=2</math><br />
ãã£ãŠè§£ <math>x</math> ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€ïŒ<br />
<math>\diamondsuit</math>
<!-- ex:025:end-->
<!-- ex:026:start-->
<div id="ex:26">
<strong>äŸ26</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒè§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0;\quad x(0) = 0, \quad x'(0) = 1</math>}}
<strong>è§£çäŸ</strong>
<math>s^2\mathcal{L}[x]-1-3s\mathcal{L}[x]+2\mathcal{L}[x]=0</math><br />
<math>\mathcal{L}[x]=\frac{1}{(s-1)(s-2)}=\frac{1}{s-2}-\frac{1}{s-1}</math><br />
<math>\therefore x = e^{2t}-e^t</math><br />
ãã®ãšã<br />
<math>x' = 2e^{2t}-e^t</math><br />
<math>x'' = 4e^{2t}-e^t</math><br />
<math>\therefore x''-3x'+2x = 4e^{2t}-e^t-3(2e^{2t}-e^t)+2(e^{2t}-e^t) = 0</math><br />
<math>x(0)=e^{2\cdot 0}-e^0 = 0</math><br />
<math>x'(0)=2e^{2\cdot 0} - e^0 = 1</math><br />
ãã£ãŠè§£ <math>x</math> ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€ïŒ<br />
<math>\diamondsuit</math>
<!-- ex:026:end-->
<!-- ex:027:start-->
<div id="ex:27">
<strong>äŸ27</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒè§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} - 4x = 8;\quad x(0) = x'(0) = 0</math>}}
<strong>è§£çäŸ</strong>
<math>s^2\mathcal{L}[x]-4\mathcal{L}[x]=\frac{8}{s}</math><ref><math>1 \sqsupset \frac{1}{s}</math> ã§ããïŒ<math>s^2\mathcal{L}[x]-4\mathcal{L}[x]=8</math> ãšãããã€ã«ãããããã¡ã ããããã§ã¯ãªãïŒ</ref><br />
<math>\mathcal{L}[x]=\frac{8}{s(s+2)(s-2)} = \frac{-2}{s} + \frac{1}{s-2} + \frac{1}{s+2}</math><br />
<math>\therefore x = e^{2t} + e^{-2t} - 2</math><br />
ãã®ãšã<br />
<math>x' = 2e^{2t}-2e^{-2t}</math><br />
<math>x'' = 4e^{2t}+4e^{-2t}</math><br />
<math>\therefore x''-4x = 4e^{2t}+4e^{-2t}-4(e^{2t} + e^{-2t} - 2) = 8</math><br />
<math>x(0)=e^0 + e^0 - 2 = 0</math><br />
<math>x'(0)=2e^0 - e^0 = 0</math><br />
ãã£ãŠè§£ <math>x</math> ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€ïŒ<br />
<math>\diamondsuit</math>
<!-- ex:027:end-->
<!-- ex:028:start-->
<div id="ex:28">
<strong>äŸ28</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒè§£ãçŽæ¥åŸ®åæ¹çšåŒã«ä»£å
¥ããŠæåŠã確ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 5\frac{dt}{dx} +6x = f(t);\quad x(0) = x_0, x'(0) = v_0</math>}}
<strong>è§£çäŸ</strong>
<math>\mathcal{L}[x] = \frac{x_0s + (v_0 + 5x_0)}{(s + 2)(s + 3)} + \frac{\mathcal{L}[f]}{(s + 2)(s + 3)}</math><br />
éæž¡è§£ã <math>u(t)</math> ãšãããšïŒ<math>u</math> ã«ã€ããŠã¯<br />
<math>\mathcal{L}[u] = \frac{x_0s}{(s + 2)(s + 3)} + \frac{(v_0 + 5x_0)}{(s + 2)(s + 3)}</math><br />
<math>= x_0 \left( \frac{-2}{s + 2} + \frac{3}{s + 3} \right) + (v_0 + 5x_0) \left( \frac{1}{s + 2} - \frac{1}{s + 3} \right)</math><br />
ãã®åå㯠<br />
<math>u(t) = x_0 \left( -2e^{-2t} + 3e^{-3t} \right) + (v_0 + 5x_0)\left(e^{-2t} - e^{-3t} \right)</math><br />
<math>=x_0\left(-2e^{-2t} + 3e^{-3t} + 5e^{-2t}-5e^{-3t}\right) + v_0\left(e^{-2t} - e^{-3t}\right)</math><br />
<math>=x_0(3e^{-2t} - 2e^{-3t}) + v_0(e^{-2t} - e^{-3t})</math><br /><br />
å®åžžè§£ã <math>v(t)</math> ãšãããšïŒ<math>v</math> ã«ã€ããŠã¯<br />
<math>\mathcal{L}[v] = \frac{\mathcal{L}[f]}{(s + 2)(s + 3)}</math><br />
<math>=\left( \frac{1}{s + 2} - \frac{1}{s + 3} \right)\cdot \mathcal{L}[f] </math><br />
ãã®ååã¯<br />
<math>v(t) = (e^{-2t} - e^{-3t}) * f(t)</math><br />
<math>= \int_0^t \left \{ e^{-2(t - \tau)} - e^{-3(t - \tau)} \right \} f(\tau)d\tau</math><br /><br />
ãã£ãŠè§£ã¯<br />
<math>x(t) = u(t) + v(t) = x_0(3e^{-2t} - 2e^{-3t}) + v_0(e^{-2t} - e^{-3t}) + \int_0^t \left \{ e^{-2(t - \tau)} - e^{-3(t - \tau)} \right \} f(\tau)d\tau</math><br />
ç¶ããŠæ€ç®ã宿œããïŒç©åç¯å²ã®äžç«¯ã倿°ã§ããå®ç©åã®åŸ®åã«ã€ããŠåŸ©ç¿ãããšïŒ<br />
<math>\frac{d}{dt}\int_0^t f(\tau)d\tau = f(t), \quad</math>ãã ãïŒ<math>\int_0^t f(\tau)d\tau</math> ã®è¢«ç©å圢 <math>f(\tau)</math> ã®äžã«ãã§ã«å€æ° <math>t</math> ãå
¥ã£ãŠããŠã¯ãããªãïŒ<ref>
ãã®å®çããã³äœãæžãã®æå³ãå®éã«ç¢ºãããŠããïŒ
<math>f(t)=\int_0^t e^{(t-\tau)}d\tau</math> ã®ãšãïŒ<math>f'(t)</math> ãæ±ããïŒ<br />
1.å®éã« <math>f(t)</math> ã®åœ¢ãæ±ããŠãã <math>t</math> ã§åŸ®åããïŒ<br />
<math>f(t) = [-e^{(t-\tau)}]_0^t = [e^{(t-\tau)}]_t^0 = e^t - 1 \therefore f'(t) = e^t</math>âŠâ <br /><br />
2.被ç©åéšåã® <math>t</math> äŸåéšåãå€ã«åºããŠãã <math>f(t)</math> ã®åœ¢ãæ±ããïŒ<br />
<math>f(t) = \int_0^t e^t\cdot e^{-\tau}d\tau = e^t\int_0^t e^{-\tau}d\tau</math>âŠâ¡<br />
â¡ãå®éã«èšç®ããïŒ<br />
<math>e^t\int_0^t e^{-\tau}d\tau = e^t [ -e^{-\tau}]_0^t = e^t [ -e^{-\tau}]_t^0 = e^t(1 - e^{-t}) = e^t - 1</math><br />
ããã¯â ãšäžèŽããïŒ<br /><br />
3. â¡ãããç©åç¯å²ã®äžç«¯ã倿°ã§ããå®ç©åã®åŸ®åããé©çšã㊠<math>f'(t)</math> ãæ±ããïŒ<br />
<math>f'(t) = \frac{d}{dt} \left \{ e^t\int_0^t e^{-\tau}d\tau \right \}</math><br />
<math>= \left( \frac{d}{dt}e^t \right) \int_0^t e^{-\tau}d\tau + e^t\cdot \frac{d}{dt} \left( \int_0^t e^{-\tau}d\tau \right)</math><br />
<math>= e^t [-e^{-\tau}]_0^t + e^t\cdot e^{-t}</math><br />
<math> = e^t ( 1 - e^{-t} ) + 1 = e^t - 1 + 1 = e^t</math>âŠâ¢<br />
ããã§â¢ãšâ ã¯äžèŽããæ¬å®çã®æå³ã確èªã§ããïŒäœãæžãã«ã€ããŠã¯ïŒ<br />
<math>f'(t) = \frac{d}{dt} \int_0^t e^{t - \tau}d\tau</math> ãæ±ããã®ã«<br />
<math>e^{t - \tau} |_{\tau = t} = e^{t - t} = 1</math> ãšãããšâ â¢ã«äžèŽããªãïŒ<br />
</ref><br />
å®åžžè§£ <math>v(t)</math> ã«ã€ããŠã¯ <br />
<math>v(t) = \int_0^t \left \{ e^{-2(t - \tau)} - e^{-3(t - \tau)} \right \} f(\tau)d\tau</math><br />
<math>= \int_0^t \left \{ e^{-2t} \cdot e^{2\tau} - e^{-3t} \cdot e^{3\tau} \right \} f(\tau)d\tau</math><br />
<math>=e^{-2t}\int_0^t e^{2\tau}f(\tau)d\tau - e^{-3t}\int_0^t e^{3\tau}f(\tau)d\tau</math><br />
<math>v'(t) = -2e^{-2t}\int_0^t e^{2\tau}f(\tau)d\tau + e^{-2t}e^{2t}f(t) + 3e^{-3t}\int_0^t e^{3\tau}f(\tau)d\tau - e^{-3t}e^{3t}f(t)</math><br />
<math>= -2e^{-2t} \int_0^t e^{2\tau}f(\tau)d\tau +3e^{-3t}\int_0^t e^{3\tau}f(\tau)d\tau</math><br />
<math>v''(t) = 4e^{-2t} \int_0^t e^{2\tau}f(\tau)d\tau -2e^{-2t}\cdot e^{2t}f(t) -9e^{-3t}\int_0^t e^{3\tau}f(\tau)d\tau + 3e^{-3t}e^{3t}f(t)</math><br />
<math>= 4e^{-2t} \int_0^t e^{2\tau}f(\tau)d\tau - 9e^{-3t}\int_0^t e^{3\tau}f(\tau)d\tau + f(t)</math><br />
ãã£ãŠ<br />
<math>v'' + 5v' + 6v = \left \{ 4 + 5(-2) + 6\cdot 1 \right \} \int_0^t e^{2\tau}f(\tau)d\tau + \left \{ (-9) + 5\cdot 3 + 6(-1) \right \} \int_0^t e^{3\tau}f(\tau)d\tau + f(t)</math><br />
<math>= f(t)</math><br />
éæž¡è§£ <math>u(t)</math> ã«ã€ããŠã¯ <br />
<math>u(t) = x_0(3e^{-2t} -2e^{-3t}) + v_0(e^{-2t} - e^{-3t})</math><br />
<math>u'(t) = x_0(-6e^{-2t}+6e^{-3t}) + v_0(-2e^{-2t}+3e^{-3t})</math><br />
<math>u''(t) = x_0(12e^{-2t}-18e^{-3t}) + v_0(4e^{-2t} -9e^{-3t})</math><br />
ãã£ãŠ<br />
<math>u'' + 5u' + 6u = x_0 \left[ \left \{12 +5(-6) + 6\cdot 3 \right \}e^{-2t} + \left \{ (-18) + 5\cdot 6 + 6(-2) \right \} \right] + v_0 \left[ \left\{ 4 + 5(-2) + 6\cdot 1 \right\} e^{-2t} + \left\{ -9 + 5\cdot 3 + 6(-1) \right\} e^{-3t} \right]</math><br />
<math>= 0</math><br />
<math>x(0)=u(0)=x_0(3e^0-2e^0)+v_0(e^0-e^0)=x_0</math><br />
<math>x'(0)=u'(0)=x_0(-6e^0+6e^0)+v_0(-2e^0+3e^0)=v_0</math><br />
ãã£ãŠ <math>x</math> ã¯äžæ¹çšåŒã®è§£ã®ã²ãšã€ïŒ<br />
<math>\diamondsuit</math>
<!-- ex:028:end-->
==§4==
<strong>è£é¡</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t}f(t) * e^{\alpha t}g(t) = e^{\alpha t} \{ f(t) * g(t) \}</math>|tag=(2.17a)|label=eq:2.17a}}
<strong>蚌æ</strong>
[[w:%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF|åæç©]]ã®å®çŸ©ãã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|巊蟺<math> = \int_0^t e^{\alpha(t - \tau)}f(t-\tau)\cdot e^{\alpha \tau}g(\tau)d\tau</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \int_0^t e^{\alpha t}\cdot e^{-\alpha\tau}e^{\alpha\tau}\cdot f(t-\tau)g(\tau)d\tau</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>=e^{\alpha t}\int_0^t f(t-\tau)g(\tau)d\tau = </math>å³èŸº}}
ãåŸãïŒ
<math>\diamondsuit</math>
ãã®è£é¡[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.17a|(2.17a)]]ãé©çšããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\underbrace{e^{\alpha t} * e^{\alpha t} * \cdots * e^{\alpha t}}_{n\text{å}} = e^{\alpha t} (\underbrace{1*1*\cdots*1}_{n\text{å}}) = \frac{t^{n-1}}{(n-1)!}e^{\alpha t}</math>}}
ãåŸãïŒãšããã§ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[\underbrace{e^{\alpha t} * e^{\alpha t} * \cdots * e^{\alpha t}}_{n\text{å}}] = (\mathcal{L}[e^{\alpha t}])^n = \frac{1}{(s-\alpha)^n}</math>}}
ãã£ãŠæ¬¡ã®å
¬åŒãåŸãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{t^{n-1}}{(n-1)!}e^{\alpha t} \sqsupset \frac{1}{(s-\alpha)^n}</math>|tag=(2.17b)|label=eq:2.17b}}
ãã®å
¬åŒã[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/f(t) ã®ç©åããã³åŸ®åã® Laplace 倿#eq:2.8|åã®çµæ]]
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{t^{n - 1}}{(n - 1)!} \sqsupset \frac{1}{s^n}</math>|tag=(2.8)|}}
ãšæ¯èŒãããšïŒ<math>t</math> é åã§ <math>e^{\alpha t}</math> ãæããããšãšïŒ<math>s</math> é åã§ <math>\alpha</math> ã ãç§»åããããšãšã察å¿ããŠããïŒ
ãã®ããšã¯ïŒãã£ãšäžè¬çã«æç«ããäºå®ã§ããïŒ
<div id="第äžç§»åå®ç">
<strong>第äžç§»åå®ç</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) \sqsupset F(s) \Longrightarrow f(t)e^{\alpha t} \sqsupset F(s-\alpha)</math>}}
<strong>蚌æ</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\int_0^{\infty} f(t)e^{\alpha t}\cdot e^{-st}dt = \int_0^{\infty}f(t)e^{-(s-\alpha)t}dt = F(s-\alpha)</math><ref>
ããã§ã¯ãã¹ãŠã®å®çãïŒå¯èœãªéãåæç©ããã³[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/Laplace 倿ã®å®çŸ©ãšãã®åºæ¬çæ§è³ª|Laplace 倿ã®åºæ¬çæ§è³ª]]ããå°åºããããã«åªããŠããïŒ<math>\frac{1}{(s-\alpha)^n}</math> ã®ååãåæç©ããå°åºããŠãããïŒç¬¬äžç§»åå®çã«ã€ããŠã¯ïŒLaplace 倿ã®å®çŸ©ããçŽæ¥å°åºããŠããïŒ
</ref>
|tag=(2.17c)|label=eq:2.17c}}
<math>\diamondsuit</math>
ãã®å®çããïŒçŽã¡ã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{t^{n-1}}{(n-1)!} \sqsupset \frac{1}{s^n} \Longrightarrow \frac{t^{n-1}}{(n-1)!}e^{\alpha t} \sqsupset \frac{1}{(s-\alpha)^n}</math>}}
ãå°ãããã®ã§ããïŒ
<!-- ex:029:start-->
<div id="ex:29">
<strong>äŸ29</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2}{dt^2} + 4 \frac{dx}{dt} + 4x = 3e^{-2t} \quad x(0) = 2, x'(0) = 1</math>}}
ãè§£ãïŒ
<strong>è§£çäŸ</strong>
äžåŒã Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2\mathcal{L}[x] - 2s + 1 + 4(\mathcal{L}[x] - 2) + 4\mathcal{L}[x] = \frac{3}{s + 2}</math>}}
ããã <math>\mathcal{L}[x]</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{2s + 9}{(s + 2)^2} + \frac{3}{(s + 2)^3} = \frac{2}{s + 2} + \frac{5}{(s + 2)^2} + \frac{3}{(s + 2)^3}</math><ref>
<math>\frac{A}{s + 2} + \frac{B}{(s + 2)^2} = \frac{2s + 9}{(s + 2)^2}</math> ãšçœ®ããŠïŒ<math>A = 2, B = 5</math>
</ref>}}
ãšãªãããïŒãã®ååã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \left(2 + 5t + \frac{3}{2}t^2\right)e^{-2t}</math>}}
ã§ããïŒ
<math>\diamondsuit</math>
<!-- ex:029:end-->
<!-- ex:030:start-->
<div id="ex:30">
<strong>äŸ30</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2}{dt^2} + 2a\frac{dx}{dt} + a^2x = f(t), \quad x(0) = x'(0) = 0</math>}}
ãè§£ãïŒ
<strong>è§£</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) \sqsupset X(s), \quad f(t) \sqsupset F(s)</math>}}
ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2X(s) + 2asX(s) + a^2X(s) = F(s)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore X(s) = \frac{F(s)}{(s + a)^2} \sqsubset te^{-at}*f(t)</math>}}
ããããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = \int_0^t (t-\tau)e^{-a(t-\tau)}f(\tau)d\tau</math>}}
ãåŸãïŒ
<math>\diamondsuit</math>
<!-- ex:030:end-->
<!-- ex:031:start-->
<div id="ex:31">
<strong>äŸ31</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} + x = e^{-t}, \quad x(0) = 1</math>}}
<strong>è§£çäŸ</strong>
<math>s\mathcal{L}[x] - 1 + \mathcal{L}[x] = \frac{1}{s + 1}</math>
<math>\therefore \mathcal{L}[x] = \frac{1}{s+1} + \frac{1}{(s+1)^2}</math>
<math>\therefore x = (1 + t)e^{-t}</math>
<math>\diamondsuit</math>
<!-- ex:031:end-->
<!-- ex:032:start-->
<div id="ex:32">
<strong>äŸ32</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2t}{dt^2} + 2\frac{dx}{dt} + x = te^{-t}, \quad x(0) = x'(0) = 0</math>}}
<strong>è§£çäŸ</strong>
<math>s^2\mathcal{L}[x] + 2s\mathcal{L}[x] + \mathcal{L}[x] = \frac{1}{(s + 1)^2}</math>
<math>\mathcal{L}[x] = \frac{1}{(s + 1)^4}</math>
<math>\therefore x = \frac{t^3}{3!}e^{-t}</math>
<math>\diamondsuit</math>
<!-- ex:032:end-->
<!-- ex:033:start-->
<div id="ex:33">
<strong>äŸ33</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 3te^{-2t}, \quad x(0) = 2, x'(0) = 1</math>}}
<strong>è§£çäŸ</strong>
<math>s^2\mathcal{L}[x] - 2s - 1 + 4(s\mathcal{L}[x] - 2) + 4\mathcal{L}[x] = \frac{3}{(s + 2)^2}</math>
<math>\mathcal{L}[x] = \frac{2s + 9}{(s + 2)^2} + \frac{3}{(s + 2)^4} = \frac{2}{s + 2} + \frac{5}{(s + 2)^2} + \frac{3}{(s + 2)^4}</math>
<math>x = (2 + 5t + \frac{t^3}{2})e^{-2t}</math>
<math>\diamondsuit</math>
<!-- ex:033:end-->
<!-- ex:034:start-->
<div id="ex:34">
<strong>äŸ34</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 2\frac{dx}{dt}-3x=16e^t, \quad x(0) = x'(0) = 0</math>}}
<strong>è§£çäŸ</strong>
<math>s^2\mathcal{L}[x] + 2s\mathcal{L}[x] - 3\mathcal{L}[x] = \frac{16}{s-1}</math>
<math>\mathcal{L}[x] = \frac{16}{(s - 1)^2(s + 3)} = \frac{1}{s + 3} - \frac{1}{s - 1} + \frac{4}{(s + 1)^2}</math>
<math>\therefore x = e^{-3t} + (4t - 1)e^t</math>
<math>\diamondsuit</math>
<!-- ex:034:end-->
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:24:21Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation",
"ãã³ãã¬ãŒã:Sup"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/%E6%8C%87%E6%95%B0%E9%96%A2%E6%95%B0%E3%81%AE_Laplace_%E5%A4%89%E6%8F%9B%E3%81%A8%E3%81%9D%E3%81%AE%E5%BF%9C%E7%94%A8 |
25,191 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³ | ããŠ,ãããŸã§ã®è°è«ã¯å座ã§ãã,ãããããæ¬è«ãšãªã.
åç« ã§è¿°ã¹ã Laplace 倿ã«ããè§£æ³ãé¡§ã¿ãŠ,æãããŠæ£ããè§£ãåŸãããŠããã®ãåŠããåå³ããã. åãæ±ã察象ã¯å®æ°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒ,
ããã³,
ã§ãã,ããããåæå€,
ãæºããè§£ãæ±ããããšãåé¡ã§ãããšãã.è§£æ³ã®æé ã¯æ¬¡ã®éãã§ãã£ã.
åŒ(3.1) ãåæå€,åŒ(3.3)ã®äžã« Laplace 倿ããã°,
ã§ãã.ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã«ã€ããŠè§£ãã°,
ããã«,
ãšãªã.åæ§ã«åŒ(3.2),(3.3)ã Laplace 倿ã L [ x ] {\displaystyle {\mathcal {L}}[x]} ãæ±ãããš,
ãšãªã.ããã§,
ãšãããš,åŒ(3.1),(3.3)ã®è§£ã¯,
åŒ(3.2),(3.3)ã®è§£ã¯,
ãšãªã,ãšããããšã§ãã£ã.ããã« â {\displaystyle *} ã¯åæç©ã衚ã.
ããã ãã®è°è«ã§æãããŠåŒ(3.7),(3.8)ã (3.1),(3.3); (3.2),(3.3)ã®è§£ã§ãããšçµè«ããããšãã§ããã§ãããã. ãããåå³ããããšã,ãã®ç« ã®ç®çã§ãã.
åå³ã®è©³çްã«å
¥ãåã«,ãããŸã§ã§åŸãããçµæããŸãšããŠããã.
å®ç3.1 {\displaystyle \quad } åŒ(3.1),(3.3) ããã㯠åŒ(3.3),(3.3) ã®è§£ã® Laplace 倿 L [ x ] {\displaystyle {\mathcal {L}}[x]} ã«å¯ŸããŠæ¬¡ã®äºå®ãæãç«ã€.
(I) 忝ã¯åæå€ã«ç¡é¢ä¿ã«,åŸ®åæ¹çšåŒã®åœ¢ã ãã§æ±ºãŸã.
(II) ååã¯åæå€ã«ãã£ãŠæ±ºãŸã.ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã®ååå€é
åŒ
ã¯åæå€ ( Ο 1 , Ο 2 , Ο 3 , ⯠Ο n ) {\displaystyle (\xi _{1},\xi _{2},\xi _{3},\cdots \xi _{n})} ãš 1:1 ã«å¯Ÿå¿ãã.
以äžãã,ç°ãªãåæå€ã«ã¯ç°ãªã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã察å¿ãã. ⢠{\displaystyle \diamondsuit }
ããã«åå³ãç¶ãã.äžã®è§£æ³ã®æé ãèŠçŽãããš,
ãšãªã.ãã®æšè«ã¯æ£ããã®ã§ãããã.ãã®ããã«ãŸãšãããããš,誰ããäžå®ãæããããåŸãªãã§ããã.ãã®äžå®ãåãé€ãæ¹æ³ã¯,
ã®ãäžçªã®è¯çã§ãã.ããã«,
ããšã確ããããããããã«ãã.ãã®äž,
ãç¥ã£ãŠããããšãå¿
èŠã§ãã.
ãã®ç« ã§ã¯,ç·åœ¢å®åžžåžžåŸ®åæ¹çšåŒè«ããã®è¥å¹²ã®è©±é¡ãæºåããªãã,ãããã®åé¡ã®è§£æ±ºãäžããããšã«ããã.
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããŠ,ãããŸã§ã®è°è«ã¯å座ã§ãã,ãããããæ¬è«ãšãªã.",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åç« ã§è¿°ã¹ã Laplace 倿ã«ããè§£æ³ãé¡§ã¿ãŠ,æãããŠæ£ããè§£ãåŸãããŠããã®ãåŠããåå³ããã. åãæ±ã察象ã¯å®æ°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒ,",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã³,",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã§ãã,ããããåæå€,",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãæºããè§£ãæ±ããããšãåé¡ã§ãããšãã.è§£æ³ã®æé ã¯æ¬¡ã®éãã§ãã£ã.",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åŒ(3.1) ãåæå€,åŒ(3.3)ã®äžã« Laplace 倿ããã°,",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§ãã.ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã«ã€ããŠè§£ãã°,",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããã«,",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšãªã.åæ§ã«åŒ(3.2),(3.3)ã Laplace 倿ã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ãæ±ãããš,",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšãªã.ããã§,",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãããš,åŒ(3.1),(3.3)ã®è§£ã¯,",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åŒ(3.2),(3.3)ã®è§£ã¯,",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªã,ãšããããšã§ãã£ã.ããã« â {\\displaystyle *} ã¯åæç©ã衚ã.",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããã ãã®è°è«ã§æãããŠåŒ(3.7),(3.8)ã (3.1),(3.3); (3.2),(3.3)ã®è§£ã§ãããšçµè«ããããšãã§ããã§ãããã. ãããåå³ããããšã,ãã®ç« ã®ç®çã§ãã.",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "åå³ã®è©³çްã«å
¥ãåã«,ãããŸã§ã§åŸãããçµæããŸãšããŠããã.",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "å®ç3.1 {\\displaystyle \\quad } åŒ(3.1),(3.3) ããã㯠åŒ(3.3),(3.3) ã®è§£ã® Laplace 倿 L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã«å¯ŸããŠæ¬¡ã®äºå®ãæãç«ã€.",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "(I) 忝ã¯åæå€ã«ç¡é¢ä¿ã«,åŸ®åæ¹çšåŒã®åœ¢ã ãã§æ±ºãŸã.",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "(II) ååã¯åæå€ã«ãã£ãŠæ±ºãŸã.ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã®ååå€é
åŒ",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã¯åæå€ ( Ο 1 , Ο 2 , Ο 3 , ⯠Ο n ) {\\displaystyle (\\xi _{1},\\xi _{2},\\xi _{3},\\cdots \\xi _{n})} ãš 1:1 ã«å¯Ÿå¿ãã.",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "以äžãã,ç°ãªãåæå€ã«ã¯ç°ãªã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã察å¿ãã. ⢠{\\displaystyle \\diamondsuit }",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ããã«åå³ãç¶ãã.äžã®è§£æ³ã®æé ãèŠçŽãããš,",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªã.ãã®æšè«ã¯æ£ããã®ã§ãããã.ãã®ããã«ãŸãšãããããš,誰ããäžå®ãæããããåŸãªãã§ããã.ãã®äžå®ãåãé€ãæ¹æ³ã¯,",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã®ãäžçªã®è¯çã§ãã.ããã«,",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ããšã確ããããããããã«ãã.ãã®äž,",
"title": ""
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãç¥ã£ãŠããããšãå¿
èŠã§ãã.",
"title": ""
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãã®ç« ã§ã¯,ç·åœ¢å®åžžåžžåŸ®åæ¹çšåŒè«ããã®è¥å¹²ã®è©±é¡ãæºåããªãã,ãããã®åé¡ã®è§£æ±ºãäžããããšã«ããã.",
"title": ""
},
{
"paragraph_id": 26,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 27,
"tag": "p",
"text": "",
"title": ""
}
]
| ããŠïŒãããŸã§ã®è°è«ã¯å座ã§ããïŒãããããæ¬è«ãšãªãïŒ åç« ã§è¿°ã¹ã Laplace 倿ã«ããè§£æ³ãé¡§ã¿ãŠïŒæãããŠæ£ããè§£ãåŸãããŠããã®ãåŠããåå³ãããïŒ
åãæ±ã察象ã¯å®æ°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒïŒ ããã³, ã§ããïŒããããåæå€ïŒ ãæºããè§£ãæ±ããããšãåé¡ã§ãããšããïŒè§£æ³ã®æé ã¯æ¬¡ã®éãã§ãã£ãïŒ åŒ(3.1) ãåæå€ïŒåŒ(3.3)ã®äžã« Laplace 倿ããã°ïŒ ã§ããïŒããã L [ x ] ã«ã€ããŠè§£ãã°ïŒ ããã«ïŒ ãšãªãïŒåæ§ã«åŒ(3.2)ïŒ(3.3)ã Laplace 倿ã L [ x ] ãæ±ãããšïŒ ãšãªãïŒããã§ïŒ ãšãããšïŒåŒ(3.1)ïŒ(3.3)ã®è§£ã¯ïŒ åŒ(3.2)ïŒ(3.3)ã®è§£ã¯ïŒ ãšãªãïŒãšããããšã§ãã£ãïŒããã« â ã¯åæç©ã衚ãïŒ ããã ãã®è°è«ã§æãããŠåŒ(3.7)ïŒ(3.8)ã
(3.1)ïŒ(3.3)ïŒ
(3.2)ïŒ(3.3)ã®è§£ã§ãããšçµè«ããããšãã§ããã§ããããïŒ
ãããåå³ããããšãïŒãã®ç« ã®ç®çã§ããïŒ åå³ã®è©³çްã«å
¥ãåã«ïŒãããŸã§ã§åŸãããçµæããŸãšããŠãããïŒ | ããŠïŒãããŸã§ã®è°è«ã¯å座ã§ããïŒãããããæ¬è«ãšãªãïŒ
åç« ã§è¿°ã¹ã [[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ã«ããè§£æ³ãé¡§ã¿ãŠïŒæãããŠæ£ããè§£ãåŸãããŠããã®ãåŠããåå³ãããïŒ
åãæ±ã察象ã¯å®æ°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^nx}{dt^n} + a_1\frac{d^{n-1}x}{dt^{n-1}} + a_2\frac{d^{n-2}x}{dt^{n-2}} + \cdots + a_nx = 0</math>|tag=(3.1)|label=eq:3.1}}
ããã³,
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^nx}{dt^n} + a_1\frac{d^{n-1}x}{dt^{n-1}} + a_2\frac{d^{n-2}x}{dt^{n-2}} + \cdots + a_nx = f(t)</math>|tag=(3.2)|label=eq:3.2}}
ã§ããïŒããããåæå€ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(0)=\xi_1, x'(0)=\xi_2, \cdots, x^{(n-1)}(0)=\xi_n</math>|tag=(3.3)|label=eq:3.3}}
ãæºããè§£ãæ±ããããšãåé¡ã§ãããšããïŒè§£æ³ã®æé ã¯æ¬¡ã®éãã§ãã£ãïŒ
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.1|(3.1)]] ãåæå€ïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ã®äžã« Laplace 倿ããã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math> \{ s^n\mathcal{L}[x] - \xi_1s^{n-1} - \xi_2s^{n-2}- \cdots -\xi_n \} + a_1 \{ s^{n-1}\mathcal{L}[x] - \xi_1s^{n-2}-\cdots-\xi_{n-1} \} +\cdots+a_n\mathcal{L}[x] = 0</math>}}
ã§ããïŒããã <math>\mathcal{L}[x]</math> ã«ã€ããŠè§£ãã°ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{b_1s^{n-1} + b_2s^{n-2} + \cdots + b_n}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_n}</math>|tag=(3.4)|label=eq:3.4}}
ããã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|
<math>
\left(
\begin{array}{c}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_n
\end{array}
\right)
=
\left(
\begin{array}{c}
1 \\
a_1 & 1 & \\
a_2 & a_1 & 1 & \\
\vdots & & & \ddots & \\
a_{n-1} & a_{n-2} & \cdots &a_1 & 1
\end{array}
\right)
\left (
\begin{array}{c}
\xi_1 \\
\xi_2 \\
\xi_3 \\
\vdots \\
\xi_n
\end{array}
\right)
</math>|tag=(3.5)|label=eq:3.5}}
ãšãªãïŒåæ§ã«åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.2|(3.2)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ã Laplace 倿ã <math>\mathcal{L}[x]</math> ãæ±ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{b_1s^{n-1} + b_2s^{n-2}+ \cdots + b_n}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_n} + \frac{\mathcal{L}[f]}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_n}</math>|tag=(3.6)|label=eq:3.6}}
ãšãªãïŒããã§ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{b_1s^{n-1} + b_2s^{n-2}+ \cdots + b_n}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_n} \sqsubset x_0(t)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_n} \sqsubset g(t)</math>}}
ãšãããšïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.1|(3.1)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ã®è§£ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = x_0(t)</math>|tag=(3.7)|label=eq:3.7}}
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.2|(3.2)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ã®è§£ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = x_0(t) + g(t)*f(t)</math><ref><math>x_0(t)</math> ãéæž¡è§£ïŒ<math>g(t)*f(t)</math> ãå®åžžè§£ãšåŒã¶ããšãããïŒ</ref>|tag=(3.8)|label=eq:3.8}}
ãšãªãïŒãšããããšã§ãã£ãïŒããã« <math>*</math> ã¯[[w:%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF|åæç©]]ã衚ãïŒ
ããã ãã®è°è«ã§æãããŠåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.7|(3.7)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.8|(3.8)]]ã
[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.1|(3.1)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ïŒ
[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.2|(3.2)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]ã®è§£ã§ãããšçµè«ããããšãã§ããã§ããããïŒ
ãããåå³ããããšãïŒãã®ç« ã®ç®çã§ããïŒ
åå³ã®è©³çްã«å
¥ãåã«ïŒãããŸã§ã§åŸãããçµæããŸãšããŠãããïŒ
<!-- theorem:001:start-->
<div id="teorem:3.1">
<strong>å®ç3.1</strong><math>\quad</math>
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.1|(3.1)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]] ãããã¯
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.2|(3.3)]]ïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³#eq:3.3|(3.3)]]
ã®è§£ã® Laplace 倿 <math>\mathcal{L}[x]</math> ã«å¯ŸããŠæ¬¡ã®äºå®ãæãç«ã€ïŒ
(â
) 忝ã¯åæå€ã«ç¡é¢ä¿ã«ïŒåŸ®åæ¹çšåŒã®åœ¢ã ãã§æ±ºãŸãïŒ
(â
¡) ååã¯åæå€ã«ãã£ãŠæ±ºãŸãïŒããã <math>\mathcal{L}[x]</math> ã®ååå€é
åŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>b_1s^{n-1} + b_2s^{n-2} + b_3s^{n-3} + \cdots + b_n</math>}}
ã¯åæå€ <math>(\xi_1, \xi_2, \xi_3, \cdots \xi_n)</math> ãš 1:1 ã«å¯Ÿå¿ããïŒ
以äžããïŒç°ãªãåæå€ã«ã¯ç°ãªã <math>\mathcal{L}[x]</math> ã察å¿ããïŒ
<math>\diamondsuit</math>
<!-- theorem:001:end-->
ããã«åå³ãç¶ããïŒäžã®è§£æ³ã®æé ãèŠçŽãããšïŒ
* ãäœæ¥ 1ã è§£ <math>x(t)</math> ãååšãããšä»®å®ããŠïŒ<math>X(s) = \mathcal{L}[x(t)]</math> ãèšç®ããïŒ
* ãäœæ¥ 2ã æ±ãŸã£ã <math>X(s)</math> ã«å¯Ÿã㊠<math>X(s)=\mathcal{L}[\tilde{x}(t)]</math> ãšãªã <math>\tilde{x}(t)</math> ãèŠã€ããïŒ
* ãäœæ¥ 3ã <math>\tilde{x}(t)</math> ãè§£ã§ããïŒ
ãšãªãïŒãã®æšè«ã¯æ£ããã®ã§ããããïŒãã®ããã«ãŸãšãããããšïŒèª°ããäžå®ãæããããåŸãªãã§ãããïŒãã®äžå®ãåãé€ãæ¹æ³ã¯ïŒ
*(1) <math>\tilde{x}(t)</math> ãè§£ã§ããããšãçŽæ¥ç¢ºããã
ã®ãäžçªã®è¯çã§ããïŒããã«ïŒ
*(2) <math>\tilde{x}(t)</math> 以å€ã«è§£ããªã
ããšã確ããããããããã«ããïŒãã®äžïŒ
*(3) <math>t_0 \ne 0</math> ã§åæå€ãäžãããããšãã®è§£ã®èŠã€ãæ¹
ãç¥ã£ãŠããããšãå¿
èŠã§ããïŒ
ãã®ç« ã§ã¯ïŒç·åœ¢å®åžžåžžåŸ®åæ¹çšåŒè«ããã®è¥å¹²ã®è©±é¡ãæºåããªããïŒãããã®åé¡ã®è§£æ±ºãäžããããšã«ãããïŒ
<references />
----
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/埮åäœçšçŽ ãšç¹æ§æ¹çšåŒ|埮åäœçšçŽ ãšç¹æ§æ¹çšåŒ]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/ç·åœ¢æ§ãšéãåããã®åç|ç·åœ¢æ§ãšéãåããã®åç]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/ç¹æ§å€é
åŒã®æ§é ãšè§£ã®æ§è³ª|ç¹æ§å€é
åŒã®æ§é ãšè§£ã®æ§è³ª]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/è§£æ³ã®æ£ããã®èšŒæ|è§£æ³ã®æ£ããã®èšŒæ]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/ç·åœ¢å®åžžæ§|ç·åœ¢å®åžžæ§]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/t0â 0ã§åæå€ãäžããããŠããå Žå|<math>t_0 \ne 0</math> ã§åæå€ãäžããããŠããå Žå]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/åæå€åé¡ã®è§£ã®äžææ§|åæå€åé¡ã®è§£ã®äžææ§]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/埮åäžçåŒãšæ¯èŒå®ç|埮åäžçåŒãšæ¯èŒå®ç]]
*[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿ã«ããè§£ã®åå³/è§£ã®æ§é ãšäžè¬è§£|è§£ã®æ§é ãšäžè¬è§£]]
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:26:08Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B%E3%81%AB%E3%82%88%E3%82%8B%E8%A7%A3%E3%81%AE%E5%90%9F%E5%91%B3 |
25,228 | èæžããã©ã€èªå
¥é/å眮è©(2)/ç·Žç¿/è§£ç | è§£ç (1)
×. ãã®èšèã¯ãããžãåã«è¿ããåã®å£ãšå¿ãšã«ããã
×. ã€ããŠã§ã¯ãã¹ãŠã®ç¥ã
ã®äžã«ããŸã倧çã§ããã
×. ãããŠã€ããŠã§ã®æ å
ã®ããŸã¯ã€ã¹ã©ãšã«äººã«ã¯ç«å±±ã®åŽç«ã®ããã«èŠããã(=ã€ã¹ã©ãšã«ã®æ¯åãã¡ã®ç®ã«å±±é ã®ç«ã®ããã§ããã)
×. ãã®äººãã¡ã¯ç§ãã¡ãšäžç·ã«å±
ãŠå¹³ç©ã§ãã
×. ãããç§ãšåãã¡ãšã®å¥çŽã®å°ã§ããã
×. ç§ã©ãã«ã¯å¹Žèããç¶ãšå¹ŒãåŒãããŸãã
×. ãã³ãæ°Žããªãããã®å°ã®é£¢é€ãã²ã©ãããã ã
×. ç¥ããããšå
±ã«ããŸãã
(2)
1.×ÖŽ× ×Öµ×× ×ֶ֌סֶף ×Ö°×Öµ×× ×Öž×Öž×
2.×¢ÖŽ×Ö¶ÖŒ×Öž ×Ö°×ַך ×Öž×Ö±××ÖŽ×××
3.×Ö·×ÖžÖŒ×ÖŽ×× ×ÖžÖŒ× ×Ö²× Öž×©ÖŽ××× ×Öµ×××ÖŽ××× ×Öµ×ÖŽ××©× ×Ö°×¢Ö·×ÖŸ×֎ש֞֌××
4.×Öµ×× × Öž×ÖŽ×× ×Ö°ÖŒ××שֶ×× ×Ö°ÖŒ×֎ש×ך֞×Öµ×
5.ק֞ך××× ×Öž× ×ÖŒ ×Öž×Ö±××ÖŽ××× ×Ö°ÖŒ×××× ×ŠÖž×šÖž× | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è§£ç (1)",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "×. ãã®èšèã¯ãããžãåã«è¿ããåã®å£ãšå¿ãšã«ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "×. ã€ããŠã§ã¯ãã¹ãŠã®ç¥ã
ã®äžã«ããŸã倧çã§ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "×. ãããŠã€ããŠã§ã®æ å
ã®ããŸã¯ã€ã¹ã©ãšã«äººã«ã¯ç«å±±ã®åŽç«ã®ããã«èŠããã(=ã€ã¹ã©ãšã«ã®æ¯åãã¡ã®ç®ã«å±±é ã®ç«ã®ããã§ããã)",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "×. ãã®äººãã¡ã¯ç§ãã¡ãšäžç·ã«å±
ãŠå¹³ç©ã§ãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "×. ãããç§ãšåãã¡ãšã®å¥çŽã®å°ã§ããã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "×. ç§ã©ãã«ã¯å¹Žèããç¶ãšå¹ŒãåŒãããŸãã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "×. ãã³ãæ°Žããªãããã®å°ã®é£¢é€ãã²ã©ãããã ã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "×. ç¥ããããšå
±ã«ããŸãã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "(2)",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "1.×ÖŽ× ×Öµ×× ×ֶ֌סֶף ×Ö°×Öµ×× ×Öž×Öž×",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "2.×¢ÖŽ×Ö¶ÖŒ×Öž ×Ö°×ַך ×Öž×Ö±××ÖŽ×××",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "3.×Ö·×ÖžÖŒ×ÖŽ×× ×ÖžÖŒ× ×Ö²× Öž×©ÖŽ××× ×Öµ×××ÖŽ××× ×Öµ×ÖŽ××©× ×Ö°×¢Ö·×ÖŸ×֎ש֞֌××",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "4.×Öµ×× × Öž×ÖŽ×× ×Ö°ÖŒ××שֶ×× ×Ö°ÖŒ×֎ש×ך֞×Öµ×",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "5.ק֞ך××× ×Öž× ×ÖŒ ×Öž×Ö±××ÖŽ××× ×Ö°ÖŒ×××× ×ŠÖž×šÖž×",
"title": ""
}
]
| è§£ç
(1) â×â. ãã®èšèã¯ãããžãåã«è¿ããåã®å£ãšå¿ãšã«ããã â×â. ã€ããŠã§ã¯ãã¹ãŠã®ç¥ã
ã®äžã«ããŸã倧çã§ããã â×â. ãããŠã€ããŠã§ã®æ å
ã®ããŸã¯ã€ã¹ã©ãšã«äººã«ã¯ç«å±±ã®åŽç«ã®ããã«èŠãããïŒïŒã€ã¹ã©ãšã«ã®æ¯åãã¡ã®ç®ã«å±±é ã®ç«ã®ããã§ãããïŒ â×â. ãã®äººãã¡ã¯ç§ãã¡ãšäžç·ã«å±
ãŠå¹³ç©ã§ãã â×â. ãããç§ãšåãã¡ãšã®å¥çŽã®å°ã§ããã â×â. ç§ã©ãã«ã¯å¹Žèããç¶ãšå¹ŒãåŒãããŸãã â×â. ãã³ãæ°Žããªãããã®å°ã®é£¢é€ãã²ã©ãããã ã â×â. ç¥ããããšå
±ã«ããŸãã (2) 1.â×ÖŽ× ×Öµ×× ×ֶ֌סֶף ×Ö°×Öµ×× ×Öž×Öž×â 2.â×¢ÖŽ×Ö¶ÖŒ×Öž ×Ö°×ַך ×Öž×Ö±××ÖŽ×××â 3.â×Ö·×ÖžÖŒ×ÖŽ×× ×ÖžÖŒ× ×Ö²× Öž×©ÖŽ××× ×Öµ×××ÖŽ××× ×Öµ×ÖŽ××©× ×Ö°×¢Ö·×ÖŸ×֎ש֞֌××â 4.â×Öµ×× × Öž×ÖŽ×× ×Ö°ÖŒ××שֶ×× ×Ö°ÖŒ×֎ש×ך֞×Öµ×â 5.âק֞ך××× ×Öž× ×ÖŒ ×Öž×Ö±××ÖŽ××× ×Ö°ÖŒ×××× ×ŠÖž×šÖž×â | è§£ç
(1)
‏×‎. ãã®èšèã¯ãããžãåã«è¿ããåã®å£ãšå¿ãšã«ããã
‏×‎. ã€ããŠã§ã¯ãã¹ãŠã®ç¥ã
ã®äžã«ããŸã倧çã§ããã
‏×‎. ãããŠã€ããŠã§ã®æ å
ã®ããŸã¯ã€ã¹ã©ãšã«äººã«ã¯ç«å±±ã®åŽç«ã®ããã«èŠãããïŒïŒã€ã¹ã©ãšã«ã®æ¯åãã¡ã®ç®ã«å±±é ã®ç«ã®ããã§ãããïŒ
‏×‎. ãã®äººãã¡ã¯ç§ãã¡ãšäžç·ã«å±
ãŠå¹³ç©ã§ãã
‏×‎. ãããç§ãšåãã¡ãšã®å¥çŽã®å°ã§ããã
‏×‎. ç§ã©ãã«ã¯å¹Žèããç¶ãšå¹ŒãåŒãããŸãã
‏×‎. ãã³ãæ°Žããªãããã®å°ã®é£¢é€ãã²ã©ãããã ã
‏×‎. ç¥ããããšå
±ã«ããŸãã
(2)
1.‏×ÖŽ× ×Öµ×× ×ֶ֌סֶף ×Ö°×Öµ×× ×Öž×Öž×‎
2.‏×¢ÖŽ×Ö¶ÖŒ×Öž ×Ö°×ַך ×Öž×Ö±××ÖŽ×××‎
3.‏×Ö·×ÖžÖŒ×ÖŽ×× ×ÖžÖŒ× ×Ö²× Öž×©ÖŽ××× ×Öµ×××ÖŽ××× ×Öµ×ÖŽ××©× ×Ö°×¢Ö·×ÖŸ×֎ש֞֌××‎
4.‏×Öµ×× × Öž×ÖŽ×× ×Ö°ÖŒ××שֶ×× ×Ö°ÖŒ×֎ש×ך֞×Öµ×‎
5.‏ק֞ך××× ×Öž× ×ÖŒ ×Öž×Ö±××ÖŽ××× ×Ö°ÖŒ×××× ×ŠÖž×šÖž×‎
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:12:48Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%89%8D%E7%BD%AE%E8%A9%9E(2)/%E7%B7%B4%E7%BF%92/%E8%A7%A3%E7%AD%94 |
25,234 | æ¥æ¬èª/åè©/èªç«èª/äœèš/åè© | ç©åãã人ç©åãªãååšãããã®ã®åç§°ãæŽ»çšã¯ãªãã è€åèªã¯ãæç¯ã§åè§£ããŠèããã
ç©äºã®äžè¬çãªåç§°ã
<äŸ>æããããã¯ãå€§æŠæ¥ çã
ãããã®ãååã®ä»£ããã«æã瀺ãèšèã
<äŸ>ããããã¡ãããããã圌 çã
å°åã人åçã®åºæçãªåè©ã
<äŸ>埳å·å®¶åº·ãæ¥æ¬ãåŒçç çã
æ°ãå«ãåè©ã®ããšã
<äŸ>1åãäžå¹ããã〠çã
å
ã¯ãåè©ã圢容è©ã圢容åè©ã§ãã£ããã®ãåè©ã«ãªã£ããã®ã
<äŸ>åãâåã æãâæã å
æ°ã âå
æ°
詳ããã¯ã代åè©ãåç
§ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç©åãã人ç©åãªãååšãããã®ã®åç§°ãæŽ»çšã¯ãªãã è€åèªã¯ãæç¯ã§åè§£ããŠèããã",
"title": "åè©"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç©äºã®äžè¬çãªåç§°ã",
"title": "åè©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "<äŸ>æããããã¯ãå€§æŠæ¥ çã
",
"title": "åè©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããã®ãååã®ä»£ããã«æã瀺ãèšèã",
"title": "åè©"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "<äŸ>ããããã¡ãããããã圌 çã
",
"title": "åè©"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å°åã人åçã®åºæçãªåè©ã",
"title": "åè©"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "<äŸ>埳å·å®¶åº·ãæ¥æ¬ãåŒçç çã
",
"title": "åè©"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ°ãå«ãåè©ã®ããšã",
"title": "åè©"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "<äŸ>1åãäžå¹ããã〠çã
",
"title": "åè©"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å
ã¯ãåè©ã圢容è©ã圢容åè©ã§ãã£ããã®ãåè©ã«ãªã£ããã®ã",
"title": "åè©"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "<äŸ>åãâåã æãâæã å
æ°ã âå
æ°",
"title": "åè©"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "詳ããã¯ã代åè©ãåç
§ã",
"title": "åè©"
}
]
| null | {{Wikipedia|åè©}}
{{wiktionary|åè©}}
{{wikipedia|äœèš}}
==åè©==
ç©åãã人ç©åãªãååšãããã®ã®åç§°ãæŽ»çšã¯ãªãã
[[è€åèª]]ã¯ã[[æ¥æ¬èª/æ§æ#æ§é ãšæç¯|æç¯]]ã§åè§£ããŠèããã
===æ®éåè©===
ç©äºã®äžè¬çãªåç§°ã
<äŸ>æããããã¯ãå€§æŠæ¥ãçã
===代åè©===
ãããã®ãååã®ä»£ããã«æã瀺ãèšèã
<äŸ>ããããã¡ãããããã圌ãçã
===åºæåè©===
å°åã人åçã®åºæçãªåè©ã
ã<äŸ>埳å·å®¶åº·ãæ¥æ¬ãåŒççãçã
===æ°è©===
æ°ãå«ãåè©ã®ããšã
ã<äŸ>1åãäžå¹ãããã€ãçã
===転æåè©===
å
ã¯ã[[æ¥æ¬èª/åè©/èªç«èª/çšèš/åè©|åè©]]ã[[æ¥æ¬èª/åè©/èªç«èª/çšèš/圢容è©|圢容è©]]ã[[æ¥æ¬èª/åè©/èªç«èª/çšèš/圢容åè©|圢容åè©]]ã§ãã£ããã®ãåè©ã«ãªã£ããã®ã
<äŸ>åãâåã
ããæãâæã
ããå
æ°ã âå
æ°
===代åè©===
詳ããã¯ã[[æ¥æ¬èª/åè©/èªç«èª/äœèš/代åè©|代åè©]]ãåç
§ã
[[ã«ããŽãª:æ¥æ¬èª åè©]] | 2019-03-18T10:21:17Z | 2023-09-25T08:45:38Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary"
]
| https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E/%E8%87%AA%E7%AB%8B%E8%AA%9E/%E4%BD%93%E8%A8%80/%E5%90%8D%E8%A9%9E |
25,243 | èæžããã©ã€èªå
¥é/åè©(1)/äŸæ | 12.1 äŸæ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "12.1 äŸæ",
"title": ""
}
]
| 12.1 äŸæ | 12.1 äŸæ
{|
|-
|style="text-align:left" |<span id="12.1.æ1" class="anchor"></span>1.æ±ã®åãè¡ãã®ã¯ã€ããŠã§ã ïŒ
|style="text-align:right"|×. ×Ö°×××× ××ÖŒ× ×Ö·×××Öµ×Ö° ×Ö°×€Öž× Ö¶××Öž
|-
|style="text-align:left" |<span id="12.1.æ2" class="anchor"></span>2.æ±ã®åŒã®è¡ãåã®äžããç§ã«åãã£ãŠå«ãã§ããïŒ
|style="text-align:right"|×. ×Ö°ÖŒ×Öµ× ×Öž×ÖŽ××Öž ׊××¢Ö²×§ÖŽ×× ×Öµ×Ö·× ×ÖŽ×ÖŸ×Öž×Ö²×Öž×Öž×
|-
|style="text-align:left" |<span id="12.1.æ3" class="anchor"></span>3.æ±ãã¯ããã«äœãæ±ãã®å
åŒã®é å°ãéãããšããŠããïŒ
|style="text-align:right"|×. ×Ö·×ªÖ¶ÖŒ× ×¢Ö¹×ְך֎×× ×ÖŽÖŒ×Ö°××ÖŒ× ×Ö²×Öµ××Ö¶× ×Ö·×ֹ֌שְ××ÖŽ×× ×©Öž××
|-
|style="text-align:left" |<span id="12.1.æ4" class="anchor"></span>4.ããŸæ±ã¯åããåªãããŠããïŒ
|style="text-align:right"|×. ×Ö°×¢Ö·×ªÖžÖŒ× ×֞ך×֌ך ×Ö·×ªÖžÖŒ× ×ÖŽ×ÖŸ×Öž×Ö²×Öž×Öž×
|-
|style="text-align:left" |<span id="12.1.æ5" class="anchor"></span>5.æ±ã¯ããŸïŒã€ããŠã§ã«ç¥çŠãããïŒ
|style="text-align:right"|×. ×Ö·×ªÖžÖŒ× ×¢Ö·×ªÖžÖŒ× ×ְ֌ך×ÖŒ×Ö° ××××
|-
|style="text-align:left" |<span id="12.1.æ6" class="anchor"></span>6.ããã¯ãçŽïŒããïŒãè
ã®æžãã«æžãããŠããã§ã¯ãªããïŒ
|style="text-align:right"|×. ×Ö²×××ÖŸ×ÖŽ×× ×ְת×ÖŒ×Öž× ×¢Ö·×֟סֵ׀ֶך ×Ö·×֞֌ש֞×ך
|}
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:07:48Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%88%86%E8%A9%9E(1)/%E4%BE%8B%E6%96%87 |
25,271 | èæžããã©ã€èªå
¥é/åè©(1)/åèª | 12.2 åèª (æ¯é³èšå·ã®ãªããã®ã¯èªæ ¹ã12.3åç
§) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "12.2 åèª (æ¯é³èšå·ã®ãªããã®ã¯èªæ ¹ã12.3åç
§)",
"title": ""
}
]
| 12.2 åèª (æ¯é³èšå·ã®ãªããã®ã¯èªæ ¹ã12.3åç
§) | 12.2 åèª (æ¯é³èšå·ã®ãªããã®ã¯èªæ ¹ã[[èæžããã©ã€èªå
¥é/åè©(1)/èªæ ¹|12.3]]åç
§)
{|
|-
|style="text-align:left" |‏×××‎, ‏×Öž×Ö·×Ö°‎
|style="text-align:left" |è¡ããæ©ã
|-
|style="text-align:left" |‏×€ÖžÖŒ× ÖŽ××‎
|style="text-align:left" |ïŒè€ã®ã¿ïŒé¡ãåé¢ã‏×Ö°‎ ãæ¥é ãããšãåããæå³ããæ¥å°Ÿãã人称代åè©ã¯èŠåçïŒã€ãŸãâ
¡é¡ããšã ‏×Ö°ÖŒ×֞ך֎××‎ ãšåãïŒ
|-
|style="text-align:left" |‏×ÖžÖŒ×‎
|style="text-align:left" |è¡
|-
|style="text-align:left" |‏׊עק‎, ‏׊֞עַק‎
|style="text-align:left" |å«ã¶
|-
|style="text-align:left" |‏×Ö²×Öž×Öž×‎
|style="text-align:left" |åãåå°ã倧å°
|-
|style="text-align:left" |‏×¢×ך‎, ‏×¢Öž×ַך‎
|style="text-align:left" |éãéããïŒæž¡ãïŒ
|-
|style="text-align:left" |‏×Ö°ÖŒ××ÖŒ×‎
|style="text-align:left" |å¢çïŒïŒå¢çã§åºåãããïŒé å
|-
|style="text-align:left" |‏×ש××‎, ‏×֞שַ××‎
|style="text-align:left" |åããå®äœãã
|-
|style="text-align:left" |‏×ךך‎, ‏×֞ךַך‎
|style="text-align:left" |åªã
|-
|style="text-align:left" |‏×ך×‎, ‏×ֵ֌ךַ×Ö°‎
|style="text-align:left" |ç¥çŠãã
|-
|style="text-align:left" |‏×ת×‎, ‏×֞֌תַ×‎
|style="text-align:left" |æžã
|-
|style="text-align:left" |‏סֵ׀ֶך‎
|style="text-align:left" |æžããããã®ãå·»ç©ãæžç©
|-
|style="text-align:left" |‏עַת֞֌×‎
|style="text-align:left" |ä»ïŒããã«ïŒãããŠããšããã§
|-
[[ã«ããŽãª:èæžããã©ã€èª]] | null | 2022-11-22T17:07:59Z | []
| https://ja.wikibooks.org/wiki/%E8%81%96%E6%9B%B8%E3%83%98%E3%83%96%E3%83%A9%E3%82%A4%E8%AA%9E%E5%85%A5%E9%96%80/%E5%88%86%E8%A9%9E(1)/%E5%8D%98%E8%AA%9E |
25,272 | é«çåŠæ ¡å«ç/è¿ä»£ã®åççã»ç§åŠçãªæèãšæ¹æ³ | å€ä»£ã®ãªã·ã£ããäžäžã«è³ããŸã§ããšãŒãããã«ãããèªç¶èŠ³ãæ¯é
ããŠããã®ã¯ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã§ãã£ããããã¯å€ä»£ã®ãªã·ã£ã®é ãã倿ããŠããæ§ã
ãªèªç¶çŸè±¡ãçµ±äžçã«èª¬æããããã«äœç³»åããããã®ã§ãã£ããã®ã¡ã«ããªã¹ãæã®ç¥åŠãã¢ãªã¹ããã¬ã¹ã®å²åŠãšçµã³ã€ããŠãããšãã¢ãªã¹ããã¬ã¹èªç¶åŠã¯ç¥åŠãšåèŽããèªç¶èгãšãããããã«ãªã£ãããŸããããã¬ãã€ãªã¹ã®å€©å説ã¯ããã¹=ã¢ã¯ã£ãã¹ã«ãã£ãŠèªããããããšããæäŒå
¬èªã®åŠèª¬ãšããŠæš©åšã¥ããããã
ããããã«ããµã³ã¹ã宿æ¹é©ã¯ã人ã
ãç¥ãäžå¿ãšãã䟡å€èгããè§£æŸããããããŠã人éã®çŸå®çãªæ¬²æã¯è¯å®ããã壮倧ãªçæ³ã®ããšã«è¡åããå人ã®èªç±ãªèãæ¹ãçãæ¹ãæ±ããããããã«ãªã£ããããã«ãšããªããèªç¶ãžã®èŠæ¹ããŸããåŸæ¥ã®ã¢ãªã¹ããã¬ã¹èªç¶åŠãå
ã«ãããã®ããã®è»¢æãæ±ããããã®ã§ããã
ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã®ç¹åŸŽã¯ãç®çããéèŠããããšã«ãããã¢ãªã¹ããã¬ã¹ã«ããã°ãããããèªç¶ç©ã¯èªåã®äžã«ãªãããã®æ¬æ§ãæã£ãŠããããã®æ¬æ§ãå®çŸããããšãç®çãšããŠãããäŸãã°ãç³ãå°é¢ã«èœã¡ãã®ã¯ãåããçãŸããç³ãæ¬æ¥ã®å Žæã§ããåã«åž°ãããšãããç®çãããããããã€ãŒã¿ãè±éãã®ã¯ãè±ãããæ¬æ§ã§ãããããç®æãããšããããã§ããããã®ãããã¢ãªã¹ããã¬ã¹ã®æ¹æ³ã§ã¯çŸè±¡ãç©äºã®ç®çãæ¢ãããšãéèŠãããããã®ãããªæ¹æ³ã«ããšã¥ãèªç¶èгãç®çè«çèªç¶èгãšããã
ããããã«ããµã³ã¹ã«ãã£ãŠãœã¯ã©ãã¹ä»¥åã®ã®ãªã·ã£å²åŠãèŠçŽãããããã«ãªããšãç®çè«ãšå¯Ÿç«ããæ¹æ³ãèªç¶èŠ³ãæ³šç®ãããããã«ãªããç¹ã«ãã¢ã¯ãªãã¹ã®ååè«ã¯èªç¶çŸè±¡ããç®çãç¥ã®æå¿ãšãã£ããã®ãæé€ããããããã®èŠçŽ ãæ©æ¢°çã«éåããããšã«ãã£ãŠçŸè±¡ã説æããæ©æ¢°è«çèªç¶èгã«å€§ããªåœ±é¿ãäžããã
æ©æ¢°è«çèªç¶èгã¯ååŠãšå€©æåŠã®çºéã«ãã£ãŠç¢ºç«ããããšããããããŒã©ã³ãã®å€©æåŠè
ã§ãã£ãã³ãã«ãã¯ã¹ã¯ãåŸæ¥ã®å€©å説ã§ã¯èª¬æãå°é£ãªçŸè±¡ã説æãããããæšçãšèšç®ãæ ¹æ ãšããŠå°çã倪éœã®åšãããŸãã£ãŠãããšããå°å説ãæå±ããããããŠãèªãå¶äœããæé é¡ã®èŠ³æž¬ã«ãã£ãŠã¬ãªã¬ãª=ã¬ãªã¬ã€ã¯å°åèª¬ãæ£ããããšãå®èšŒããã
ã¬ãªã¬ã€ã®æ¥çžŸã¯ãç©äœãåã»æéã»è·é¢ã»é床ãªã©ã®æ°çãªèŠçŽ ã«åè§£ãããããã®éã«æãç«ã€é¢ä¿ãæ°åŠçã«è¡šããããšã§ããã圌ããèªç¶ã¯æ°åŠã®èšèã§æžãããæžç©ã§ããããšè¿°ã¹ãŠããã®ã¯ããããããšã§ããããããŠãèªç¶æ³åã仮説ãšãã芳å¯ãšå®éšã§æ€èšŒã»èšŒæããæ¹æ³ãäœãäžãããããã«ã¯ãã¢ãªã¹ããã¬ã¹ãæ³å®ãããããªç®çã¯äžåèæ
®ãããŠããªãã
ããããè¿ä»£ç§åŠç粟ç¥ã®æç«ã¯å®¹æã ã£ãããã§ã¯ãªããååè«ã¯ãã€ãã€ããã°éãç¥ãååãããªããšããããšããç¥ãåŠå®ããç¡ç¥è«ãšã¿ãªãããããããŠãå°çãäžå¿ãšããå®å®ã®äœç³»ã¯ããªã¹ãæç¥åŠãšå¯æ¥ã«çµã³ã€ããŠãããããå°å説ã¯å€©æåŠã ãã§ãªããææ³ã®ããæ¹ãäžç芳ãå€é©ãæ±ããããã®ã§ãããåœç¶ã«ãããã®åãã¯æäŒã®èè·è
ãã¡ããæ¿ããéé£ãå ãããããšãã«ã¯å³ãã匟å§ãåãããäŸãã°ãã³ãã«ãã¯ã¹ã®åœ±é¿ãåããŠå°åèª¬ãæ¯æãããžã§ã«ããŒã=ãã«ãŒãã¯ç°ç«¯ãšã®å€æ±ºãåããŠåŠåãããã
ã¬ãªã¬ã€ã¯1633幎ã«å®æè£å€ã«ãããããŠå°åèª¬ãæ€åãããããããã®ã®ã¡ã«ãããã§ãå°çã¯åã£ãŠããããšèšã£ããšãããŠãããããã¯åŸäžã®åµäœãšãããŠããããå®æã®æš©åšããã£ãŠããŠãç§åŠçççãåŠå®ããããšã¯ã§ããªããšããã圌ã®ç§åŠç信念ããããããã®ãšããŠæåã§ããã
äºå®ãç§åŠçæ¢ç©¶ã¯ãã®åŸãæ©ã¿ããšã©ããããšã¯ãªãã£ãããã¥ãŒãã³ã«ãã£ãŠäžæåŒåã®æ³åãçºèŠããã倩äœã®éåãå°äžã®ç©äœã®éåãçµ±äžçã«èª¬æã§ããå€å
žååŠã確ç«ããããšã¯ããã®æä»£ã®æ¢ç©¶ã®ç²Ÿè¯ã§ãããšãšãã«æ°ããªäžç芳ã®åºç€ãšãªã£ãã
ããããæ°ããåŠåãæšé²ãããã®ã¯ãçæ§ãæèŠãšãã£ã人éã®èªèèœåãžã®å
šé¢çãªä¿¡é Œã ã£ããããããäžæ¹ã§ã¯æš©åšããèªç±ã«æèããæšè«ãéããããšã«ãã£ãŠç¢ºå®ãªççãžãšåããæµãããããäžæ¹ã¯èгå¯ãå®éšãšããæ¹æ³ã«ãã£ãŠççãæ¢ãããšããæµããäœã£ãŠãã£ãã
ãããŠãããã®æµãã¯ãç¥èã¯å®éã«ç©äºãèŠããèãããããçµéšãéããŠåŸããããšããçµéšè«ãšã人éã¯ãããããæã£ãŠããèããèœåãããªãã¡çæ§ãéãããçæ§ãããç¥èã®æ ¹æºã§ãããšããåçè«ãžãšçºéããŠãã£ãã
çµéšè«ã¯ã€ã®ãªã¹ã«ãããŠçºéãããããã€ã®ãªã¹çµéšè«ãšãã°ããããšããããããã§ã¯ãå
é§è
ã§ãããã©ã³ã·ã¹ã»ããŒã³ã³ã®ææ³ãäžå¿ã«çµéšè«ã®èãæ¹ãèŠãŠã¿ããã
ãªããæ€å®æç§æžã§ã¯ããããºãšããã¯ã¯ç€ŸäŒå¥çŽè«ã®éèŠãªè«è
ãšããŠãã€ããããããçµéšè«ã®ææ³å®¶ã§ãããããšã¯ããŸã玹ä»ãããŠããªãããŸããããŒã¯ãªãšãã¥ãŒã ã®èª¬æãå°ãªããããçµéšè«ãšåçè«ãç·åãããã®ãšããŠã®ã«ã³ãå²åŠãšããæµããã€ãã¿ã«ãããäžæ¹ã§ãããŒã³ã³ã®æ¥çžŸã¯é倧ã«ã¯ããŒãºã¢ãããããã¡ãªãšããããããæ¬çš¿ã§ã¯å²åŠå²ã®æµãã«æ²¿ã£ãŠããŒã³ã³ãããã¥ãŒã ãŸã§ã®ã€ã®ãªã¹çµéšè«ã®æµãã説æããŠããããšã«ãããããšãããã倧åŠå
¥è©Šã ããèãããªãã°ãããŒã³ã³ã®ç¯ã ããèªãã§ããããã°ååã§ããã
1561幎ç~1626å¹Žæ²¡ãæ³åŸãåŠã³ãåœäŒè°å¡ãšãªããæ³åæ¬¡é·ãªã©ããžãŠæçµçã«å€§æ³å®(éŠçžã«çžåœ)ã«ãŸã§åºäžããããåè³çœªã«åãããŠå€±èããããã®åŸã¯æ°ããåŠåã®æ¹æ³ã®ç¢ºç«ã«å°å¿µããããããã®çµéšããäžè¬çãªèŠåãçºèŠããããã®æ¹æ³ãæ¢ç©¶ãããé¶ã«éªãè©°ã蟌ãã§å·åã®å®éšãè¡ã£ãéã«èºçã«ãããã亡ããªã£ããšããéžè©±ããããäž»èã¯ãæ°æ©é¢(ããŽã =ãªã«ã¬ãã¹)ãããã¥ãŒã»ã¢ãã©ã³ãã£ã¹ãã
ããŒã³ã³ãçãŸãè²ã£ãæä»£ã¯ãã¡ããã©ã€ã®ãªã¹ã®ã«ããµã³ã¹æãšãã°ãããšãªã¶ãã¹æã«ããããã·ã§ã€ã¯ã¹ãã¢ã«ä»£è¡šãããæèžãè±éããã«ããµã³ã¹ã®äžå€§çºæãšãã°ããçŸ
éç€ã»æŽ»çå°å·ã»ç«è¬ãã¯ãããšããæ§ã
ãªç§åŠæè¡ã®ææã¯ããã«æ¹è¯ãé²ããããŠãããé«åºŠãªãã®ãžãšçºå±ããŠãã£ããããããé°å²æ°ã®äžã§ãããŒã³ã³ã¯äž»èã®ãããŽã =ãªã«ã¬ãã¹ãã«ãŠãåŠåã®ç®çã人é¡ã®å¹žçŠãšçæŽ»ã®æ¹åã§ãããšè¿°ã¹ãããã®ããã«åœŒã泚ç®ããã®ããèªç¶ç§åŠã§ããã
èªç¶ã¯ããåå ããã£ãŠãããããçµæãçãããšããå æé¢ä¿ã«åŸã£ãŠåããŠããããã®é¢ä¿ãç¥ãããšãèªç¶ã«ãæåŸããããšããããšã§ãããããã«ãã£ãŠåŸãããç¥èãèªç¶ãæ¯é
ããæè¡ãšããŠå¿çšãã人éã®çæŽ»ãæ¹åããŠããããšããã®ããããŒã³ã³ã®å§¿å¢ã§ãããããããç¥ã¯åã§ããããšããæ Œèšã«ãŸãšããããŠããã
ã§ã¯ãèªç¶ãç¥ãããã«ã¯ã©ãããã°ããããããŒã³ã³ã¯ããŸãç¥èã®ç²åŸãããŸãããåèŠãå
å
¥èгãåãé€ãããšãããããŒã³ã³ã¯åèŠã»å
å
¥èгã®çš®é¡ã4ã€ã«åé¡ãããããããå¶åãå¹»ããšããæå³ã®ã€ãã©(idola)ãšåŒãã ã
第äžã«äººéãšããçš®æãå
±éããŠæã£ãŠãããçš®æã®ã€ãã©ãã§ãããããã¯é¯èŠã«æãããããããããšãèªåã®èããšç°ãªã説ãæåŠããŠããŸãããšãšãã£ãã人éã®æ¬æ§ã«ããšã¥ããã®ã§ããã
第äºã«ãæŽçªã®ã€ãã©ãã§ããã人ã
ã¯ããããã«ç°ãªã奜ã¿ã»æè²ã»çµéšãªã©ãæã€ãããããå人ã®äœéšãç«å Žã«åºå·ããããšããçãæŽçªã®äžãããã®ãèŠãããšã«ããšãããã®ã§ããã
第äžã«ãåžå Žã®ã€ãã©ãã§ãããå€ãã®äººãéãŸãåžå Žã§ã¯ããããã®èšèãè¡ã亀ãããããããã®èšèã®å
容ã確ãããããªãã§çšããããšã§æ··ä¹±ã«ãã¡ãã£ãŠããŸãã
第åããåå Žã®ã€ãã©ãã§ãããåå Žã§æŒããããèå±
ãæåããŸãã§æ¬åœã®ããšã§ãããã®ããã«ä¿¡ãããã§ããŸãããã«ãåŠè
ãå°éå®¶ãšãã£ãæš©åšã®ããäººã®æŒèª¬ãäŒçµ±çãªèª¬ãç¡æ¹å€ã«ä¿¡ããŠããŸãã
ãããŸã§ã®åŠåããšãã«ã¹ã³ã©åŠã¯ããããå¹»åœ±ã«æããããŠãèªç¶ãåæã«ããããŠè§£éããŠããããã«äžæ¯ãªãã®ã«ãªã£ãŠããŸã£ããšãããããŒã³ã³ã¯ãããã®åèŠãåãé€ããèªç¶ãããã®ãŸãŸã«èгå¯ããããããèªç¶ã®æ³åãæããã«ããããšããããã®ããã®æ¹æ³ãåž°çŽæ³ã§ããã
åž°çŽæ³ãšã¯åã
ã®çµéšãå®éšã»èŠ³æž¬ã«ããäºå®ããå
±éãããã®ããšãã ããŠäžè¬çãªæ³åãèŠåºãæ¹æ³ã§ãããåž°çŽæ³ãã®ãã®ã¯ãã§ã«ã¢ãªã¹ããã¬ã¹ä»¥æ¥èªããããŠããããèªèª¬ã«éœåã®ããäºå®ãããã¯ã¢ããããããèšå€§ãªäºå®ããã éããã ãã§çµãã£ãŠããŸãããšãå€ãã£ãã
ãŸããã¹ã³ã©åŠè
ã®ãããªäººã
ã¯çŸå®ã«å³ããŠããªã空ç空è«ãæ¯ãåãã ãã ãšããŒã³ã³ã¯èããã
ããŒã³ã³ã¯ãããŸã§ã®åž°çŽæ³ãã¹ã³ã©åŠãæ¹å€ãããçµéšæŽŸ(åŸæ¥ã®åž°çŽæ³ã䜿ã人ã
ãåœæã®ç§åŠè
)ã¯ã¢ãªã®ããã«ç©äºãéããã ãã§ãããç¬ææŽŸ(ã¹ã³ã©åŠè
ããã³ã¢ãªã¹ããã¬ã¹ãªã©)ã¯ã¯ã¢ã®ããã«é ã®äžã§ç©ºè«ãç¬æã玡ãã ããããããæ°ããå²åŠã¯ããããããããææãè±ããéããªãããããããäœãã ãããã«ãèªç¶ã®èгå¯ãå®éšã«ãã£ãŠèŠåºãããææãããšã«ããŠç¥æ§ã«ãã£ãŠèªç¶ã®æ³åãèŠåºãã
ãšã¯ãããã®ã®ãèªç¶ã¯ç°¡åã«ã¯ãã®çã®å§¿ãèŠããŠãããªããããŒã³ã³ã¯ãèªç¶ã®ç§å¯ããŸã(äžç¥)æè¡ã«ãã£ãŠèŠããããããšããã£ãããããã®æ£äœãããããã®ã§ããã(ãããŽã ã»ãªã«ã¬ãã ã第äžå·»ã»98)ãšãããèªç¶ããã 芳å¯ããã ãã§ã¯èå¿ãªããšã¯èŠããŠããªãã®ã ããããããããªéå
·ãæè¡ãçšããéœåã®ããç¶æ
ã人工çã«äœãã ããã€ãŸãå®éšãéããŠããŒã¿ãéããäžè¬çãªæ³åãèŠåºããšããçŸä»£ç§åŠã®æ¹æ³ã確ç«ããã®ã§ããã
17äžçŽä»¥éã®ç§åŠçãªè«žçºèŠã¯å²åŠã®äžçã«ã倧ããªå€åãå ããããšããŠãããã³ãã«ãã¯ã¹ã«ããå°å説ã®åŸ©èãã¬ãªã¬ãªã«ãã£ãŠæããã«ãããéåã®ããããããŒãŽã§ãŒã®è¡æ¶²åŸªç°èª¬ã«ãã£ãŠç¢ºç«ãããççåŠãããããåããŠãå²åŠã®äºå€§æœ®æµã§ãã芳念è«ãšå¯ç©è«ã®å¯Ÿç«ã¯æ°ããªå±é¢ãè¿ããããšããŠããã
芳念è«ãšã¯ããããããã®ã粟ç¥ãå¿ãªã©ã®ãããªé(é)ã«çµã³ã€ãããããšããææ³ã§ããã仿¹ãå¯ç©è«ã¯ããããçŸè±¡ã¯ç©è³ªã®å€åãéåã«éå
ã§ãããšããææ³ã§ãããç§åŠäžã®çºèŠã¯å¯ç©è«ã®è¶³å Žãçã
ãšåºããŠãã£ãããããªäžã§ã¬ãªã¬ãªã®åœ±é¿äžã§æ°åŠãšç©çåŠãåŠã³ãäžæããŒã³ã³ã®ç§æžãã€ãšããããããºãç»å Žããã
ããããºã¯åœæã®ææ°ã®ç§åŠçãªç¥èŠãåºã«ãäžçã«ååšããã®ã¯ç©è³ªãšãã®éåã ãã§ããããã¹ãŠã¯æ©æ¢°çãªéåã«ãã£ãŠæ±ºãŸããšèãããããã¯ç©äœã®éåãå€åã®ãããªèªç¶çŸè±¡ã«ãšã©ãŸããã人éã®æèã»éã»å¿ãã身äœã®åšå®ã«äœããã®éåãèµ·ããããšã«ãã£ãŠçãããã®ã§ãããšãããããã«ç€ŸäŒãåœå®¶ãšãã£ããçç©ã§ããªã圢ãããã®ã§ããªããã®ããèªç¶ã®ç©è³ªãšåãããã«æ©æ¢°çã«æ±ºãŸãã®ã ãšããããããã瀟äŒå¥çŽãšããçºæ³ã«ã€ãªãã£ãŠããã®ã ãã圌ã®ç€ŸäŒå¥çŽè«ã«ã€ããŠã®èª¬æã¯é«çåŠæ ¡å«ç/æ°äž»äž»çŸ©ç€ŸäŒã®å«çãšææ³ã«ãããããšã«ãããã
ããããºãåœæã®åŠåã«äžããè¡æã¯å€§ãããã€ã®ãªã¹ã®å²åŠãç¥åŠã¯ããããºããã«ã«ãã«ãã£ãŠéæãããææ³ã®ç¶æ¿ãšæ¹å€ãéããŠåçåãå³ã£ããããããäžã§ç»å Žããã®ãããã¯ã§ããã
ããã¯ã¯ãŸãã人éã®å¿ã®è¡šè±¡(芳念)ã¯ã©ãããæ¥ãã®ããèããã圌ã¯ããã«ã«ãã瀺ãã人éãçãŸãã€ãæã£ãŠãã芳念(çåŸèŠ³å¿µ)ãåŠå®ãã芳念ã¯ãã€ãŠæèŠããç©äºãåæ ãããã®ã ãšãããç§ãã¡ã¯äœãæããªããã°ãæèã¯çœçŽ(ã¿ãã©ã»ã©ãµ)ã®ãŸãŸã ãšããã
ãŸã£ãããªç¶æ
ã®äººéã¯ãæèŠãçšããæŽ»å(åšããèŠãããé³ãèããããç©ã«è§Šã£ãããå³ãã£ãŠã¿ããããããš)ãéããŠããããã¯èãããçã£ããä¿¡ããããšããå¿ã®åã(å
ç)ã«ãã£ãŠãåçŽèŠ³å¿µ(ãçœãããåºãããçãããå¬ããããæ²ããããªã©)ãåºæ¥äžããã人éã®æå¿ã¯åçŽèŠ³å¿µãžèœåçã«åããããŠãçŸã»æè¬ã»äººéã»å®å®ã»èªç±ãªã©ãšãã£ãè€é芳念ãäœãäžãããããããŠæ°ããè€é芳念ãã§ããå Žåããã¯ã芳å¯ã«éå®ããããçµéšã®æ ãè¶
ãããã®ãäœãäžããããšãã§ããã
äŸãã°ããããšããçãç©ãç¥ããã«ãããèŠããšããç§ãã¡ã¯ã现é·ãããã«ããã«ãããšåãããç·è²ã®ãçç©ã§ãããšæãããããããäœåºŠãåããããªçãç©ãèŠããæããŠããã£ããããçµéšãéããŠããããããšããçãç©ã§ããããšãç¥ããããã«ãç§ãã¡ã¯ãããšæ°è±¡ã»ä»ã®åç©ã»æ§ã
ãªèšãäŒããããã«çµã¿åãããŠéŸãšãã芳念ãäœãäžããŠçµµãç©èªãäœã£ãŠãããç§ãã¡ã¯éŸãå®éã«èŠãããšã¯ãªã(=ãèŠãããªã©ã®æèŠçãªçµéšãããŠããªã)ãããã®ã€ã¡ãŒãžãããããšã¯ã§ããããã«ãªãã
ãã®ããã«ãçµéšãã芳念ã䟡å€å€æãçãŸããŠããçè«ãæã¡ç«ãŠãããšãããããã¯ã¯çµéšè«ã®å®æè
ãšã¿ãªãããŠããã
ããã¯ã®çµéšè«ã®äžååããè¡ããã®ãããŒã¯ãªãŒã ã£ããåœŒã®æåãªèšèããååšãããšã¯ç¥èŠãããããšãã§ãããããŒã¯ãªãŒã¯ããã¯ãåæã«ããŠãããå€çãªäºç©ãååšããããšãåŠå®ãããããŒã¯ãªãŒã«ããã°ãç©äºã®èªèã¯å¿ã«ãã£ãŠç¥èŠãããããšã«ãã£ãŠè¡ãããããããŠãçŸå®ã¯ç¥èŠãããéãã«ãããŠååšããã®ã§ãããå¿ããªããªãã°å€ã®äžçãååšããªããšãããããããããŒã¯ãªãŒã«ä»£è¡šãããå¿ã®ã¿ãå®åšãããšããææ³ãå¯å¿è«ãšããã
çµéšè«ãæèŠãç¥èŠã«åºã¥ãçµéšãéèŠããã®ã«å¯ŸããŠã人éãçãŸãã€ãæã£ãŠããæèã®åãéèŠããã®ãåçè«ã§ãããåçè«ã¯ãã©ã³ã¹ããã®åšèŸºã§çºéããããšãã倧éžåçè«ãšããã°ããã
ããã§ã¯ãè¿ä»£çåŠåã®æ¹æ³ãšããŠçæ§ã®ã¯ããããéãããã«ãã»ãã«ã«ãã®ææ³ãšããããšé¢é£ããã¹ããã¶ãšã©ã€ããããã«ãå°ãè§Šãããã
1596幎ç~1650幎没ãã¯ããã¯ã¹ã³ã©å²åŠãåŠãã§ããããããã«æºè¶³ãããç§èªèº«ãããäžçãšãã倧ããªæžç©ãã®äžã«èŠã€ããåŠå以å€ã¯æ¢ããªããšæ±ºå¿ããããããŠãæ
ãè»åã«æããªãã諞åœãæž¡ãæ©ããããããŠãå€ãã®äººã
ãšäº€æµãããã1628幎ã«ãªã©ã³ãã«ç§»äœãã20幎éã®æçŽ¢ã®ç掻ã«å
¥ãããã®éã«åè¡ããããæ¹æ³åºèª¬ããçå¯ãã«ãã£ãŠäžã«ç¥ãããããã«ãªãã53æ³ã®ãšãã«ã¹ãŠã§ãŒãã³å¥³çã¯ãªã¹ãã£ãŒãã«æãããŠå°å±ã®å²åŠè¬åž«ãšãªãããçæŽ»ç°å¢ã®å€åããç¿å¹Žã«é¢šéªããããããŠèºçã«ãããæ»å»ããã
ãã«ã«ãã¯æ°åŠãèªç¶ç§åŠã«ã倧ããªåçžŸãæ®ãããæ¹çšåŒã§æªç¥æ°ãxã§è¡šããªã©ã®è¡šèšæ³ã座æšã®èãæ¹ãçºæãã幟äœåŠãšä»£æ°åŠãçµ±åãããã£ããããã¿ã ããã®ããã«ã«ãã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å€ä»£ã®ãªã·ã£ããäžäžã«è³ããŸã§ããšãŒãããã«ãããèªç¶èŠ³ãæ¯é
ããŠããã®ã¯ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã§ãã£ããããã¯å€ä»£ã®ãªã·ã£ã®é ãã倿ããŠããæ§ã
ãªèªç¶çŸè±¡ãçµ±äžçã«èª¬æããããã«äœç³»åããããã®ã§ãã£ããã®ã¡ã«ããªã¹ãæã®ç¥åŠãã¢ãªã¹ããã¬ã¹ã®å²åŠãšçµã³ã€ããŠãããšãã¢ãªã¹ããã¬ã¹èªç¶åŠã¯ç¥åŠãšåèŽããèªç¶èгãšãããããã«ãªã£ãããŸããããã¬ãã€ãªã¹ã®å€©å説ã¯ããã¹=ã¢ã¯ã£ãã¹ã«ãã£ãŠèªããããããšããæäŒå
¬èªã®åŠèª¬ãšããŠæš©åšã¥ããããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããããã«ããµã³ã¹ã宿æ¹é©ã¯ã人ã
ãç¥ãäžå¿ãšãã䟡å€èгããè§£æŸããããããŠã人éã®çŸå®çãªæ¬²æã¯è¯å®ããã壮倧ãªçæ³ã®ããšã«è¡åããå人ã®èªç±ãªèãæ¹ãçãæ¹ãæ±ããããããã«ãªã£ããããã«ãšããªããèªç¶ãžã®èŠæ¹ããŸããåŸæ¥ã®ã¢ãªã¹ããã¬ã¹èªç¶åŠãå
ã«ãããã®ããã®è»¢æãæ±ããããã®ã§ããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã®ç¹åŸŽã¯ãç®çããéèŠããããšã«ãããã¢ãªã¹ããã¬ã¹ã«ããã°ãããããèªç¶ç©ã¯èªåã®äžã«ãªãããã®æ¬æ§ãæã£ãŠããããã®æ¬æ§ãå®çŸããããšãç®çãšããŠãããäŸãã°ãç³ãå°é¢ã«èœã¡ãã®ã¯ãåããçãŸããç³ãæ¬æ¥ã®å Žæã§ããåã«åž°ãããšãããç®çãããããããã€ãŒã¿ãè±éãã®ã¯ãè±ãããæ¬æ§ã§ãããããç®æãããšããããã§ããããã®ãããã¢ãªã¹ããã¬ã¹ã®æ¹æ³ã§ã¯çŸè±¡ãç©äºã®ç®çãæ¢ãããšãéèŠãããããã®ãããªæ¹æ³ã«ããšã¥ãèªç¶èгãç®çè«çèªç¶èгãšããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããããã«ããµã³ã¹ã«ãã£ãŠãœã¯ã©ãã¹ä»¥åã®ã®ãªã·ã£å²åŠãèŠçŽãããããã«ãªããšãç®çè«ãšå¯Ÿç«ããæ¹æ³ãèªç¶èŠ³ãæ³šç®ãããããã«ãªããç¹ã«ãã¢ã¯ãªãã¹ã®ååè«ã¯èªç¶çŸè±¡ããç®çãç¥ã®æå¿ãšãã£ããã®ãæé€ããããããã®èŠçŽ ãæ©æ¢°çã«éåããããšã«ãã£ãŠçŸè±¡ã説æããæ©æ¢°è«çèªç¶èгã«å€§ããªåœ±é¿ãäžããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ©æ¢°è«çèªç¶èгã¯ååŠãšå€©æåŠã®çºéã«ãã£ãŠç¢ºç«ããããšããããããŒã©ã³ãã®å€©æåŠè
ã§ãã£ãã³ãã«ãã¯ã¹ã¯ãåŸæ¥ã®å€©å説ã§ã¯èª¬æãå°é£ãªçŸè±¡ã説æãããããæšçãšèšç®ãæ ¹æ ãšããŠå°çã倪éœã®åšãããŸãã£ãŠãããšããå°å説ãæå±ããããããŠãèªãå¶äœããæé é¡ã®èŠ³æž¬ã«ãã£ãŠã¬ãªã¬ãª=ã¬ãªã¬ã€ã¯å°åèª¬ãæ£ããããšãå®èšŒããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¬ãªã¬ã€ã®æ¥çžŸã¯ãç©äœãåã»æéã»è·é¢ã»é床ãªã©ã®æ°çãªèŠçŽ ã«åè§£ãããããã®éã«æãç«ã€é¢ä¿ãæ°åŠçã«è¡šããããšã§ããã圌ããèªç¶ã¯æ°åŠã®èšèã§æžãããæžç©ã§ããããšè¿°ã¹ãŠããã®ã¯ããããããšã§ããããããŠãèªç¶æ³åã仮説ãšãã芳å¯ãšå®éšã§æ€èšŒã»èšŒæããæ¹æ³ãäœãäžãããããã«ã¯ãã¢ãªã¹ããã¬ã¹ãæ³å®ãããããªç®çã¯äžåèæ
®ãããŠããªãã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããããè¿ä»£ç§åŠç粟ç¥ã®æç«ã¯å®¹æã ã£ãããã§ã¯ãªããååè«ã¯ãã€ãã€ããã°éãç¥ãååãããªããšããããšããç¥ãåŠå®ããç¡ç¥è«ãšã¿ãªãããããããŠãå°çãäžå¿ãšããå®å®ã®äœç³»ã¯ããªã¹ãæç¥åŠãšå¯æ¥ã«çµã³ã€ããŠãããããå°å説ã¯å€©æåŠã ãã§ãªããææ³ã®ããæ¹ãäžç芳ãå€é©ãæ±ããããã®ã§ãããåœç¶ã«ãããã®åãã¯æäŒã®èè·è
ãã¡ããæ¿ããéé£ãå ãããããšãã«ã¯å³ãã匟å§ãåãããäŸãã°ãã³ãã«ãã¯ã¹ã®åœ±é¿ãåããŠå°åèª¬ãæ¯æãããžã§ã«ããŒã=ãã«ãŒãã¯ç°ç«¯ãšã®å€æ±ºãåããŠåŠåãããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã¬ãªã¬ã€ã¯1633幎ã«å®æè£å€ã«ãããããŠå°åèª¬ãæ€åãããããããã®ã®ã¡ã«ãããã§ãå°çã¯åã£ãŠããããšèšã£ããšãããŠãããããã¯åŸäžã®åµäœãšãããŠããããå®æã®æš©åšããã£ãŠããŠãç§åŠçççãåŠå®ããããšã¯ã§ããªããšããã圌ã®ç§åŠç信念ããããããã®ãšããŠæåã§ããã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äºå®ãç§åŠçæ¢ç©¶ã¯ãã®åŸãæ©ã¿ããšã©ããããšã¯ãªãã£ãããã¥ãŒãã³ã«ãã£ãŠäžæåŒåã®æ³åãçºèŠããã倩äœã®éåãå°äžã®ç©äœã®éåãçµ±äžçã«èª¬æã§ããå€å
žååŠã確ç«ããããšã¯ããã®æä»£ã®æ¢ç©¶ã®ç²Ÿè¯ã§ãããšãšãã«æ°ããªäžç芳ã®åºç€ãšãªã£ãã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ããããæ°ããåŠåãæšé²ãããã®ã¯ãçæ§ãæèŠãšãã£ã人éã®èªèèœåãžã®å
šé¢çãªä¿¡é Œã ã£ããããããäžæ¹ã§ã¯æš©åšããèªç±ã«æèããæšè«ãéããããšã«ãã£ãŠç¢ºå®ãªççãžãšåããæµãããããäžæ¹ã¯èгå¯ãå®éšãšããæ¹æ³ã«ãã£ãŠççãæ¢ãããšããæµããäœã£ãŠãã£ãã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãããŠãããã®æµãã¯ãç¥èã¯å®éã«ç©äºãèŠããèãããããçµéšãéããŠåŸããããšããçµéšè«ãšã人éã¯ãããããæã£ãŠããèããèœåãããªãã¡çæ§ãéãããçæ§ãããç¥èã®æ ¹æºã§ãããšããåçè«ãžãšçºéããŠãã£ãã",
"title": "è¿ä»£ç§åŠã®å¹éã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "çµéšè«ã¯ã€ã®ãªã¹ã«ãããŠçºéãããããã€ã®ãªã¹çµéšè«ãšãã°ããããšããããããã§ã¯ãå
é§è
ã§ãããã©ã³ã·ã¹ã»ããŒã³ã³ã®ææ³ãäžå¿ã«çµéšè«ã®èãæ¹ãèŠãŠã¿ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãªããæ€å®æç§æžã§ã¯ããããºãšããã¯ã¯ç€ŸäŒå¥çŽè«ã®éèŠãªè«è
ãšããŠãã€ããããããçµéšè«ã®ææ³å®¶ã§ãããããšã¯ããŸã玹ä»ãããŠããªãããŸããããŒã¯ãªãšãã¥ãŒã ã®èª¬æãå°ãªããããçµéšè«ãšåçè«ãç·åãããã®ãšããŠã®ã«ã³ãå²åŠãšããæµããã€ãã¿ã«ãããäžæ¹ã§ãããŒã³ã³ã®æ¥çžŸã¯é倧ã«ã¯ããŒãºã¢ãããããã¡ãªãšããããããæ¬çš¿ã§ã¯å²åŠå²ã®æµãã«æ²¿ã£ãŠããŒã³ã³ãããã¥ãŒã ãŸã§ã®ã€ã®ãªã¹çµéšè«ã®æµãã説æããŠããããšã«ãããããšãããã倧åŠå
¥è©Šã ããèãããªãã°ãããŒã³ã³ã®ç¯ã ããèªãã§ããããã°ååã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "1561幎ç~1626å¹Žæ²¡ãæ³åŸãåŠã³ãåœäŒè°å¡ãšãªããæ³åæ¬¡é·ãªã©ããžãŠæçµçã«å€§æ³å®(éŠçžã«çžåœ)ã«ãŸã§åºäžããããåè³çœªã«åãããŠå€±èããããã®åŸã¯æ°ããåŠåã®æ¹æ³ã®ç¢ºç«ã«å°å¿µããããããã®çµéšããäžè¬çãªèŠåãçºèŠããããã®æ¹æ³ãæ¢ç©¶ãããé¶ã«éªãè©°ã蟌ãã§å·åã®å®éšãè¡ã£ãéã«èºçã«ãããã亡ããªã£ããšããéžè©±ããããäž»èã¯ãæ°æ©é¢(ããŽã =ãªã«ã¬ãã¹)ãããã¥ãŒã»ã¢ãã©ã³ãã£ã¹ãã",
"title": "çµéšè«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ããŒã³ã³ãçãŸãè²ã£ãæä»£ã¯ãã¡ããã©ã€ã®ãªã¹ã®ã«ããµã³ã¹æãšãã°ãããšãªã¶ãã¹æã«ããããã·ã§ã€ã¯ã¹ãã¢ã«ä»£è¡šãããæèžãè±éããã«ããµã³ã¹ã®äžå€§çºæãšãã°ããçŸ
éç€ã»æŽ»çå°å·ã»ç«è¬ãã¯ãããšããæ§ã
ãªç§åŠæè¡ã®ææã¯ããã«æ¹è¯ãé²ããããŠãããé«åºŠãªãã®ãžãšçºå±ããŠãã£ããããããé°å²æ°ã®äžã§ãããŒã³ã³ã¯äž»èã®ãããŽã =ãªã«ã¬ãã¹ãã«ãŠãåŠåã®ç®çã人é¡ã®å¹žçŠãšçæŽ»ã®æ¹åã§ãããšè¿°ã¹ãããã®ããã«åœŒã泚ç®ããã®ããèªç¶ç§åŠã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "èªç¶ã¯ããåå ããã£ãŠãããããçµæãçãããšããå æé¢ä¿ã«åŸã£ãŠåããŠããããã®é¢ä¿ãç¥ãããšãèªç¶ã«ãæåŸããããšããããšã§ãããããã«ãã£ãŠåŸãããç¥èãèªç¶ãæ¯é
ããæè¡ãšããŠå¿çšãã人éã®çæŽ»ãæ¹åããŠããããšããã®ããããŒã³ã³ã®å§¿å¢ã§ãããããããç¥ã¯åã§ããããšããæ Œèšã«ãŸãšããããŠããã",
"title": "çµéšè«"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã§ã¯ãèªç¶ãç¥ãããã«ã¯ã©ãããã°ããããããŒã³ã³ã¯ããŸãç¥èã®ç²åŸãããŸãããåèŠãå
å
¥èгãåãé€ãããšãããããŒã³ã³ã¯åèŠã»å
å
¥èгã®çš®é¡ã4ã€ã«åé¡ãããããããå¶åãå¹»ããšããæå³ã®ã€ãã©(idola)ãšåŒãã ã",
"title": "çµéšè«"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "第äžã«äººéãšããçš®æãå
±éããŠæã£ãŠãããçš®æã®ã€ãã©ãã§ãããããã¯é¯èŠã«æãããããããããšãèªåã®èããšç°ãªã説ãæåŠããŠããŸãããšãšãã£ãã人éã®æ¬æ§ã«ããšã¥ããã®ã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "第äºã«ãæŽçªã®ã€ãã©ãã§ããã人ã
ã¯ããããã«ç°ãªã奜ã¿ã»æè²ã»çµéšãªã©ãæã€ãããããå人ã®äœéšãç«å Žã«åºå·ããããšããçãæŽçªã®äžãããã®ãèŠãããšã«ããšãããã®ã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "第äžã«ãåžå Žã®ã€ãã©ãã§ãããå€ãã®äººãéãŸãåžå Žã§ã¯ããããã®èšèãè¡ã亀ãããããããã®èšèã®å
容ã確ãããããªãã§çšããããšã§æ··ä¹±ã«ãã¡ãã£ãŠããŸãã",
"title": "çµéšè«"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "第åããåå Žã®ã€ãã©ãã§ãããåå Žã§æŒããããèå±
ãæåããŸãã§æ¬åœã®ããšã§ãããã®ããã«ä¿¡ãããã§ããŸãããã«ãåŠè
ãå°éå®¶ãšãã£ãæš©åšã®ããäººã®æŒèª¬ãäŒçµ±çãªèª¬ãç¡æ¹å€ã«ä¿¡ããŠããŸãã",
"title": "çµéšè«"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãããŸã§ã®åŠåããšãã«ã¹ã³ã©åŠã¯ããããå¹»åœ±ã«æããããŠãèªç¶ãåæã«ããããŠè§£éããŠããããã«äžæ¯ãªãã®ã«ãªã£ãŠããŸã£ããšãããããŒã³ã³ã¯ãããã®åèŠãåãé€ããèªç¶ãããã®ãŸãŸã«èгå¯ããããããèªç¶ã®æ³åãæããã«ããããšããããã®ããã®æ¹æ³ãåž°çŽæ³ã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "åž°çŽæ³ãšã¯åã
ã®çµéšãå®éšã»èŠ³æž¬ã«ããäºå®ããå
±éãããã®ããšãã ããŠäžè¬çãªæ³åãèŠåºãæ¹æ³ã§ãããåž°çŽæ³ãã®ãã®ã¯ãã§ã«ã¢ãªã¹ããã¬ã¹ä»¥æ¥èªããããŠããããèªèª¬ã«éœåã®ããäºå®ãããã¯ã¢ããããããèšå€§ãªäºå®ããã éããã ãã§çµãã£ãŠããŸãããšãå€ãã£ãã",
"title": "çµéšè«"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãŸããã¹ã³ã©åŠè
ã®ãããªäººã
ã¯çŸå®ã«å³ããŠããªã空ç空è«ãæ¯ãåãã ãã ãšããŒã³ã³ã¯èããã",
"title": "çµéšè«"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããŒã³ã³ã¯ãããŸã§ã®åž°çŽæ³ãã¹ã³ã©åŠãæ¹å€ãããçµéšæŽŸ(åŸæ¥ã®åž°çŽæ³ã䜿ã人ã
ãåœæã®ç§åŠè
)ã¯ã¢ãªã®ããã«ç©äºãéããã ãã§ãããç¬ææŽŸ(ã¹ã³ã©åŠè
ããã³ã¢ãªã¹ããã¬ã¹ãªã©)ã¯ã¯ã¢ã®ããã«é ã®äžã§ç©ºè«ãç¬æã玡ãã ããããããæ°ããå²åŠã¯ããããããããææãè±ããéããªãããããããäœãã ãããã«ãèªç¶ã®èгå¯ãå®éšã«ãã£ãŠèŠåºãããææãããšã«ããŠç¥æ§ã«ãã£ãŠèªç¶ã®æ³åãèŠåºãã",
"title": "çµéšè«"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšã¯ãããã®ã®ãèªç¶ã¯ç°¡åã«ã¯ãã®çã®å§¿ãèŠããŠãããªããããŒã³ã³ã¯ãèªç¶ã®ç§å¯ããŸã(äžç¥)æè¡ã«ãã£ãŠèŠããããããšããã£ãããããã®æ£äœãããããã®ã§ããã(ãããŽã ã»ãªã«ã¬ãã ã第äžå·»ã»98)ãšãããèªç¶ããã 芳å¯ããã ãã§ã¯èå¿ãªããšã¯èŠããŠããªãã®ã ããããããããªéå
·ãæè¡ãçšããéœåã®ããç¶æ
ã人工çã«äœãã ããã€ãŸãå®éšãéããŠããŒã¿ãéããäžè¬çãªæ³åãèŠåºããšããçŸä»£ç§åŠã®æ¹æ³ã確ç«ããã®ã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "17äžçŽä»¥éã®ç§åŠçãªè«žçºèŠã¯å²åŠã®äžçã«ã倧ããªå€åãå ããããšããŠãããã³ãã«ãã¯ã¹ã«ããå°å説ã®åŸ©èãã¬ãªã¬ãªã«ãã£ãŠæããã«ãããéåã®ããããããŒãŽã§ãŒã®è¡æ¶²åŸªç°èª¬ã«ãã£ãŠç¢ºç«ãããççåŠãããããåããŠãå²åŠã®äºå€§æœ®æµã§ãã芳念è«ãšå¯ç©è«ã®å¯Ÿç«ã¯æ°ããªå±é¢ãè¿ããããšããŠããã",
"title": "çµéšè«"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "芳念è«ãšã¯ããããããã®ã粟ç¥ãå¿ãªã©ã®ãããªé(é)ã«çµã³ã€ãããããšããææ³ã§ããã仿¹ãå¯ç©è«ã¯ããããçŸè±¡ã¯ç©è³ªã®å€åãéåã«éå
ã§ãããšããææ³ã§ãããç§åŠäžã®çºèŠã¯å¯ç©è«ã®è¶³å Žãçã
ãšåºããŠãã£ãããããªäžã§ã¬ãªã¬ãªã®åœ±é¿äžã§æ°åŠãšç©çåŠãåŠã³ãäžæããŒã³ã³ã®ç§æžãã€ãšããããããºãç»å Žããã",
"title": "çµéšè«"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ããããºã¯åœæã®ææ°ã®ç§åŠçãªç¥èŠãåºã«ãäžçã«ååšããã®ã¯ç©è³ªãšãã®éåã ãã§ããããã¹ãŠã¯æ©æ¢°çãªéåã«ãã£ãŠæ±ºãŸããšèãããããã¯ç©äœã®éåãå€åã®ãããªèªç¶çŸè±¡ã«ãšã©ãŸããã人éã®æèã»éã»å¿ãã身äœã®åšå®ã«äœããã®éåãèµ·ããããšã«ãã£ãŠçãããã®ã§ãããšãããããã«ç€ŸäŒãåœå®¶ãšãã£ããçç©ã§ããªã圢ãããã®ã§ããªããã®ããèªç¶ã®ç©è³ªãšåãããã«æ©æ¢°çã«æ±ºãŸãã®ã ãšããããããã瀟äŒå¥çŽãšããçºæ³ã«ã€ãªãã£ãŠããã®ã ãã圌ã®ç€ŸäŒå¥çŽè«ã«ã€ããŠã®èª¬æã¯é«çåŠæ ¡å«ç/æ°äž»äž»çŸ©ç€ŸäŒã®å«çãšææ³ã«ãããããšã«ãããã",
"title": "çµéšè«"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ããããºãåœæã®åŠåã«äžããè¡æã¯å€§ãããã€ã®ãªã¹ã®å²åŠãç¥åŠã¯ããããºããã«ã«ãã«ãã£ãŠéæãããææ³ã®ç¶æ¿ãšæ¹å€ãéããŠåçåãå³ã£ããããããäžã§ç»å Žããã®ãããã¯ã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ããã¯ã¯ãŸãã人éã®å¿ã®è¡šè±¡(芳念)ã¯ã©ãããæ¥ãã®ããèããã圌ã¯ããã«ã«ãã瀺ãã人éãçãŸãã€ãæã£ãŠãã芳念(çåŸèŠ³å¿µ)ãåŠå®ãã芳念ã¯ãã€ãŠæèŠããç©äºãåæ ãããã®ã ãšãããç§ãã¡ã¯äœãæããªããã°ãæèã¯çœçŽ(ã¿ãã©ã»ã©ãµ)ã®ãŸãŸã ãšããã",
"title": "çµéšè«"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãŸã£ãããªç¶æ
ã®äººéã¯ãæèŠãçšããæŽ»å(åšããèŠãããé³ãèããããç©ã«è§Šã£ãããå³ãã£ãŠã¿ããããããš)ãéããŠããããã¯èãããçã£ããä¿¡ããããšããå¿ã®åã(å
ç)ã«ãã£ãŠãåçŽèŠ³å¿µ(ãçœãããåºãããçãããå¬ããããæ²ããããªã©)ãåºæ¥äžããã人éã®æå¿ã¯åçŽèŠ³å¿µãžèœåçã«åããããŠãçŸã»æè¬ã»äººéã»å®å®ã»èªç±ãªã©ãšãã£ãè€é芳念ãäœãäžãããããããŠæ°ããè€é芳念ãã§ããå Žåããã¯ã芳å¯ã«éå®ããããçµéšã®æ ãè¶
ãããã®ãäœãäžããããšãã§ããã",
"title": "çµéšè«"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "äŸãã°ããããšããçãç©ãç¥ããã«ãããèŠããšããç§ãã¡ã¯ã现é·ãããã«ããã«ãããšåãããç·è²ã®ãçç©ã§ãããšæãããããããäœåºŠãåããããªçãç©ãèŠããæããŠããã£ããããçµéšãéããŠããããããšããçãç©ã§ããããšãç¥ããããã«ãç§ãã¡ã¯ãããšæ°è±¡ã»ä»ã®åç©ã»æ§ã
ãªèšãäŒããããã«çµã¿åãããŠéŸãšãã芳念ãäœãäžããŠçµµãç©èªãäœã£ãŠãããç§ãã¡ã¯éŸãå®éã«èŠãããšã¯ãªã(=ãèŠãããªã©ã®æèŠçãªçµéšãããŠããªã)ãããã®ã€ã¡ãŒãžãããããšã¯ã§ããããã«ãªãã",
"title": "çµéšè«"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãã®ããã«ãçµéšãã芳念ã䟡å€å€æãçãŸããŠããçè«ãæã¡ç«ãŠãããšãããããã¯ã¯çµéšè«ã®å®æè
ãšã¿ãªãããŠããã",
"title": "çµéšè«"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ããã¯ã®çµéšè«ã®äžååããè¡ããã®ãããŒã¯ãªãŒã ã£ããåœŒã®æåãªèšèããååšãããšã¯ç¥èŠãããããšãã§ãããããŒã¯ãªãŒã¯ããã¯ãåæã«ããŠãããå€çãªäºç©ãååšããããšãåŠå®ãããããŒã¯ãªãŒã«ããã°ãç©äºã®èªèã¯å¿ã«ãã£ãŠç¥èŠãããããšã«ãã£ãŠè¡ãããããããŠãçŸå®ã¯ç¥èŠãããéãã«ãããŠååšããã®ã§ãããå¿ããªããªãã°å€ã®äžçãååšããªããšãããããããããŒã¯ãªãŒã«ä»£è¡šãããå¿ã®ã¿ãå®åšãããšããææ³ãå¯å¿è«ãšããã",
"title": "çµéšè«"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "çµéšè«ãæèŠãç¥èŠã«åºã¥ãçµéšãéèŠããã®ã«å¯ŸããŠã人éãçãŸãã€ãæã£ãŠããæèã®åãéèŠããã®ãåçè«ã§ãããåçè«ã¯ãã©ã³ã¹ããã®åšèŸºã§çºéããããšãã倧éžåçè«ãšããã°ããã",
"title": "åçè«"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ããã§ã¯ãè¿ä»£çåŠåã®æ¹æ³ãšããŠçæ§ã®ã¯ããããéãããã«ãã»ãã«ã«ãã®ææ³ãšããããšé¢é£ããã¹ããã¶ãšã©ã€ããããã«ãå°ãè§Šãããã",
"title": "åçè«"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "1596幎ç~1650幎没ãã¯ããã¯ã¹ã³ã©å²åŠãåŠãã§ããããããã«æºè¶³ãããç§èªèº«ãããäžçãšãã倧ããªæžç©ãã®äžã«èŠã€ããåŠå以å€ã¯æ¢ããªããšæ±ºå¿ããããããŠãæ
ãè»åã«æããªãã諞åœãæž¡ãæ©ããããããŠãå€ãã®äººã
ãšäº€æµãããã1628幎ã«ãªã©ã³ãã«ç§»äœãã20幎éã®æçŽ¢ã®ç掻ã«å
¥ãããã®éã«åè¡ããããæ¹æ³åºèª¬ããçå¯ãã«ãã£ãŠäžã«ç¥ãããããã«ãªãã53æ³ã®ãšãã«ã¹ãŠã§ãŒãã³å¥³çã¯ãªã¹ãã£ãŒãã«æãããŠå°å±ã®å²åŠè¬åž«ãšãªãããçæŽ»ç°å¢ã®å€åããç¿å¹Žã«é¢šéªããããããŠèºçã«ãããæ»å»ããã",
"title": "åçè«"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãã«ã«ãã¯æ°åŠãèªç¶ç§åŠã«ã倧ããªåçžŸãæ®ãããæ¹çšåŒã§æªç¥æ°ãxã§è¡šããªã©ã®è¡šèšæ³ã座æšã®èãæ¹ãçºæãã幟äœåŠãšä»£æ°åŠãçµ±åãããã£ããããã¿ã ããã®ããã«ã«ãã§ããã",
"title": "åçè«"
}
]
| null | {{nav}}
==è¿ä»£ç§åŠã®å¹éã==
å€ä»£ã®ãªã·ã£ããäžäžã«è³ããŸã§ããšãŒãããã«ãããèªç¶èŠ³ãæ¯é
ããŠããã®ã¯ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã§ãã£ããããã¯å€ä»£ã®ãªã·ã£ã®é ãã倿ããŠããæ§ã
ãªèªç¶çŸè±¡ãçµ±äžçã«èª¬æããããã«äœç³»åããããã®ã§ãã£ããã®ã¡ã«ããªã¹ãæã®ç¥åŠãã¢ãªã¹ããã¬ã¹ã®å²åŠãšçµã³ã€ããŠãããšãã¢ãªã¹ããã¬ã¹èªç¶åŠã¯ç¥åŠãšåèŽããèªç¶èгãšãããããã«ãªã£ãããŸããããã¬ãã€ãªã¹ã®å€©å説ã¯ããã¹=ã¢ã¯ã£ãã¹ã«ãã£ãŠèªããããããšããæäŒå
¬èªã®åŠèª¬ãšããŠæš©åšã¥ããããã
ããããã«ããµã³ã¹ã宿æ¹é©ã¯ã人ã
ãç¥ãäžå¿ãšãã䟡å€èгããè§£æŸããããããŠã人éã®çŸå®çãªæ¬²æã¯è¯å®ããã壮倧ãªçæ³ã®ããšã«è¡åããå人ã®èªç±ãªèãæ¹ãçãæ¹ãæ±ããããããã«ãªã£ããããã«ãšããªããèªç¶ãžã®èŠæ¹ããŸããåŸæ¥ã®ã¢ãªã¹ããã¬ã¹èªç¶åŠãå
ã«ãããã®ããã®è»¢æãæ±ããããã®ã§ããã
===åŠåã®æ¹æ³===
ã¢ãªã¹ããã¬ã¹ã®èªç¶åŠã®ç¹åŸŽã¯ãç®çããéèŠããããšã«ãããã¢ãªã¹ããã¬ã¹ã«ããã°ãããããèªç¶ç©ã¯èªåã®äžã«ãªãããã®æ¬æ§ãæã£ãŠããããã®æ¬æ§ãå®çŸããããšãç®çãšããŠãããäŸãã°ãç³ãå°é¢ã«èœã¡ãã®ã¯ãåããçãŸããç³ãæ¬æ¥ã®å Žæã§ããåã«åž°ãããšãããç®çãããããããã€ãŒã¿ãè±éãã®ã¯ãè±ãããæ¬æ§ã§ãããããç®æãããšããããã§ããããã®ãããã¢ãªã¹ããã¬ã¹ã®æ¹æ³ã§ã¯çŸè±¡ãç©äºã®ç®çãæ¢ãããšãéèŠãããããã®ãããªæ¹æ³ã«ããšã¥ãèªç¶èгãç®çè«çèªç¶èгãšããã
ããããã«ããµã³ã¹ã«ãã£ãŠãœã¯ã©ãã¹ä»¥åã®ã®ãªã·ã£å²åŠãèŠçŽãããããã«ãªããšãç®çè«ãšå¯Ÿç«ããæ¹æ³ãèªç¶èŠ³ãæ³šç®ãããããã«ãªããç¹ã«ãã¢ã¯ãªãã¹ã®ååè«ã¯èªç¶çŸè±¡ããç®çãç¥ã®æå¿ãšãã£ããã®ãæé€ããããããã®èŠçŽ ãæ©æ¢°çã«éåããããšã«ãã£ãŠçŸè±¡ã説æãã'''æ©æ¢°è«çèªç¶èг'''ã«å€§ããªåœ±é¿ãäžããã
=== å°å説 ===
æ©æ¢°è«çèªç¶èгã¯ååŠãšå€©æåŠã®çºéã«ãã£ãŠç¢ºç«ããããšããããããŒã©ã³ãã®å€©æåŠè
ã§ãã£ã'''ã³ãã«ãã¯ã¹'''ã¯ãåŸæ¥ã®å€©å説ã§ã¯èª¬æãå°é£ãªçŸè±¡ã説æãããããæšçãšèšç®ãæ ¹æ ãšããŠå°çã倪éœã®åšãããŸãã£ãŠãããšããå°å説ãæå±ããããããŠãèªãå¶äœããæé é¡ã®èŠ³æž¬ã«ãã£ãŠ'''ã¬ãªã¬ãª=ã¬ãªã¬ã€'''ã¯å°åèª¬ãæ£ããããšãå®èšŒããã
ã¬ãªã¬ã€ã®æ¥çžŸã¯ãç©äœãåã»æéã»è·é¢ã»é床ãªã©ã®æ°çãªèŠçŽ ã«åè§£ãããããã®éã«æãç«ã€é¢ä¿ãæ°åŠçã«è¡šããããšã§ããã圌ããèªç¶ã¯æ°åŠã®èšèã§æžãããæžç©ã§ããããšè¿°ã¹ãŠããã®ã¯ããããããšã§ããããããŠãèªç¶æ³åã仮説ãšãã芳å¯ãšå®éšã§æ€èšŒã»èšŒæããæ¹æ³ãäœãäžãããããã«ã¯ãã¢ãªã¹ããã¬ã¹ãæ³å®ãããããªç®çã¯äžåèæ
®ãããŠããªãã
ããããè¿ä»£ç§åŠç粟ç¥ã®æç«ã¯å®¹æã ã£ãããã§ã¯ãªããååè«ã¯ãã€ãã€ããã°éãç¥ãååãããªããšããããšããç¥ãåŠå®ããç¡ç¥è«ãšã¿ãªãããããããŠãå°çãäžå¿ãšããå®å®ã®äœç³»ã¯ããªã¹ãæç¥åŠãšå¯æ¥ã«çµã³ã€ããŠãããããå°å説ã¯å€©æåŠã ãã§ãªããææ³ã®ããæ¹ãäžç芳ãå€é©ãæ±ããããã®ã§ãããåœç¶ã«ãããã®åãã¯æäŒã®èè·è
ãã¡ããæ¿ããéé£ãå ãããããšãã«ã¯å³ãã匟å§ãåãããäŸãã°ãã³ãã«ãã¯ã¹ã®åœ±é¿ãåããŠå°åèª¬ãæ¯æãããžã§ã«ããŒã=ãã«ãŒãã¯ç°ç«¯ãšã®å€æ±ºãåããŠåŠåãããã
ã¬ãªã¬ã€ã¯1633幎ã«å®æè£å€ã«ãããããŠå°åèª¬ãæ€åãããããããã®ã®ã¡ã«ãããã§ãå°çã¯åã£ãŠããããšèšã£ããšãããŠãããããã¯åŸäžã®åµäœãšãããŠããããå®æã®æš©åšããã£ãŠããŠãç§åŠçççãåŠå®ããããšã¯ã§ããªããšããã圌ã®ç§åŠç信念ããããããã®ãšããŠæåã§ããã
äºå®ãç§åŠçæ¢ç©¶ã¯ãã®åŸãæ©ã¿ããšã©ããããšã¯ãªãã£ãã'''ãã¥ãŒãã³'''ã«ãã£ãŠäžæåŒåã®æ³åãçºèŠããã倩äœã®éåãå°äžã®ç©äœã®éåãçµ±äžçã«èª¬æã§ããå€å
žååŠã確ç«ããããšã¯ããã®æä»£ã®æ¢ç©¶ã®ç²Ÿè¯ã§ãããšãšãã«æ°ããªäžç芳ã®åºç€ãšãªã£ãã
===çµéšè«ãšåçè«===
ããããæ°ããåŠåãæšé²ãããã®ã¯ãçæ§ãæèŠãšãã£ã人éã®èªèèœåãžã®å
šé¢çãªä¿¡é Œã ã£ããããããäžæ¹ã§ã¯æš©åšããèªç±ã«æèããæšè«ãéããããšã«ãã£ãŠç¢ºå®ãªççãžãšåããæµãããããäžæ¹ã¯èгå¯ãå®éšãšããæ¹æ³ã«ãã£ãŠççãæ¢ãããšããæµããäœã£ãŠãã£ãã
ãããŠãããã®æµãã¯ãç¥èã¯å®éã«ç©äºãèŠããèããããã'''çµéš'''ãéããŠåŸããããšãã'''çµéšè«'''ãšã人éã¯ãããããæã£ãŠããèããèœåãããªãã¡'''çæ§'''ãéãããçæ§ãããç¥èã®æ ¹æºã§ãããšãã'''åçè«'''ãžãšçºéããŠãã£ãã
==çµéšè«==
çµéšè«ã¯ã€ã®ãªã¹ã«ãããŠçºéãããããã€ã®ãªã¹çµéšè«ãšãã°ããããšããããããã§ã¯ãå
é§è
ã§ãããã©ã³ã·ã¹ã»ããŒã³ã³ã®ææ³ãäžå¿ã«çµéšè«ã®èãæ¹ãèŠãŠã¿ããã
ãªããæ€å®æç§æžã§ã¯ããããºãšããã¯ã¯ç€ŸäŒå¥çŽè«ã®éèŠãªè«è
ãšããŠãã€ããããããçµéšè«ã®ææ³å®¶ã§ãããããšã¯ããŸã玹ä»ãããŠããªãããŸããããŒã¯ãªãšãã¥ãŒã ã®èª¬æãå°ãªããããçµéšè«ãšåçè«ãç·åãããã®ãšããŠã®ã«ã³ãå²åŠãšããæµããã€ãã¿ã«ãããäžæ¹ã§ãããŒã³ã³ã®æ¥çžŸã¯é倧ã«ã¯ããŒãºã¢ãããããã¡ãªãšããããããæ¬çš¿ã§ã¯å²åŠå²ã®æµãã«æ²¿ã£ãŠããŒã³ã³ãããã¥ãŒã ãŸã§ã®ã€ã®ãªã¹çµéšè«ã®æµãã説æããŠããããšã«ãããããšãããã倧åŠå
¥è©Šã ããèãããªãã°ãããŒã³ã³ã®ç¯ã ããèªãã§ããããã°ååã§ããã
===ããŒã³ã³===
[[File:Francis_Bacon.jpg|200px|thumb|ããŒã³ã³ã®èåã]]
====ç¥æŽ====
1561幎çïœ1626å¹Žæ²¡ãæ³åŸãåŠã³ãåœäŒè°å¡ãšãªããæ³åæ¬¡é·ãªã©ããžãŠæçµçã«å€§æ³å®(éŠçžã«çžåœ)ã«ãŸã§åºäžããããåè³çœªã«åãããŠå€±èããããã®åŸã¯æ°ããåŠåã®æ¹æ³ã®ç¢ºç«ã«å°å¿µããããããã®çµéšããäžè¬çãªèŠåãçºèŠããããã®æ¹æ³ãæ¢ç©¶ãããé¶ã«éªãè©°ã蟌ãã§å·åã®å®éšãè¡ã£ãéã«èºçã«ãããã亡ããªã£ããšããéžè©±ããããäž»èã¯ãæ°æ©é¢(ããŽã =ãªã«ã¬ãã¹)ãããã¥ãŒã»ã¢ãã©ã³ãã£ã¹ãã
====ç¥ã¯åã§ãã====
ããŒã³ã³ãçãŸãè²ã£ãæä»£ã¯ãã¡ããã©ã€ã®ãªã¹ã®ã«ããµã³ã¹æãšãã°ãããšãªã¶ãã¹æã«ããããã·ã§ã€ã¯ã¹ãã¢ã«ä»£è¡šãããæèžãè±éããã«ããµã³ã¹ã®äžå€§çºæãšãã°ããçŸ
éç€ã»æŽ»çå°å·ã»ç«è¬ãã¯ãããšããæ§ã
ãªç§åŠæè¡ã®ææã¯ããã«æ¹è¯ãé²ããããŠãããé«åºŠãªãã®ãžãšçºå±ããŠãã£ããããããé°å²æ°ã®äžã§ãããŒã³ã³ã¯äž»èã®ãããŽã =ãªã«ã¬ãã¹ãã«ãŠãåŠåã®ç®çã人é¡ã®å¹žçŠãšçæŽ»ã®æ¹åã§ãããšè¿°ã¹ãããã®ããã«åœŒã泚ç®ããã®ããèªç¶ç§åŠã§ããã
{| class="wikitable"
|-
! ç¥ã¯åã§ãã
|-
| 人éã®ç¥èãšåã¯åäžãããåå ãç¥ãããªããã°ãçµæã¯çããããªãããã§ããããšããã®ã¯ãèªç¶ã¯æåŸããããšã«ãã£ãŠã§ãªããã°ãåŸæãããªãã®ã§ãã£ãŠãèªç¶ã®èå¯ã«ãããŠåå ãšèªãããããã®ããäœæ¥ã«ãããŠèŠåã®åœ¹ç®ãããããã§ããã
ââãããŽã =ãªã«ã¬ãã¹ã第äžå·»ã»3(ãäžçã®å€§ææ³6ãããŒã³ã³ã(æ²³åºæžæ¿æ°ç€Ÿ,1969幎))ã
|}
èªç¶ã¯ããåå ããã£ãŠãããããçµæãçãããšããå æé¢ä¿ã«åŸã£ãŠåããŠããããã®é¢ä¿ãç¥ãããšãèªç¶ã«ãæåŸããããšããããšã§ãããããã«ãã£ãŠåŸãããç¥èãèªç¶ãæ¯é
ããæè¡ãšããŠå¿çšãã人éã®çæŽ»ãæ¹åããŠããããšããã®ããããŒã³ã³ã®å§¿å¢ã§ããããããã'''ç¥ã¯åã§ãã'''ããšããæ Œèšã«ãŸãšããããŠããã
====åã€ã®ã€ãã©====
ã§ã¯ãèªç¶ãç¥ãããã«ã¯ã©ãããã°ããããããŒã³ã³ã¯ããŸãç¥èã®ç²åŸãããŸãããåèŠãå
å
¥èгãåãé€ãããšãããããŒã³ã³ã¯åèŠã»å
å
¥èгã®çš®é¡ã4ã€ã«åé¡ãããããããå¶åãå¹»ããšããæå³ã®'''ã€ãã©'''(idola)ãšåŒãã ã
第äžã«äººéãšããçš®æãå
±éããŠæã£ãŠãããçš®æã®ã€ãã©ãã§ãããããã¯é¯èŠã«æãããããããããšãèªåã®èããšç°ãªã説ãæåŠããŠããŸãããšãšãã£ãã人éã®æ¬æ§ã«ããšã¥ããã®ã§ããã
第äºã«ãæŽçªã®ã€ãã©ãã§ããã人ã
ã¯ããããã«ç°ãªã奜ã¿ã»æè²ã»çµéšãªã©ãæã€ãããããå人ã®äœéšãç«å Žã«åºå·ããããšããçãæŽçªã®äžãããã®ãèŠãããšã«ããšãããã®ã§ããã
第äžã«ã{{ruby|åžå Ž|ãã¡ã°}}ã®ã€ãã©ãã§ãããå€ãã®äººãéãŸãåžå Žã§ã¯ããããã®èšèãè¡ã亀ãããããããã®èšèã®å
容ã確ãããããªãã§çšããããšã§æ··ä¹±ã«ãã¡ãã£ãŠããŸãã
第åããåå Žã®ã€ãã©ãã§ãããåå Žã§æŒããããèå±
ãæåããŸãã§æ¬åœã®ããšã§ãããã®ããã«ä¿¡ãããã§ããŸãããã«ãåŠè
ãå°éå®¶ãšãã£ãæš©åšã®ããäººã®æŒèª¬ãäŒçµ±çãªèª¬ãç¡æ¹å€ã«ä¿¡ããŠããŸãã
ãããŸã§ã®åŠåããšãã«ã¹ã³ã©åŠã¯ããããå¹»åœ±ã«æããããŠãèªç¶ãåæã«ããããŠè§£éããŠããããã«äžæ¯ãªãã®ã«ãªã£ãŠããŸã£ããšãããããŒã³ã³ã¯ãããã®åèŠãåãé€ããèªç¶ãããã®ãŸãŸã«èгå¯ããããããèªç¶ã®æ³åãæããã«ããããšããããã®ããã®æ¹æ³ãåž°çŽæ³ã§ããã
====åž°çŽæ³====
'''åž°çŽæ³'''ãšã¯åã
ã®çµéšãå®éšã»èŠ³æž¬ã«ããäºå®ããå
±éãããã®ããšãã ããŠäžè¬çãªæ³åãèŠåºãæ¹æ³ã§ãããåž°çŽæ³ãã®ãã®ã¯ãã§ã«ã¢ãªã¹ããã¬ã¹ä»¥æ¥èªããããŠããããèªèª¬ã«éœåã®ããäºå®ãããã¯ã¢ããããããèšå€§ãªäºå®ããã éããã ãã§çµãã£ãŠããŸãããšãå€ãã£ãã
ãŸããã¹ã³ã©åŠè
ã®ãããªäººã
ã¯çŸå®ã«å³ããŠããªã空ç空è«ãæ¯ãåãã ãã ãšããŒã³ã³ã¯èããã
ããŒã³ã³ã¯ãããŸã§ã®åž°çŽæ³ãã¹ã³ã©åŠãæ¹å€ãããçµéšæŽŸ(åŸæ¥ã®åž°çŽæ³ã䜿ã人ã
ãåœæã®ç§åŠè
)ã¯ã¢ãªã®ããã«ç©äºãéããã ãã§ãããç¬ææŽŸ(ã¹ã³ã©åŠè
ããã³ã¢ãªã¹ããã¬ã¹ãªã©)ã¯ã¯ã¢ã®ããã«é ã®äžã§ç©ºè«ãç¬æã玡ãã ããããããæ°ããå²åŠã¯ããããããããææãè±ããéããªãããããããäœãã ãããã«ãèªç¶ã®èгå¯ãå®éšã«ãã£ãŠèŠåºãããææãããšã«ããŠç¥æ§ã«ãã£ãŠèªç¶ã®æ³åãèŠåºãã
ãšã¯ãããã®ã®ãèªç¶ã¯ç°¡åã«ã¯ãã®çã®å§¿ãèŠããŠãããªããããŒã³ã³ã¯ãèªç¶ã®ç§å¯ããŸã(äžç¥)æè¡ã«ãã£ãŠèŠããããããšããã£ãããããã®æ£äœãããããã®ã§ããã(ãããŽã ã»ãªã«ã¬ãã ã第äžå·»ã»98)ãšãã<ref>ãã®ããšãåŸäžã®äººã¯ãèªç¶ãæ·åã«ãããããšãããããç©éšãªããšãã«èšãæããŠããã</ref>ãèªç¶ããã 芳å¯ããã ãã§ã¯èå¿ãªããšã¯èŠããŠããªãã®ã ããããããããªéå
·ãæè¡ãçšããéœåã®ããç¶æ
ã人工çã«äœãã ããã€ãŸãå®éšãéããŠããŒã¿ãéããäžè¬çãªæ³åãèŠåºããšããçŸä»£ç§åŠã®æ¹æ³ã確ç«ããã®ã§ããã
===ããããºãšããã¯===
17äžçŽä»¥éã®ç§åŠçãªè«žçºèŠã¯å²åŠã®äžçã«ã倧ããªå€åãå ããããšããŠãããã³ãã«ãã¯ã¹ã«ããå°å説ã®åŸ©èãã¬ãªã¬ãªã«ãã£ãŠæããã«ãããéåã®ããããããŒãŽã§ãŒã®è¡æ¶²åŸªç°èª¬ã«ãã£ãŠç¢ºç«ãããççåŠãããããåããŠãå²åŠã®äºå€§æœ®æµã§ãã'''芳念è«'''ãš'''å¯ç©è«'''ã®å¯Ÿç«ã¯æ°ããªå±é¢ãè¿ããããšããŠããã
'''芳念è«'''ãšã¯ããããããã®ã粟ç¥ãå¿ãªã©ã®ãããªé(é)ã«çµã³ã€ãããããšããææ³ã§ããã仿¹ã'''å¯ç©è«'''ã¯ããããçŸè±¡ã¯ç©è³ªã®å€åãéåã«éå
ã§ãããšããææ³ã§ãããç§åŠäžã®çºèŠã¯å¯ç©è«ã®è¶³å Žãçã
ãšåºããŠãã£ãããããªäžã§ã¬ãªã¬ãªã®åœ±é¿äžã§æ°åŠãšç©çåŠãåŠã³ãäžæããŒã³ã³ã®ç§æžãã€ãšãã'''ããããº'''ãç»å Žããã
ããããºã¯åœæã®ææ°ã®ç§åŠçãªç¥èŠãåºã«ãäžçã«ååšããã®ã¯ç©è³ªãšãã®éåã ãã§ããããã¹ãŠã¯æ©æ¢°çãªéåã«ãã£ãŠæ±ºãŸããšèãããããã¯ç©äœã®éåãå€åã®ãããªèªç¶çŸè±¡ã«ãšã©ãŸããã人éã®æèã»éã»å¿ãã身äœã®åšå®ã«äœããã®éåãèµ·ããããšã«ãã£ãŠçãããã®ã§ãããšãããããã«ç€ŸäŒãåœå®¶ãšãã£ããçç©ã§ããªã圢ãããã®ã§ããªããã®ããèªç¶ã®ç©è³ªãšåãããã«æ©æ¢°çã«æ±ºãŸãã®ã ãšããããããã'''瀟äŒå¥çŽ'''ãšããçºæ³ã«ã€ãªãã£ãŠããã®ã ãã圌ã®ç€ŸäŒå¥çŽè«ã«ã€ããŠã®èª¬æã¯[[é«çåŠæ ¡å«ç/æ°äž»äž»çŸ©ç€ŸäŒã®å«çãšææ³]]ã«ãããããšã«ãããã
ããããºãåœæã®åŠåã«äžããè¡æã¯å€§ãããã€ã®ãªã¹ã®å²åŠãç¥åŠã¯ããããºããã«ã«ãã«ãã£ãŠéæãããææ³ã®ç¶æ¿ãšæ¹å€ãéããŠåçåãå³ã£ããããããäžã§ç»å Žããã®ãããã¯ã§ããã
ããã¯ã¯ãŸãã人éã®å¿ã®è¡šè±¡(芳念)ã¯ã©ãããæ¥ãã®ããèããã圌ã¯ããã«ã«ãã瀺ãã人éãçãŸãã€ãæã£ãŠãã芳念(çåŸèŠ³å¿µ)ãåŠå®ãã芳念ã¯ãã€ãŠæèŠããç©äºãåæ ãããã®ã ãšãããç§ãã¡ã¯äœãæããªããã°ãæèã¯çœçŽ('''ã¿ãã©ã»ã©ãµ''')ã®ãŸãŸã ãšããã
{| class="wikitable"
|-
! ã¿ãã©ã»ã©ãµ
|-
| å¿ã¯ãèšã£ãŠã¿ãã°æåããŸã£ããæ¬ ããçœçŽã§ã芳念ã¯ãããããªããšæ³å®ããããã©ã®ããã«ããŠå¿ã¯èŠ³å¿µãåããããã«ãªããã人éã®å¿ããæãŠããªã{{ruby|å¿æ³|ãã¡ã³ã·ã£}}ãå¿ã«ã»ãšãã©éããªãå€çš®å€æ§ã«æããŠããããã®èšå€§ãªè²¯ããå¿ã¯ã©ãããåŸãããã©ãããå¿ã¯çç¥çæšçãšææããããã®ã«ããããããã«å¯ŸããŠãç§ã¯äžèªã§çµéšãããšçããããã®çµéšã«ç§ãã¡ã®äžåã®ç¥èã¯æ ¹åºãæã¡ããã®çµéšãããã£ããã®ç¥èã¯ç©¶æ¥µçã«ç±æ¥ããã
ââã人éç¥æ§è«ã第2巻第äžç« (ãäžçã®åè27ãããã¯ããã¥ãŒã ãäžå€®å
¬è«ç€Ÿ,1968幎)ã
|}
ãŸã£ãããªç¶æ
ã®äººéã¯ãæèŠ<ref>ãçºå±ãããã¯ã¯æèŠã§ãšãããããç©äœã®æ§è³ªãã圢ã»éãã»å€§ãããªã©ç©äœãã®ãã®ã«å±ããäžæ¬¡æ§è³ªãšãè²ã»å³ã»éŠããšãã£ãç©äœã®æ§é ããå¿ã®ãã¡ã«çã¿åºããã芳念ã§ããäºæ¬¡æ§è³ªãšã«åããã</ref>ãçšããæŽ»å(åšããèŠãããé³ãèããããç©ã«è§Šã£ãããå³ãã£ãŠã¿ããããããš)ãéããŠããããã¯èãããçã£ããä¿¡ããããšããå¿ã®åã(å
ç)ã«ãã£ãŠãåçŽèŠ³å¿µ(ãçœãããåºãããçãããå¬ããããæ²ããããªã©)ãåºæ¥äžããã人éã®æå¿ã¯åçŽèŠ³å¿µãžèœåçã«åããããŠãçŸã»æè¬ã»äººéã»å®å®ã»èªç±ãªã©ãšãã£ãè€é芳念ãäœãäžãããããããŠæ°ããè€é芳念ãã§ããå Žåããã¯ã芳å¯ã«éå®ããããçµéšã®æ ãè¶
ãããã®ãäœãäžããããšãã§ããã
äŸãã°ããããšããçãç©ãç¥ããã«ãããèŠããšããç§ãã¡ã¯ã现é·ãããã«ããã«ãããšåãããç·è²ã®ãçç©ã§ãããšæãããããããäœåºŠãåããããªçãç©ãèŠããæããŠããã£ããããçµéšãéããŠããããããšããçãç©ã§ããããšãç¥ããããã«ãç§ãã¡ã¯ãããšæ°è±¡ã»ä»ã®åç©ã»æ§ã
ãªèšãäŒããããã«çµã¿åãããŠéŸãšãã芳念ãäœãäžããŠçµµãç©èªãäœã£ãŠãããç§ãã¡ã¯éŸãå®éã«èŠãããšã¯ãªã(=ãèŠãããªã©ã®æèŠçãªçµéšãããŠããªã)ãããã®ã€ã¡ãŒãžãããããšã¯ã§ããããã«ãªãã
ãã®ããã«ãçµéšãã芳念ã䟡å€å€æãçãŸããŠããçè«ãæã¡ç«ãŠãããšãããããã¯ã¯çµéšè«ã®å®æè
ãšã¿ãªãããŠããã
===ãã®åŸã®çµéšè«===
ããã¯ã®çµéšè«ã®äžååããè¡ããã®ãããŒã¯ãªãŒã ã£ããåœŒã®æåãªèšèããååšãããšã¯ç¥èŠãããããšãã§ãããããŒã¯ãªãŒã¯ããã¯ãåæã«ããŠãããå€çãªäºç©ãååšããããšãåŠå®ãããããŒã¯ãªãŒã«ããã°ãç©äºã®èªèã¯å¿ã«ãã£ãŠç¥èŠãããããšã«ãã£ãŠè¡ãããããããŠãçŸå®ã¯ç¥èŠãããéãã«ãããŠååšããã®ã§ãããå¿ããªããªãã°å€ã®äžçãååšããªããšãããããããããŒã¯ãªãŒã«ä»£è¡šãããå¿ã®ã¿ãå®åšãããšããææ³ã'''å¯å¿è«'''ãšããã
----
<references/>
----
==åçè«==
çµéšè«ãæèŠãç¥èŠã«åºã¥ãçµéšãéèŠããã®ã«å¯ŸããŠã人éãçãŸãã€ãæã£ãŠããæèã®åãéèŠããã®ãåçè«<ref>åçè«ã»åç䞻矩ãšãã£ãå ŽåãçŸä»£ã®æ¥åžžã§ã¯ãå¹ççããè«ççããšã»ãŒåãæå³ã§äœ¿ãããã¡ã§ãããããããããã¯ééãã§ã¯ãªããäžé¢çã§ãããæŒ¢èªã®ãåçããæžãäžããšãçã«{{ruby|å|ããª}}ãããšãªããããã§ãããçããšã¯çæ§ã®ããšã§ããããçã«{{ruby|å|ããª}}ãããšã¯ãçæ§ã®ã¯ããããšåã£ãŠããããšããæå³ã§ãããè±èªã§åçè«ãæå³ããrationalismãããçæ§çrationalã+ã䞻矩ismããšããã€ããã«ãªã£ãŠããããã®ãããrationalismã¯çæ§äž»çŸ©ãçæ§è«ãªã©ã®èš³èªãåœãŠãããããšãããã</ref>ã§ãããåçè«ã¯ãã©ã³ã¹ããã®åšèŸºã§çºéããããšãã倧éžåçè«ãšããã°ããã
ããã§ã¯ãè¿ä»£çåŠåã®æ¹æ³ãšããŠçæ§ã®ã¯ããããéããã'''ã«ãã»ãã«ã«ã'''ã®ææ³ãšããããšé¢é£ããã¹ããã¶ãšã©ã€ããããã«ãå°ãè§Šãããã
===ãã«ã«ã===
[[File:Frans_Hals_-_Portret_van_René_Descartes.jpg|200px|thumb|ãã«ã«ãã®èåã]]
==== ç¥æŽ ====
1596幎çïœ1650幎没ãã¯ããã¯ã¹ã³ã©å²åŠãåŠãã§ããããããã«æºè¶³ãããç§èªèº«ãããäžçãšãã倧ããªæžç©ãã®äžã«èŠã€ããåŠå以å€ã¯æ¢ããªããšæ±ºå¿ããããããŠãæ
ãè»åã«æããªãã諞åœãæž¡ãæ©ããããããŠãå€ãã®äººã
ãšäº€æµãããã1628幎ã«ãªã©ã³ãã«ç§»äœãã20幎éã®æçŽ¢ã®ç掻ã«å
¥ãããã®éã«åè¡ããããæ¹æ³åºèª¬ããçå¯ãã«ãã£ãŠäžã«ç¥ãããããã«ãªãã53æ³ã®ãšãã«ã¹ãŠã§ãŒãã³å¥³çã¯ãªã¹ãã£ãŒãã«æãããŠå°å±ã®å²åŠè¬åž«ãšãªãããçæŽ»ç°å¢ã®å€åããç¿å¹Žã«é¢šéªããããããŠèºçã«ãããæ»å»ããã
ãã«ã«ãã¯æ°åŠãèªç¶ç§åŠã«ã倧ããªåçžŸãæ®ãããæ¹çšåŒã§æªç¥æ°ã''x''ã§è¡šããªã©ã®è¡šèšæ³ã座æšã®èãæ¹ãçºæãã幟äœåŠãšä»£æ°åŠãçµ±åãããã£ããããã¿ã ããã®ããã«ã«ãã§ããã
==== æ¹æ³çæç ====
==== ããæããããã«ãããã ====
==== æŒç¹¹æ³ ====
==== çºå±:å¿èº«åé¡ ====
===ã¹ããã¶===
===ã©ã€ãããã===
===泚===
<references/>
[[Category:é«çåŠæ ¡æè²|ããããã®ããããŠãããã]]
[[Category:瀟äŒç§æè²|ããããã®ããããŠãããã]]
[[Category:é«çåŠæ ¡å«ç|ããããã®ããããŠãããã]] | null | 2022-07-08T15:26:34Z | [
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:Ruby"
]
| https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E5%80%AB%E7%90%86/%E8%BF%91%E4%BB%A3%E3%81%AE%E5%90%88%E7%90%86%E7%9A%84%E3%83%BB%E7%A7%91%E5%AD%A6%E7%9A%84%E3%81%AA%E6%80%9D%E8%80%83%E3%81%A8%E6%96%B9%E6%B3%95 |
25,273 | ãã«ã·ã¢èª/è£éº | under construction... | [
{
"paragraph_id": 0,
"tag": "p",
"text": "under construction...",
"title": ""
}
]
| 第äžé¡ under construction... | *[[ãã«ã·ã¢èª/è£éº/第äžé¡|第äžé¡]]
under construction...
[[ã«ããŽãª:ãã«ã·ã¢èª]] | null | 2022-11-20T06:10:58Z | []
| https://ja.wikibooks.org/wiki/%E3%83%9A%E3%83%AB%E3%82%B7%E3%82%A2%E8%AA%9E/%E8%A3%9C%E9%81%BA |
25,275 | ãã«ã·ã¢èª/è£éº/æåãšçºé³/ãã«ã·ã¢æåãšãã®ç¶Žãæ¹ | åé€äŸé Œäž
åœããŒãžããã«ã·ã¢èª/è£éº/æåãšçºé³/ãã«ã·ã¢æåãšãã®ç¶Žãæ¹ãã®åé€äŸé ŒãæåºãããŠããŸããä»åŸåœããŒãžã«å ããããç·šéã¯ç¡é§ãšãªãå¯èœæ§ããããŸãã®ã§ã泚æé ããšãšãã«ãåé€ã®æ¹éã«åºã¥ãåé€ã®å¯åŠã«é¢ããè°è«ãžã®åå ããé¡ãããŸãããªããäŸé Œã®çç±çã«ã€ããŠã¯åé€äŸé Œã®è©²åœããç¯ããã®ããŒãžã®ããŒã¯ããŒãžãªã©ãã芧ãã ããã
ã€ã©ã³(ãã«ã·ã¢)ã®åœèªã§ãããã«ã·ã¢èª( fa:rsi:)ã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§,ã¢ã©ãã¢èªãšäžŠãã§,ã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªã,äžçã®éèŠèšèªäžã®ã²ãšã€ã§ãã.
ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãš,æ°ãã远å ããã ÙŸ (p,3),Ý (tÊ,7),Ú (Ê,14),Ú¯ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§,å³ããå·Šã«åãã£ãŠæžãã,ãã€èªãŸãã.ãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠãã. | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åé€äŸé Œäž",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åœããŒãžããã«ã·ã¢èª/è£éº/æåãšçºé³/ãã«ã·ã¢æåãšãã®ç¶Žãæ¹ãã®åé€äŸé ŒãæåºãããŠããŸããä»åŸåœããŒãžã«å ããããç·šéã¯ç¡é§ãšãªãå¯èœæ§ããããŸãã®ã§ã泚æé ããšãšãã«ãåé€ã®æ¹éã«åºã¥ãåé€ã®å¯åŠã«é¢ããè°è«ãžã®åå ããé¡ãããŸãããªããäŸé Œã®çç±çã«ã€ããŠã¯åé€äŸé Œã®è©²åœããç¯ããã®ããŒãžã®ããŒã¯ããŒãžãªã©ãã芧ãã ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã€ã©ã³(ãã«ã·ã¢)ã®åœèªã§ãããã«ã·ã¢èª( fa:rsi:)ã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§,ã¢ã©ãã¢èªãšäžŠãã§,ã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªã,äžçã®éèŠèšèªäžã®ã²ãšã€ã§ãã.",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãš,æ°ãã远å ããã ÙŸ (p,3),Ý (tÊ,7),Ú (Ê,14),Ú¯ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§,å³ããå·Šã«åãã£ãŠæžãã,ãã€èªãŸãã.ãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠãã.",
"title": ""
}
]
| ã€ã©ã³ïŒãã«ã·ã¢ïŒã®åœèªã§ãããã«ã·ã¢èªã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§ïŒã¢ã©ãã¢èªãšäžŠãã§ïŒã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªãïŒäžçã®éèŠèšèªäžã®ã²ãšã€ã§ããïŒ ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãšïŒæ°ãã远å ããã âÙŸâ (p,3)ïŒâÝâ (tÊ,7)ïŒâÚâ (Ê,14)ïŒâÚ¯â (g,26) ã® 4 åãæ··ããã 32 åã®æåã§ïŒå³ããå·Šã«åãã£ãŠæžããïŒãã€èªãŸããïŒãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠããïŒ | {{Sakujo|å Žæ=#ãã«ã·ã¢èª/è£éº/æåãšçºé³/ãã«ã·ã¢æåãšãã®ç¶Žãæ¹ - ããŒã¯}}
ã€ã©ã³ïŒãã«ã·ã¢ïŒã®åœèªã§ãããã«ã·ã¢èªïŒ‏‎ fa:rsi:ïŒã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§ïŒã¢ã©ãã¢èªãšäžŠãã§ïŒã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªãïŒäžçã®éèŠèšèªäžã®ã²ãšã€ã§ããïŒ
ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãšïŒæ°ãã远å ããã ‏ÙŸ‎ (p,3)ïŒ‏Ý‎ (tÊ,7)ïŒ‏Ú‎ (Ê,14)ïŒ‏Ú¯‎ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§ïŒå³ããå·Šã«åãã£ãŠæžããïŒãã€èªãŸããïŒãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠããïŒ
{| class="wikitable" style="text-align:center"
! !! åç§° !! åç¬å !! å°Ÿå !! äžå !! é å !! çºé³ç¬Šå·
|-
| 1 || Alef ||‏ا‎||‏ÙØ§‎||‏ÙØ§‎||‏ا‎|| a, e, o
|-
| 2 || BÄ ||‏Øš‎||‏ÙØš‎||‏ÙØšÙ‎||‏ØšÙ‎|| b | null | 2019-07-14T12:34:28Z | [
"ãã³ãã¬ãŒã:Sakujo"
]
| https://ja.wikibooks.org/wiki/%E3%83%9A%E3%83%AB%E3%82%B7%E3%82%A2%E8%AA%9E/%E8%A3%9C%E9%81%BA/%E6%96%87%E5%AD%97%E3%81%A8%E7%99%BA%E9%9F%B3/%E3%83%9A%E3%83%AB%E3%82%B7%E3%82%A2%E6%96%87%E5%AD%97%E3%81%A8%E3%81%9D%E3%81%AE%E7%B6%B4%E3%82%8A%E6%96%B9 |
25,278 | ãã«ã·ã¢èª/è£éº/第äžé¡/æåãšçºé³/ãã«ã·ã¢æåãšãã®ç¶Žãæ¹ | ã€ã©ã³(ãã«ã·ã¢)ã®åœèªã§ãããã«ã·ã¢èª( fa:rsi:)ã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§,ã¢ã©ãã¢èªãšäžŠãã§,ã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªã,äžçã®éèŠèšèªäžã®ã²ãšã€ã§ãã.
ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãš,æ°ãã远å ããã ÙŸ (p,3),Ý (tÊ,7),Ú (Ê,14),Ú¯ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§,å³ããå·Šã«åãã£ãŠæžãã,ãã€èªãŸãã.ãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠãã. | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã€ã©ã³(ãã«ã·ã¢)ã®åœèªã§ãããã«ã·ã¢èª( fa:rsi:)ã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§,ã¢ã©ãã¢èªãšäžŠãã§,ã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªã,äžçã®éèŠèšèªäžã®ã²ãšã€ã§ãã.",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãš,æ°ãã远å ããã ÙŸ (p,3),Ý (tÊ,7),Ú (Ê,14),Ú¯ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§,å³ããå·Šã«åãã£ãŠæžãã,ãã€èªãŸãã.ãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠãã.",
"title": ""
}
]
| ã€ã©ã³ïŒãã«ã·ã¢ïŒã®åœèªã§ãããã«ã·ã¢èªã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§ïŒã¢ã©ãã¢èªãšäžŠãã§ïŒã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªãïŒäžçã®éèŠèšèªäžã®ã²ãšã€ã§ããïŒ ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãšïŒæ°ãã远å ããã âÙŸâ (p,3)ïŒâÝâ (tÊ,7)ïŒâÚâ (Ê,14)ïŒâÚ¯â (g,26) ã® 4 åãæ··ããã 32 åã®æåã§ïŒå³ããå·Šã«åãã£ãŠæžããïŒãã€èªãŸããïŒãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠããïŒ | ã€ã©ã³ïŒãã«ã·ã¢ïŒã®åœèªã§ãããã«ã·ã¢èªïŒ‏‎ fa:rsi:ïŒã¯ã¢ãŒãªã¢èªç³»ã«å±ããéåžžã«çŸããèšèªã§ïŒã¢ã©ãã¢èªãšäžŠãã§ïŒã€ã¹ã©ã äžçã®èšèªäžæãéèŠãªã²ãšã€ã§ããã°ããã§ãªãïŒäžçã®éèŠèšèªäžã®ã²ãšã€ã§ããïŒ
ãã®ãã«ã·ã¢èªã¯ 28 åã®ã¢ã©ãã¢èªåæ¯ãšïŒæ°ãã远å ããã ‏ÙŸ‎ (p,3)ïŒ‏Ý‎ (tÊ,7)ïŒ‏Ú‎ (Ê,14)ïŒ‏Ú¯‎ (g,26) ã® 4 åãæ··ããã 32 åã®æåã§ïŒå³ããå·Šã«åãã£ãŠæžããïŒãã€èªãŸããïŒãããã 32 åã®ãã«ã·ã¢æåã¯æ¬¡è¡šã«ãããããã«åã
ååã®åœ¢ããã£ãŠããïŒ
{| class="wikitable" style="text-align:center"
! !! åç§° !! åç¬å !! å°Ÿå !! äžå !! é å !! çºé³ç¬Šå· !!ãã®ä»
|-
| 1 || Alef ||‏ا‎||‏ÙØ§‎||‏ÙØ§‎||‏ا‎|| a, e, o||å·ŠïŒæ¬¡æåïŒãžã¯éçµå
|-
| 2 || BÄ ||‏Øš‎||‏ÙØš‎||‏ÙØšÙ‎||‏ØšÙ‎|| b||
|-
| 3 || PÄ ||‏ÙŸ‎||‏ÙÙŸ‎||‏ÙÙŸÙ‎||‏ÙŸÙ‎|| p||ãã«ã·ã¢æåç¹æ
|-
| 4 || TÄ ||‏ت‎||‏ÙØª‎||‏ÙØªÙ‎||‏تÙ‎|| t||
|-
| 5 || SÄ ||‏Ø«‎||‏ÙØ«‎||‏ÙØ«Ù‎||‏Ø«Ù‎|| s||
|-
| 6 || JÄ«m ||‏ج‎||‏ÙØ¬‎||‏ÙØ¬Ù‎||‏جÙ‎|| dÊ||
|-
| 7 || ChÄ ||‏Ú‎||‏ÙÚ‎||‏ÙÚÙ‎||‏ÚÙ‎|| tÊ||ãã«ã·ã¢æåç¹æ
|-
| 8 || HÄ ||‏Ø‎||‏ÙØ‎||‏ÙØÙ‎||‏ØÙ‎|| h||
|-
| 9 || KhÄ ||‏Ø®‎||‏ÙØ®‎||‏ÙØ®Ù‎||‏Ø®Ù‎|| x||
|-
| 10 || DÄl ||‏د‎||‏ÙØ¯‎||‏ÙØ¯‎||‏د‎|| d||å·ŠïŒæ¬¡æåïŒãžã¯éçµå
|-
| 11 || ZÄl ||‏ذ‎||‏ÙØ°‎||‏ÙØ°‎||‏ذ‎|| z||å·ŠïŒæ¬¡æåïŒãžã¯éçµå
|-
| 12 || RÄ ||‏ر‎||‏ÙØ±‎||‏ÙØ±‎||‏ر‎|| r||å·ŠïŒæ¬¡æåïŒãžã¯éçµå
|-
| 13 || ZÄ ||‏ز‎||‏ÙØ²‎||‏ÙØ²‎||‏ز‎|| z ||å·ŠïŒæ¬¡æåïŒãžã¯éçµå
|-
| 14 || ZhÄ ||‏Ú‎||‏ÙÚ‎||‏ÙÚ‎||‏Ú‎|| Ê ||å·ŠïŒæ¬¡æåïŒãžã¯éçµåã»ãã«ã·ã¢æåç¹æ
|-
| 15 || SÄ«n ||‏س‎||‏ÙØ³‎||‏ÙØ³Ù‎||‏سÙ‎|| s ||
|-
| 16 || ShÄ«n ||‏ØŽ‎||‏ÙØŽ‎||‏ÙØŽÙ‎||‏ØŽÙ‎|| Ê ||
|-
[[ã«ããŽãª:ãã«ã·ã¢èª]] | null | 2022-11-20T06:11:19Z | []
| https://ja.wikibooks.org/wiki/%E3%83%9A%E3%83%AB%E3%82%B7%E3%82%A2%E8%AA%9E/%E8%A3%9C%E9%81%BA/%E7%AC%AC%E4%B8%80%E9%A1%9E/%E6%96%87%E5%AD%97%E3%81%A8%E7%99%BA%E9%9F%B3/%E3%83%9A%E3%83%AB%E3%82%B7%E3%82%A2%E6%96%87%E5%AD%97%E3%81%A8%E3%81%9D%E3%81%AE%E7%B6%B4%E3%82%8A%E6%96%B9 |
25,283 | å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš | ãå
¬åŒ
ãçšã㊠Laplace 倿ãã.
ãšãããš, f ( 0 ) = 0 , f â² ( 0 ) = β {\displaystyle f(0)=0,f'(0)=\beta } ã§ãããã,åŒ(2.18) ã¯
ãåŸã.
ãŸã,
ã Laplace 倿ãããš,
ãšãªã.
äŸ35 {\displaystyle \quad }
Laplace 倿ã®å®çŸ©åŒãã,çŽæ¥äžè§é¢æ°ã® Laplace 倿ãå°ã.
è§£çäŸ
L [ sin Ï t ] = â« 0 â sin Ï t e â s t d t {\displaystyle {\mathcal {L}}[\sin \omega t]=\int _{0}^{\infty }\sin \omega t\ e^{-st}dt}
= 1 s [ sin Ï t e â s t ] â 0 + Ï s â« 0 â cos Ï t e â s t d t {\displaystyle ={\frac {1}{s}}\left[\sin \omega t\ e^{-st}\right]_{\infty }^{0}+{\frac {\omega }{s}}\int _{0}^{\infty }\cos \omega t\ e^{-st}dt}
= 1 s ( 0 â 0 ) + Ï s â« 0 â cos Ï t e â s t d t {\displaystyle ={\frac {1}{s}}\left(0-0\right)+{\frac {\omega }{s}}\int _{0}^{\infty }\cos \omega t\ e^{-st}dt}
= Ï s { 1 s [ cos Ï t e â s t ] â 0 â Ï s â« 0 â sin Ï t e â s t d t } {\displaystyle ={\frac {\omega }{s}}\left\{{\frac {1}{s}}\left[\cos \omega t\ e^{-st}\right]_{\infty }^{0}-{\frac {\omega }{s}}\int _{0}^{\infty }\sin \omega t\ e^{-st}dt\right\}}
= Ï s 2 ( 1 â 0 ) â Ï 2 s 2 L [ sin Ï t ] {\displaystyle ={\frac {\omega }{s^{2}}}(1-0)-{\frac {\omega ^{2}}{s^{2}}}{\mathcal {L}}[\sin \omega t]}
⎠( 1 + Ï 2 s 2 ) L [ sin Ï t ] = Ï s 2 {\displaystyle \therefore (1+{\frac {\omega ^{2}}{s^{2}}}){\mathcal {L}}[\sin \omega t]={\frac {\omega }{s^{2}}}}
⎠L [ sin Ï t ] = Ï s 2 + Ï 2 {\displaystyle \therefore {\mathcal {L}}[\sin \omega t]={\frac {\omega }{s^{2}+\omega ^{2}}}}
ãŸã Ï s L [ cos Ï t ] = L [ sin Ï t ] {\displaystyle {\frac {\omega }{s}}{\mathcal {L}}[\cos \omega t]={\mathcal {L}}[\sin \omega t]} ãã
L [ cos Ï t ] = s Ï â
Ï s 2 + Ï 2 = s s 2 + Ï 2 {\displaystyle {\mathcal {L}}[\cos \omega t]={\frac {s}{\omega }}\cdot {\frac {\omega }{s^{2}+\omega ^{2}}}={\frac {s}{s^{2}+\omega ^{2}}}}
⢠{\displaystyle \diamondsuit }
äŸ36 {\displaystyle \quad }
d 2 d t 2 cos β t = â β 2 cos β t {\displaystyle {\frac {d^{2}}{dt^{2}}}\cos \beta t=-\beta ^{2}\cos \beta t} ã Laplace 倿ããããšã«ããäžã®çµæãå°ã.
è§£çäŸ
f ( t ) = cos β t , f â F {\displaystyle f(t)=\cos \beta t,\quad f\sqsupset F} ãšãããš,
s 2 F â s â
1 â 0 = â β 2 F {\displaystyle s^{2}F-s\cdot 1-0=-\beta ^{2}F}
⎠L [ cos β t ] = F = s s 2 + β 2 {\displaystyle \therefore {\mathcal {L}}[\cos \beta t]=F={\frac {s}{s^{2}+\beta ^{2}}}}
⢠{\displaystyle \diamondsuit }
以äžããŸãšããŠ
ãåŸã.
次ã«åŒ (2.19) ããåŸãããèå³ããçµæã瀺ãã. å³èŸºã 1 s {\displaystyle {\frac {1}{s}}} ã§å±éãã.
ãã®ååãæ±ãããš,
ãšãªã.ãã㯠sin β t {\displaystyle \sin \beta t} ã® Taylor å±éã§ãã.
äŸ37 {\displaystyle \quad }
äžã®äŸã«ãªãã£ãŠ cos β t {\displaystyle \cos \beta t} ã Taylor å±éãã.
è§£çäŸ
s s 2 + β 2 = s s 2 ( 1 + β 2 s 2 ) {\displaystyle {\frac {s}{s^{2}+\beta ^{2}}}={\frac {s}{s^{2}(1+{\frac {\beta ^{2}}{s^{2}}})}}} = 1 s â β 2 s 3 + β 4 s 5 â β 6 s 7 + ⯠{\displaystyle ={\frac {1}{s}}-{\frac {\beta ^{2}}{s^{3}}}+{\frac {\beta ^{4}}{s^{5}}}-{\frac {\beta ^{6}}{s^{7}}}+\cdots } ãã£ãŠãã®ååã¯, cos β t = 1 â β 2 t 2 2 ! + β 4 t 4 4 ! â β 6 t 6 6 ! + ⯠{\displaystyle \cos \beta t=1-{\frac {\beta ^{2}t^{2}}{2!}}+{\frac {\beta ^{4}t^{4}}{4!}}-{\frac {\beta ^{6}t^{6}}{6!}}+\cdots }
⢠{\displaystyle \diamondsuit }
äŸ38 {\displaystyle \quad }
ãè§£ã.
è§£
äžåŒã Laplace 倿 ãããš,
ãã£ãŠ,
ãã®ååã¯,
⢠{\displaystyle \diamondsuit }
äŸ39 {\displaystyle \quad }
ãè§£ã.
è§£
äžåŒã Laplace 倿ãããš,
ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ãš L [ y ] {\displaystyle {\mathcal {L}}[y]} ã«ã€ããŠè§£ããš,
ãšãªããã,ãã®ååã¯
ã§ãã.
⢠{\displaystyle \diamondsuit }
å¿çšäŸ
ããã®æ¯å
ã®åšæãæ±ããŠã¿ãã.ä»,
ãšå€åœ¢ããŠãã㊠Laplace 倿ãã.
ããã L [ x ] {\displaystyle {\mathcal {L}}[x]} ã«ã€ããŠè§£ããš,
ãã®ååãæ±ãããš,
ãã ã x ( 0 ) = x 0 , x â² ( 0 ) = v 0 {\displaystyle x(0)=x_{0},\ \ x'(0)=v_{0}} ãšããã.次㫠sin {\displaystyle \sin } ãš cos {\displaystyle \cos } ãåæããŠ
ããã«,
ãšå€åœ¢ãããš,åšæ T {\displaystyle T} ã¯,
ã§ããããšãåãã.ããŠãããã«é m {\displaystyle m} ãã€ãããšãã®äŒžã³ã ÎŽ {\displaystyle \delta } ãšãããš, åã®é£ãåãã®åŒãã,
ãåŸããã,ãã®äŒžã³ ÎŽ {\displaystyle \delta } ãçšãããš,
ãšãªã. ÎŽ {\displaystyle \delta } ãéããã¿ãšåŒã¶ããšããã. ãã®ããæ¯åãšæ¯ãåãšãæ¯ã¹ãŠã¿ããšé¢çœã. ãã®æ¯ãåã®éåæ¹çšåŒ,
ã¯, Ξ {\displaystyle \theta } ãå°ãããšã㯠sin Ξ â Ξ {\displaystyle \sin \theta \fallingdotseq \theta } ã§ãããã
ãšãªã.ãã£ãŠãã®æ¯ãåã®åšæã¯,
ã§ãã.ããã®éããã¿ ÎŽ {\displaystyle \delta } ã¯,ãã®æ¯ãåã®é·ã l {\displaystyle l} ã«çžåœãã.
äŸ40 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
X â x , F â f ( t ) {\displaystyle X\sqsubset x,\ \ F\sqsubset f(t)} ãšãã,äžæ¹çšåŒã® Laplace 倿ããšããš,
s 2 X â s x 0 â v 0 + β 2 X = F {\displaystyle s^{2}X-sx_{0}-v_{0}+\beta ^{2}X=F}
⎠X = x 0 s + v 0 s 2 + β 2 + 1 β β F s 2 + β 2 {\displaystyle \therefore X={\frac {x_{0}s+v_{0}}{s^{2}+\beta ^{2}}}+{\frac {1}{\beta }}{\frac {\beta F}{s^{2}+\beta ^{2}}}}
ãã®ååã¯,
x ( t ) = x 0 cos β t + v 0 β sin β t + 1 β â« 0 t f ( Ï ) sin β ( t â Ï ) d Ï {\displaystyle x(t)=x_{0}\cos \beta t+{\frac {v_{0}}{\beta }}\sin \beta t+{\frac {1}{\beta }}\int _{0}^{t}f(\tau )\sin \beta (t-\tau )d\tau }
⢠{\displaystyle \diamondsuit }
äŸ41 {\displaystyle \quad }
次ã®åŸ®åæ¹çšåŒãè§£ã.
è§£çäŸ
X â x ( t ) , Y â y ( t ) {\displaystyle X\sqsubset x(t),\ \ Y\sqsubset y(t)} ãšãã,äžæ¹çšåŒã® Laplace 倿ããšããš,
{ s X â x 0 = β Y s Y â y 0 = â β X {\displaystyle {\begin{cases}sX-x_{0}&=\beta Y\\sY-y_{0}&=-\beta X\end{cases}}}
( s â β β s ) ( X Y ) = ( x 0 y 0 ) {\displaystyle {\begin{pmatrix}s&-\beta \\\beta &s\end{pmatrix}}\left({\begin{array}{c}X\\Y\end{array}}\right)=\left({\begin{array}{c}x_{0}\\y_{0}\end{array}}\right)}
( X Y ) = ( s â β β s ) â 1 ( x 0 y 0 ) = 1 s 2 + β 2 ( s β â β s ) ( x 0 y 0 ) {\displaystyle \left({\begin{array}{c}X\\Y\end{array}}\right)={\begin{pmatrix}s&-\beta \\\beta &s\end{pmatrix}}^{-1}\left({\begin{array}{c}x_{0}\\y_{0}\end{array}}\right)={\frac {1}{s^{2}+\beta ^{2}}}{\begin{pmatrix}s&\beta \\-\beta &s\end{pmatrix}}\left({\begin{array}{c}x_{0}\\y_{0}\end{array}}\right)} = 1 s 2 + β 2 ( s x 0 + β y 0 â β x 0 + s y 0 ) {\displaystyle ={\frac {1}{s^{2}+\beta ^{2}}}\left({\begin{array}{c}sx_{0}+\beta y_{0}\\-\beta x_{0}+sy_{0}\end{array}}\right)} ãã®ååã¯, { x ( t ) = x 0 cos β t + y 0 sin β t y ( t ) = y 0 cos β t â x 0 sin β t {\displaystyle {\begin{cases}x(t)&=x_{0}\cos \beta t+y_{0}\sin \beta t\\y(t)&=y_{0}\cos \beta t-x_{0}\sin \beta t\end{cases}}}
⢠{\displaystyle \diamondsuit }
第äžç§»åå®ç
ãåŒ(2.19) ã«çšãããš,
ãåŸã.
äŸ42 {\displaystyle \quad }
ãè§£ã.
è§£
x ( t ) â X ( s ) {\displaystyle x(t)\sqsupset X(s)} ãšãããš,
ããã X ( s ) {\displaystyle X(s)} ã«ã€ããŠè§£ã.
ãã®ååãæ±ãããš,
⢠{\displaystyle \diamondsuit }
äŸ43 {\displaystyle \quad }
ãè§£ã.
è§£
ãšãããš,
ãšãªã.ããã X {\displaystyle X} ã«ã€ããŠè§£ããš,
ãšããã§
ã§ãããã
⢠{\displaystyle \diamondsuit }
äŸ44 {\displaystyle \quad }
è§£çäŸ
ãšãããš,
ãšãããŠ,
ããªãã¡
ãã®ååã¯,
⢠{\displaystyle \diamondsuit }
å¥è§£äŸ
äŸ43 ã§æ±ãã解㫠f ( t ) = 7 e 2 t {\displaystyle f(t)=7e^{2t}} ã代å
¥ãã.
ã« f ( t ) = 7 e 2 t {\displaystyle f(t)=7e^{2t}} ã代å
¥ãããš,
åã«æ»ã£ãŠ,
ããªãã¡,
⢠{\displaystyle \diamondsuit }
äŸ45 {\displaystyle \quad }
è§£çäŸ
ãšãããš
éæž¡è§£ u ( t ) {\displaystyle u(t)} ã«ã€ããŠã¯,
ãã®ååã¯,
å®åžžè§£ v ( t ) {\displaystyle v(t)} ã«ã€ããŠã¯ äŸ43 ãã
ãã£ãŠè§£ x ( t ) {\displaystyle x(t)} ã¯,
⢠{\displaystyle \diamondsuit }
ã®ååãæ±ããã.
(i)
ã§ãã£ããã,
(ii)
ãšãããš,仿±ãã x = 1 2 β 2 ( 1 β sin β t â t cos β t ) {\displaystyle x={\frac {1}{2\beta ^{2}}}\left({\frac {1}{\beta }}\sin \beta t-t\cos \beta t\right)} ãã x ( 0 ) = 0 {\displaystyle x(0)=0} ã§ãã.
ã«ãŠ x ( 0 ) = 0 {\displaystyle x(0)=0} ãã
ãšãªããããäžã®çµæãçšããŠ
ãåŸã.以äžããŸãšãããš
ãã®å¿çšãšããŠ,å€åã䌎ã忝åãåãæ±ãã.
t = 0 {\displaystyle t=0} ã§ã¯éæ¢ããŠãããã®ãšãã.ããŸ,
ãšãããš,äžåŒã¯,
ãšãªã.ãããè§£ãã°ãã.
(i) Ï â β {\displaystyle \quad \omega \neq \beta } ã®å Žå
åŒ(2.22) ã Laplace 倿ãããš,
ãã®ååã¯
ãããã®äœçœ® x {\displaystyle x} ã«,åŸ®åæ¹çšåŒã®åœ¢ã«ç±æ¥ããååŠç³»ã®åºææ¯åã®é
sin β t {\displaystyle \sin \beta t} ã®ä», å€åã«ããæ¯åã®é
sin Ï t {\displaystyle \sin \omega t} ãçŸããŠããããšã«æ³šç®ãã.ãã®äºã€ã®æ¯åæ°ãè¿ã¥ãã»ã© K Ï Ï 2 â β 2 {\displaystyle {\frac {K\omega }{\omega ^{2}-\beta ^{2}}}} ã®åæ¯ã®åœ±é¿ã«ãã, | x | {\displaystyle |x|} ã倧ãããªãããšãããã. ååŠç³»ã®åºææ¯åæ° Î² {\displaystyle \beta } ãšå€åã®æ¯åæ° Ï {\displaystyle \omega } ãåäžãšãªããšãã€ãã«ã¯ãã®ååŠç³»ã«ãŠåé¡ãåŒãèµ·ããã®ã§ãã.
(ii) Ï = β {\displaystyle \quad \omega =\beta } ã®å Žå
åãã,åŒ(2.22) ã Laplace 倿ãããš,
ãã®ååã¯,
第äºé
ã«æ³šç®ãã.ãã®é
ã«ã¯ t {\displaystyle t} ããããã,
ãšãªã,建é ç©ã®å Žåãªã©ã§ã¯ç Žå£ãèµ·ãã.ããããå
±æ¯çŸè±¡ãšåŒã°ããŠãããã®ãããã§ãã.
äŸ46 {\displaystyle \quad }
ãè§£ã.
è§£çäŸ
ãšãããš
ãã®ååã¯,
⢠{\displaystyle \diamondsuit }
åŒ(2.21) 㫠第äžç§»åå®ç ãçšãããš,
ãåŸã.
äŸ47 {\displaystyle \quad }
ãè§£ã.
è§£çäŸ
ãšãããš
ãã®ååã¯,
⢠{\displaystyle \diamondsuit } | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãå
¬åŒ",
"title": "§1"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãçšã㊠Laplace 倿ãã.",
"title": "§1"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãããš, f ( 0 ) = 0 , f â² ( 0 ) = β {\\displaystyle f(0)=0,f'(0)=\\beta } ã§ãããã,åŒ(2.18) ã¯",
"title": "§1"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãåŸã.",
"title": "§1"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãŸã,",
"title": "§1"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã Laplace 倿ãããš,",
"title": "§1"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšãªã.",
"title": "§1"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äŸ35 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "Laplace 倿ã®å®çŸ©åŒãã,çŽæ¥äžè§é¢æ°ã® Laplace 倿ãå°ã.",
"title": "§1"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "L [ sin Ï t ] = â« 0 â sin Ï t e â s t d t {\\displaystyle {\\mathcal {L}}[\\sin \\omega t]=\\int _{0}^{\\infty }\\sin \\omega t\\ e^{-st}dt}",
"title": "§1"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "= 1 s [ sin Ï t e â s t ] â 0 + Ï s â« 0 â cos Ï t e â s t d t {\\displaystyle ={\\frac {1}{s}}\\left[\\sin \\omega t\\ e^{-st}\\right]_{\\infty }^{0}+{\\frac {\\omega }{s}}\\int _{0}^{\\infty }\\cos \\omega t\\ e^{-st}dt}",
"title": "§1"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "= 1 s ( 0 â 0 ) + Ï s â« 0 â cos Ï t e â s t d t {\\displaystyle ={\\frac {1}{s}}\\left(0-0\\right)+{\\frac {\\omega }{s}}\\int _{0}^{\\infty }\\cos \\omega t\\ e^{-st}dt}",
"title": "§1"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "= Ï s { 1 s [ cos Ï t e â s t ] â 0 â Ï s â« 0 â sin Ï t e â s t d t } {\\displaystyle ={\\frac {\\omega }{s}}\\left\\{{\\frac {1}{s}}\\left[\\cos \\omega t\\ e^{-st}\\right]_{\\infty }^{0}-{\\frac {\\omega }{s}}\\int _{0}^{\\infty }\\sin \\omega t\\ e^{-st}dt\\right\\}}",
"title": "§1"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "= Ï s 2 ( 1 â 0 ) â Ï 2 s 2 L [ sin Ï t ] {\\displaystyle ={\\frac {\\omega }{s^{2}}}(1-0)-{\\frac {\\omega ^{2}}{s^{2}}}{\\mathcal {L}}[\\sin \\omega t]}",
"title": "§1"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "⎠( 1 + Ï 2 s 2 ) L [ sin Ï t ] = Ï s 2 {\\displaystyle \\therefore (1+{\\frac {\\omega ^{2}}{s^{2}}}){\\mathcal {L}}[\\sin \\omega t]={\\frac {\\omega }{s^{2}}}}",
"title": "§1"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "⎠L [ sin Ï t ] = Ï s 2 + Ï 2 {\\displaystyle \\therefore {\\mathcal {L}}[\\sin \\omega t]={\\frac {\\omega }{s^{2}+\\omega ^{2}}}}",
"title": "§1"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãŸã Ï s L [ cos Ï t ] = L [ sin Ï t ] {\\displaystyle {\\frac {\\omega }{s}}{\\mathcal {L}}[\\cos \\omega t]={\\mathcal {L}}[\\sin \\omega t]} ãã",
"title": "§1"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "L [ cos Ï t ] = s Ï â
Ï s 2 + Ï 2 = s s 2 + Ï 2 {\\displaystyle {\\mathcal {L}}[\\cos \\omega t]={\\frac {s}{\\omega }}\\cdot {\\frac {\\omega }{s^{2}+\\omega ^{2}}}={\\frac {s}{s^{2}+\\omega ^{2}}}}",
"title": "§1"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "äŸ36 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "d 2 d t 2 cos β t = â β 2 cos β t {\\displaystyle {\\frac {d^{2}}{dt^{2}}}\\cos \\beta t=-\\beta ^{2}\\cos \\beta t} ã Laplace 倿ããããšã«ããäžã®çµæãå°ã.",
"title": "§1"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "f ( t ) = cos β t , f â F {\\displaystyle f(t)=\\cos \\beta t,\\quad f\\sqsupset F} ãšãããš,",
"title": "§1"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "s 2 F â s â
1 â 0 = â β 2 F {\\displaystyle s^{2}F-s\\cdot 1-0=-\\beta ^{2}F}",
"title": "§1"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "⎠L [ cos β t ] = F = s s 2 + β 2 {\\displaystyle \\therefore {\\mathcal {L}}[\\cos \\beta t]=F={\\frac {s}{s^{2}+\\beta ^{2}}}}",
"title": "§1"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "以äžããŸãšããŠ",
"title": "§1"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãåŸã.",
"title": "§1"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "次ã«åŒ (2.19) ããåŸãããèå³ããçµæã瀺ãã. å³èŸºã 1 s {\\displaystyle {\\frac {1}{s}}} ã§å±éãã.",
"title": "§1"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãã®ååãæ±ãããš,",
"title": "§1"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãšãªã.ãã㯠sin β t {\\displaystyle \\sin \\beta t} ã® Taylor å±éã§ãã.",
"title": "§1"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "äŸ37 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "äžã®äŸã«ãªãã£ãŠ cos β t {\\displaystyle \\cos \\beta t} ã Taylor å±éãã.",
"title": "§1"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "s s 2 + β 2 = s s 2 ( 1 + β 2 s 2 ) {\\displaystyle {\\frac {s}{s^{2}+\\beta ^{2}}}={\\frac {s}{s^{2}(1+{\\frac {\\beta ^{2}}{s^{2}}})}}} = 1 s â β 2 s 3 + β 4 s 5 â β 6 s 7 + ⯠{\\displaystyle ={\\frac {1}{s}}-{\\frac {\\beta ^{2}}{s^{3}}}+{\\frac {\\beta ^{4}}{s^{5}}}-{\\frac {\\beta ^{6}}{s^{7}}}+\\cdots } ãã£ãŠãã®ååã¯, cos β t = 1 â β 2 t 2 2 ! + β 4 t 4 4 ! â β 6 t 6 6 ! + ⯠{\\displaystyle \\cos \\beta t=1-{\\frac {\\beta ^{2}t^{2}}{2!}}+{\\frac {\\beta ^{4}t^{4}}{4!}}-{\\frac {\\beta ^{6}t^{6}}{6!}}+\\cdots }",
"title": "§1"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "äŸ38 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "è§£",
"title": "§1"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "äžåŒã Laplace 倿 ãããš,",
"title": "§1"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãã£ãŠ,",
"title": "§1"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "äŸ39 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "è§£",
"title": "§1"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "äžåŒã Laplace 倿ãããš,",
"title": "§1"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ãš L [ y ] {\\displaystyle {\\mathcal {L}}[y]} ã«ã€ããŠè§£ããš,",
"title": "§1"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšãªããã,ãã®ååã¯",
"title": "§1"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã§ãã.",
"title": "§1"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "å¿çšäŸ",
"title": "§1"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ããã®æ¯å",
"title": "§1"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ã®åšæãæ±ããŠã¿ãã.ä»,",
"title": "§1"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãšå€åœ¢ããŠãã㊠Laplace 倿ãã.",
"title": "§1"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ããã L [ x ] {\\displaystyle {\\mathcal {L}}[x]} ã«ã€ããŠè§£ããš,",
"title": "§1"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãã®ååãæ±ãããš,",
"title": "§1"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãã ã x ( 0 ) = x 0 , x â² ( 0 ) = v 0 {\\displaystyle x(0)=x_{0},\\ \\ x'(0)=v_{0}} ãšããã.次㫠sin {\\displaystyle \\sin } ãš cos {\\displaystyle \\cos } ãåæããŠ",
"title": "§1"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ããã«,",
"title": "§1"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãšå€åœ¢ãããš,åšæ T {\\displaystyle T} ã¯,",
"title": "§1"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ã§ããããšãåãã.ããŠãããã«é m {\\displaystyle m} ãã€ãããšãã®äŒžã³ã ÎŽ {\\displaystyle \\delta } ãšãããš, åã®é£ãåãã®åŒãã,",
"title": "§1"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãåŸããã,ãã®äŒžã³ ÎŽ {\\displaystyle \\delta } ãçšãããš,",
"title": "§1"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãšãªã. ÎŽ {\\displaystyle \\delta } ãéããã¿ãšåŒã¶ããšããã. ãã®ããæ¯åãšæ¯ãåãšãæ¯ã¹ãŠã¿ããšé¢çœã. ãã®æ¯ãåã®éåæ¹çšåŒ,",
"title": "§1"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ã¯, Ξ {\\displaystyle \\theta } ãå°ãããšã㯠sin Ξ â Ξ {\\displaystyle \\sin \\theta \\fallingdotseq \\theta } ã§ãããã",
"title": "§1"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãšãªã.ãã£ãŠãã®æ¯ãåã®åšæã¯,",
"title": "§1"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ã§ãã.ããã®éããã¿ ÎŽ {\\displaystyle \\delta } ã¯,ãã®æ¯ãåã®é·ã l {\\displaystyle l} ã«çžåœãã.",
"title": "§1"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "äŸ40 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "X â x , F â f ( t ) {\\displaystyle X\\sqsubset x,\\ \\ F\\sqsubset f(t)} ãšãã,äžæ¹çšåŒã® Laplace 倿ããšããš,",
"title": "§1"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "s 2 X â s x 0 â v 0 + β 2 X = F {\\displaystyle s^{2}X-sx_{0}-v_{0}+\\beta ^{2}X=F}",
"title": "§1"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "⎠X = x 0 s + v 0 s 2 + β 2 + 1 β β F s 2 + β 2 {\\displaystyle \\therefore X={\\frac {x_{0}s+v_{0}}{s^{2}+\\beta ^{2}}}+{\\frac {1}{\\beta }}{\\frac {\\beta F}{s^{2}+\\beta ^{2}}}}",
"title": "§1"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "x ( t ) = x 0 cos β t + v 0 β sin β t + 1 β â« 0 t f ( Ï ) sin β ( t â Ï ) d Ï {\\displaystyle x(t)=x_{0}\\cos \\beta t+{\\frac {v_{0}}{\\beta }}\\sin \\beta t+{\\frac {1}{\\beta }}\\int _{0}^{t}f(\\tau )\\sin \\beta (t-\\tau )d\\tau }",
"title": "§1"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "äŸ41 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "次ã®åŸ®åæ¹çšåŒãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "X â x ( t ) , Y â y ( t ) {\\displaystyle X\\sqsubset x(t),\\ \\ Y\\sqsubset y(t)} ãšãã,äžæ¹çšåŒã® Laplace 倿ããšããš,",
"title": "§1"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "{ s X â x 0 = β Y s Y â y 0 = â β X {\\displaystyle {\\begin{cases}sX-x_{0}&=\\beta Y\\\\sY-y_{0}&=-\\beta X\\end{cases}}}",
"title": "§1"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "( s â β β s ) ( X Y ) = ( x 0 y 0 ) {\\displaystyle {\\begin{pmatrix}s&-\\beta \\\\\\beta &s\\end{pmatrix}}\\left({\\begin{array}{c}X\\\\Y\\end{array}}\\right)=\\left({\\begin{array}{c}x_{0}\\\\y_{0}\\end{array}}\\right)}",
"title": "§1"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "( X Y ) = ( s â β β s ) â 1 ( x 0 y 0 ) = 1 s 2 + β 2 ( s β â β s ) ( x 0 y 0 ) {\\displaystyle \\left({\\begin{array}{c}X\\\\Y\\end{array}}\\right)={\\begin{pmatrix}s&-\\beta \\\\\\beta &s\\end{pmatrix}}^{-1}\\left({\\begin{array}{c}x_{0}\\\\y_{0}\\end{array}}\\right)={\\frac {1}{s^{2}+\\beta ^{2}}}{\\begin{pmatrix}s&\\beta \\\\-\\beta &s\\end{pmatrix}}\\left({\\begin{array}{c}x_{0}\\\\y_{0}\\end{array}}\\right)} = 1 s 2 + β 2 ( s x 0 + β y 0 â β x 0 + s y 0 ) {\\displaystyle ={\\frac {1}{s^{2}+\\beta ^{2}}}\\left({\\begin{array}{c}sx_{0}+\\beta y_{0}\\\\-\\beta x_{0}+sy_{0}\\end{array}}\\right)} ãã®ååã¯, { x ( t ) = x 0 cos β t + y 0 sin β t y ( t ) = y 0 cos β t â x 0 sin β t {\\displaystyle {\\begin{cases}x(t)&=x_{0}\\cos \\beta t+y_{0}\\sin \\beta t\\\\y(t)&=y_{0}\\cos \\beta t-x_{0}\\sin \\beta t\\end{cases}}}",
"title": "§1"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "第äžç§»åå®ç",
"title": "§1"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãåŒ(2.19) ã«çšãããš,",
"title": "§1"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãåŸã.",
"title": "§1"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "äŸ42 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "è§£",
"title": "§1"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "x ( t ) â X ( s ) {\\displaystyle x(t)\\sqsupset X(s)} ãšãããš,",
"title": "§1"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ããã X ( s ) {\\displaystyle X(s)} ã«ã€ããŠè§£ã.",
"title": "§1"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãã®ååãæ±ãããš,",
"title": "§1"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "äŸ43 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "è§£",
"title": "§1"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãšãããš,",
"title": "§1"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãšãªã.ããã X {\\displaystyle X} ã«ã€ããŠè§£ããš,",
"title": "§1"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšããã§",
"title": "§1"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ã§ãããã",
"title": "§1"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "äŸ44 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãšãããš,",
"title": "§1"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãšãããŠ,",
"title": "§1"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ããªãã¡",
"title": "§1"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "å¥è§£äŸ",
"title": "§1"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "äŸ43 ã§æ±ãã解㫠f ( t ) = 7 e 2 t {\\displaystyle f(t)=7e^{2t}} ã代å
¥ãã.",
"title": "§1"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ã« f ( t ) = 7 e 2 t {\\displaystyle f(t)=7e^{2t}} ã代å
¥ãããš,",
"title": "§1"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "åã«æ»ã£ãŠ,",
"title": "§1"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ããªãã¡,",
"title": "§1"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "äŸ45 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãšãããš",
"title": "§1"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "éæž¡è§£ u ( t ) {\\displaystyle u(t)} ã«ã€ããŠã¯,",
"title": "§1"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "å®åžžè§£ v ( t ) {\\displaystyle v(t)} ã«ã€ããŠã¯ äŸ43 ãã",
"title": "§1"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãã£ãŠè§£ x ( t ) {\\displaystyle x(t)} ã¯,",
"title": "§1"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ã®ååãæ±ããã.",
"title": "§1"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "(i)",
"title": "§1"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ã§ãã£ããã,",
"title": "§1"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "(ii)",
"title": "§1"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ãšãããš,仿±ãã x = 1 2 β 2 ( 1 β sin β t â t cos β t ) {\\displaystyle x={\\frac {1}{2\\beta ^{2}}}\\left({\\frac {1}{\\beta }}\\sin \\beta t-t\\cos \\beta t\\right)} ãã x ( 0 ) = 0 {\\displaystyle x(0)=0} ã§ãã.",
"title": "§1"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ã«ãŠ x ( 0 ) = 0 {\\displaystyle x(0)=0} ãã",
"title": "§1"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãšãªããããäžã®çµæãçšããŠ",
"title": "§1"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãåŸã.以äžããŸãšãããš",
"title": "§1"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ãã®å¿çšãšããŠ,å€åã䌎ã忝åãåãæ±ãã.",
"title": "§1"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "t = 0 {\\displaystyle t=0} ã§ã¯éæ¢ããŠãããã®ãšãã.ããŸ,",
"title": "§1"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãšãããš,äžåŒã¯,",
"title": "§1"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãšãªã.ãããè§£ãã°ãã.",
"title": "§1"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "(i) Ï â β {\\displaystyle \\quad \\omega \\neq \\beta } ã®å Žå",
"title": "§1"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "åŒ(2.22) ã Laplace 倿ãããš,",
"title": "§1"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ãã®ååã¯",
"title": "§1"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãããã®äœçœ® x {\\displaystyle x} ã«,åŸ®åæ¹çšåŒã®åœ¢ã«ç±æ¥ããååŠç³»ã®åºææ¯åã®é
sin β t {\\displaystyle \\sin \\beta t} ã®ä», å€åã«ããæ¯åã®é
sin Ï t {\\displaystyle \\sin \\omega t} ãçŸããŠããããšã«æ³šç®ãã.ãã®äºã€ã®æ¯åæ°ãè¿ã¥ãã»ã© K Ï Ï 2 â β 2 {\\displaystyle {\\frac {K\\omega }{\\omega ^{2}-\\beta ^{2}}}} ã®åæ¯ã®åœ±é¿ã«ãã, | x | {\\displaystyle |x|} ã倧ãããªãããšãããã. ååŠç³»ã®åºææ¯åæ° Î² {\\displaystyle \\beta } ãšå€åã®æ¯åæ° Ï {\\displaystyle \\omega } ãåäžãšãªããšãã€ãã«ã¯ãã®ååŠç³»ã«ãŠåé¡ãåŒãèµ·ããã®ã§ãã.",
"title": "§1"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "(ii) Ï = β {\\displaystyle \\quad \\omega =\\beta } ã®å Žå",
"title": "§1"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "åãã,åŒ(2.22) ã Laplace 倿ãããš,",
"title": "§1"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "第äºé
ã«æ³šç®ãã.ãã®é
ã«ã¯ t {\\displaystyle t} ããããã,",
"title": "§1"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ãšãªã,建é ç©ã®å Žåãªã©ã§ã¯ç Žå£ãèµ·ãã.ããããå
±æ¯çŸè±¡ãšåŒã°ããŠãããã®ãããã§ãã.",
"title": "§1"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "",
"title": "§1"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "äŸ46 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ãšãããš",
"title": "§1"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "åŒ(2.21) 㫠第äžç§»åå®ç ãçšãããš,",
"title": "§1"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ãåŸã.",
"title": "§1"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "äŸ47 {\\displaystyle \\quad }",
"title": "§1"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "ãè§£ã.",
"title": "§1"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "è§£çäŸ",
"title": "§1"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ãšãããš",
"title": "§1"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ãã®ååã¯,",
"title": "§1"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "⢠{\\displaystyle \\diamondsuit }",
"title": "§1"
}
]
| null | ==§1==
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2\sin\beta t}{dt^2} = -\beta^2 \sin\beta t</math>|tag=(2.18)|label=eq:2.18}}
ãå
¬åŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[f''] = s^2\mathcal{L}[f] - sf(0) - f'(0)</math>}}
ãçšã㊠[[w:%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B|Laplace 倿]]ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) = \sin\beta t</math>}}
ãšãããšïŒ<math>f(0) = 0, f'(0) = \beta</math> ã§ããããïŒåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.18|(2.18)]] ã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2\mathcal{L}[\sin\beta t] - \beta = -\beta^2\mathcal{L}[\sin\beta t]</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\therefore \mathcal{L}[\sin\beta t] = \frac{\beta}{s^2 + \beta^2}</math>}}
ãåŸãïŒ
ãŸãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos\beta t = \frac{1}{\beta}\frac{d}{dt}\sin\beta t</math>}}
ã Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[\cos\beta t] = \frac{s}{\beta}\mathcal{L}[\sin\beta t] = \frac{s}{s^2 + \beta^2}</math>}}
ãšãªãïŒ
<!-- ex:035:start-->
<div id="ex:35">
<strong>äŸ35</strong><math>\quad</math>
Laplace 倿ã®å®çŸ©åŒããïŒçŽæ¥äžè§é¢æ°ã® Laplace 倿ãå°ãïŒ
<strong>è§£çäŸ</strong>
<math>\mathcal{L}[\sin\omega t] = \int_0^{\infty} \sin\omega t\ e^{-st}dt</math>
<math>= \frac{1}{s} \left[ \sin\omega t\ e^{-st} \right]_{\infty}^0 + \frac{\omega}{s} \int_0^{\infty} \cos\omega t\ e^{-st}dt</math>
<math>=\frac{1}{s} \left( 0 - 0 \right) + \frac{\omega}{s} \int_0^{\infty} \cos\omega t\ e^{-st}dt</math>
<math>=\frac{\omega}{s} \left \{ \frac{1}{s} \left[ \cos\omega t\ e^{-st} \right]_{\infty}^0 - \frac{\omega}{s}\int_0^{\infty} \sin\omega t\ e^{-st}dt \right \}</math>
<math>=\frac{\omega}{s^2}(1-0) - \frac{\omega^2}{s^2}\mathcal{L}[\sin\omega t]</math>
<math>\therefore (1 + \frac{\omega^2}{s^2})\mathcal{L}[\sin\omega t] = \frac{\omega}{s^2}</math>
<math>\therefore \mathcal{L}[\sin\omega t] = \frac{\omega}{s^2 + \omega^2}</math>
ãŸã <math>\frac{\omega}{s}\mathcal{L}[\cos\omega t] = \mathcal{L}[\sin\omega t]</math> ãã
<math>\mathcal{L}[\cos\omega t] = \frac{s}{\omega}\cdot\frac{\omega}{s^2 + \omega^2} = \frac{s}{s^2 + \omega^2}</math>
<math>\diamondsuit</math>
<!-- ex:035:end-->
<!-- ex:036:start-->
<div id="ex:36">
<strong>äŸ36</strong><math>\quad</math>
<math>\frac{d^2}{dt^2}\cos\beta t = -\beta^2\cos\beta t</math> ã Laplace 倿ããããšã«ããäžã®çµæãå°ãïŒ
<strong>è§£çäŸ</strong>
<math>f(t) = \cos\beta t, \quad f \sqsupset F</math> ãšãããšïŒ
<math>s^2F - s\cdot 1 - 0 = -\beta^2 F</math>
<math>\therefore \mathcal{L}[\cos\beta t] = F = \frac{s}{s^2 + \beta^2}</math>
<math>\diamondsuit</math>
<!-- ex:036:end-->
以äžããŸãšããŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\sin\beta t \sqsupset \frac{\beta}{s^2 + \beta^2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\cos\beta t \sqsupset \frac{s}{s^2 + \beta^2}</math>|tag=(2.19)|label=eq:2.19}}
ãåŸãïŒ
次ã«åŒ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.19|(2.19)]] ããåŸãããèå³ããçµæã瀺ããïŒ
å³èŸºã <math>\frac{1}{s}</math> ã§å±éããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{\beta}{s^2 + \beta^2} = \frac{\beta}{s^2(1 + \frac{\beta^2}{s^2})} = \frac{\beta}{s^2} - \frac{\beta^3}{s^4} + \frac{\beta^5}{s^6}-\cdots</math><ref>åé
ïŒ<math>\frac{\beta}{s^2}</math>ïŒå
¬æ¯ïŒ<math>-\frac{\beta^2}{s^2}</math> ã®ç¡éçæ¯çŽæ°ïŒ</ref>}}
ãã®ååãæ±ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\sin\beta t=\beta t - \frac{\beta^3t^3}{3!} + \frac{\beta^5t^5}{5!}-</math>}}
ãšãªãïŒãã㯠<math>\sin\beta t</math> ã®[[w:%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E5%B1%95%E9%96%8B| Taylor å±é]]ã§ããïŒ
<!-- ex:037:start-->
<div id="ex:37">
<strong>äŸ37</strong><math>\quad</math>
äžã®äŸã«ãªãã£ãŠ <math>\cos\beta t</math> ã Taylor å±éããïŒ
<strong>è§£çäŸ</strong>
<math>\frac{s}{s^2 + \beta^2} = \frac{s}{s^2(1 + \frac{\beta^2}{s^2})} </math><math>= \frac{1}{s} - \frac{\beta^2}{s^3} + \frac{\beta^4}{s^5} - \frac{\beta^6}{s^7} + \cdots</math><ref>
åé
ïŒ<math>\frac{1}{s}</math>ïŒå
¬æ¯ïŒ<math>-\frac{\beta^2}{s^2}</math> ã®ç¡éçæ¯çŽæ°ïŒ
</ref><br />
ãã£ãŠãã®ååã¯ïŒ<br />
<math>\cos\beta t = 1 - \frac{\beta^2t^2}{2!} + \frac{\beta^4t^4}{4!} - \frac{\beta^6t^6}{6!} + \cdots</math><br />
<math>\diamondsuit</math>
<!-- ex:037:end-->
<references />
<!-- ex:038:start-->
<div id="ex:38">
<strong>äŸ38</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 4x = 0;\quad x(0)=2, x'(0)=-3</math>}}
ãè§£ãïŒ
<strong>è§£</strong>
äžåŒã Laplace 倿 ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2\mathcal{L}[x] - 2s + 3 + 4\mathcal{L}[x] = 0</math>}}
ãã£ãŠïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{2s}{s^2 + 4} - \frac{3}{s^2 + 4} = 2\cdot\frac{s}{s^2 + 2^2} + \frac{3}{2}\frac{2}{s^2 + 2^2}</math>}}
ãã®ååã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = 2\cos2t - \frac{3}{2}\sin2t</math>}}
<math>\diamondsuit</math>
<!-- ex:038:end-->
<!-- ex:039:start-->
<div id="ex:39">
<strong>äŸ39</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
\begin{cases}
\frac{dx}{dt} &= \beta y \\
\frac{dy}{dt} &= -\beta x
\end{cases}
\quad
\begin{cases}
x(0)&=0 \\
y(0)&=1
\end{cases}
</math>}}
ãè§£ãïŒ
<strong>è§£</strong>
äžåŒã Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
\begin{cases}
s\mathcal{L}[x] &= \beta\mathcal{L}[y] \\
s\mathcal{L}[y] - 1 &= -\beta\mathcal{L}[x]
\end{cases}
</math>}}
ããã <math>\mathcal{L}[x]</math> ãš <math>\mathcal{L}[y]</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
\begin{cases}
\mathcal{L}[x] &= \frac{\beta}{s^2 + \beta^2} \\
\mathcal{L}[y] &= \frac{s}{s^2 + \beta^2}
\end{cases}
</math><ref>
<math>X \sqsubset x, Y \sqsubset y</math> ãšãããš <math>X, Y</math> ã®é£ç«æ¹çšåŒ<br />
<math>
\begin{cases}
sX - \beta Y &= 0 \\
\beta X + sY &= 1
\end{cases}
</math><br />
<math>
\begin{pmatrix}
s & -\beta \\
\beta & s
\end{pmatrix}
\left(
\begin{array}{c}
X\\
Y
\end{array}
\right)
=
\left(
\begin{array}{c}
0 \\
1
\end{array}
\right)
</math><br />
ãåŸãïŒãããã£ãŠïŒ<br />
<math>
\left(
\begin{array}{c}
X\\
Y
\end{array}
\right)
=
\begin{pmatrix}
s & -\beta \\
\beta & s
\end{pmatrix}^{-1}
\left(
\begin{array}{c}
0\\
1
\end{array}
\right)
=
\frac{1}{s^2 + \beta^2}
\begin{pmatrix}
s & \beta \\
-\beta & s
\end{pmatrix}
\left(
\begin{array}{c}
0\\
1
\end{array}
\right)
=
\frac{1}{s^2 + \beta^2}
\left(
\begin{array}{c}
\beta\\
s
\end{array}
\right)
</math>ïŒ<br />
</ref>}}
ãšãªãããïŒãã®ååã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
\begin{cases}
x(t) &= \sin\beta t \\
y(t) &= \cos\beta t
\end{cases}
</math>}}
ã§ããïŒ
<math>\diamondsuit</math>
<!-- ex:039:end-->
<references />
<strong>å¿çšäŸ</strong>
ããã®æ¯å
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>m\frac{d^2x}{dt^2} = -kx</math>}}
ã®åšæãæ±ããŠã¿ããïŒä»ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + \beta^2x = 0, \quad \beta = \sqrt{\frac{k}{m}}</math>}}
ãšå€åœ¢ããŠãã㊠Laplace 倿ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2\mathcal{L}[x] - sx(0) - x'(0) + \beta^2\mathcal{L}[x] = 0</math>}}
ããã <math>\mathcal{L}[x]</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\mathcal{L}[x] = \frac{s}{s^2 + \beta^2}x(0) + \frac{x'(0)}{s^2 + \beta^2}</math>}}
ãã®ååãæ±ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = x_0\cos\beta t + \frac{v_0}{\beta}\sin\beta t</math>}}
ãã ã <math>x(0)=x_0, \ \ x'(0)=v_0</math> ãšãããïŒæ¬¡ã« <math>\sin</math> ãš <math>\cos</math> ãåæããŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = A\sin(\beta t + \varphi)</math>}}
ããã«ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>A := \sqrt{x_0^2 + \frac{v_0^2}{\beta^2}}, \quad \varphi := \tan^{-1}\frac{\beta x_0}{v_0}</math>}}
ãšå€åœ¢ãããšïŒåšæ <math>T</math> ã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>T = \frac{2\pi}{\beta} = 2\pi\sqrt{\frac{m}{k}}</math>}}
ã§ããããšãåããïŒããŠãããã«é <math>m</math> ãã€ãããšãã®äŒžã³ã <math>\delta</math> ãšãããšïŒ
åã®é£ãåãã®åŒããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>k\delta = mg \quad \therefore \frac{m}{k} = \frac{\delta}{g}</math>}}
ãåŸãããïŒãã®äŒžã³ <math>\delta</math> ãçšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>T = 2\pi\sqrt{\frac{\delta}{g}}</math>}}
ãšãªãïŒ<math>\delta</math> ãéããã¿ãšåŒã¶ããšãããïŒ
ãã®ããæ¯åãšæ¯ãåãšãæ¯ã¹ãŠã¿ããšé¢çœãïŒ
ãã®æ¯ãåã®éåæ¹çšåŒïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>ml\frac{d^2\theta}{dt^2} = -mg\sin\theta</math>}}
ã¯ïŒ<math>\theta</math> ãå°ãããšã㯠<math>\sin\theta \fallingdotseq \theta</math> ã§ãããã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2\theta}{dt^2} + \beta^2\theta = 0, \quad \beta^2 = \frac{g}{l}</math>}}
ãšãªãïŒãã£ãŠãã®æ¯ãåã®åšæã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>T = 2\pi\sqrt{\frac{l}{g}}</math>}}
ã§ããïŒããã®éããã¿ <math>\delta</math> ã¯ïŒãã®æ¯ãåã®é·ã <math>l</math> ã«çžåœããïŒ
<!-- ex:040:start-->
<div id="ex:40">
<strong>äŸ40</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + \beta^2 x = f(t), \quad x(0) = x_0,\ \ x'(0) = v_0</math>}}
<strong>è§£çäŸ</strong>
<math>X \sqsubset x,\ \ F \sqsubset f(t)</math> ãšããïŒäžæ¹çšåŒã® Laplace 倿ããšããšïŒ<br />
<math>s^2X - sx_0 - v_0 + \beta^2X = F</math><br />
<math>\therefore X = \frac{x_0s + v_0}{s^2 + \beta^2} + \frac{1}{\beta}\frac{\beta F}{s^2 + \beta^2}</math><br />
ãã®ååã¯ïŒ<br />
<math>x(t) = x_0\cos\beta t + \frac{v_0}{\beta}\sin\beta t + \frac{1}{\beta}\int_0^t f(\tau)\sin\beta(t-\tau) d\tau</math><br />
<math>\diamondsuit</math>
<!-- ex:040:end-->
<!-- ex:041:start-->
<div id="ex:41">
<strong>äŸ41</strong><math>\quad</math>
次ã®åŸ®åæ¹çšåŒãè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>
\begin{cases}
\frac{dx}{dt} &= \beta y \\
\frac{dy}{dt} &= -\beta x
\end{cases}, \quad
\begin{cases}
x(0) &= x_0 \\
y(0) &= y_0
\end{cases}
</math>}}
<strong>è§£çäŸ</strong>
<math>X \sqsubset x(t),\ \ Y \sqsubset y(t)</math> ãšããïŒäžæ¹çšåŒã® Laplace 倿ããšããšïŒ<br />
<math>
\begin{cases}
sX-x_0 &= \beta Y \\
sY-y_0 &= -\beta X
\end{cases}</math><br />
<math>
\begin{pmatrix}
s & -\beta \\
\beta & s
\end{pmatrix}
\left(
\begin{array}{c}
X\\
Y
\end{array}
\right)
=
\left(
\begin{array}{c}
x_0 \\
y_0
\end{array}
\right)
</math></br />
<math>
\left(
\begin{array}{c}
X\\
Y
\end{array}
\right)
=
\begin{pmatrix}
s & -\beta \\
\beta & s
\end{pmatrix}^{-1}
\left(
\begin{array}{c}
x_0 \\
y_0
\end{array}
\right)
=
\frac{1}{s^2 + \beta^2}
\begin{pmatrix}
s & \beta \\
-\beta & s
\end{pmatrix}
\left(
\begin{array}{c}
x_0 \\
y_0
\end{array}
\right)
</math><math>
=
\frac{1}{s^2 + \beta^2}
\left(
\begin{array}{c}
sx_0 + \beta y_0\\
-\beta x_0 + sy_0
\end{array}
\right)
</math><br />
ãã®ååã¯ïŒ<br />
<math>
\begin{cases}
x(t) &= x_0\cos\beta t + y_0\sin\beta t \\
y(t) &= y_0\cos\beta t - x_0\sin\beta t
\end{cases}</math><br />
<math>\diamondsuit</math>
<!-- ex:041:end-->
==§2==
[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.17c|第äžç§»åå®ç]]
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>f(t) \sqsupset F(s) \Longrightarrow f(t)e^{\alpha t} \sqsupset F(s-\alpha)</math>}}
ãåŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.19|(2.19)]] ã«çšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t}\sin\beta t \sqsupset \frac{\beta}{(s-\alpha)^2 + \beta^2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>e^{\alpha t}\cos\beta t \sqsupset \frac{s-\alpha}{(s-\alpha)^2 + \beta^2}</math>|tag=(2.20)|label=eq:2.20}}
ãåŸãïŒ
<!-- ex:042:start-->
<div id="ex:42">
<strong>äŸ42</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = 4, \quad x(0) = 2, \quad x'(0) = -4</math>}}
ãè§£ãïŒ
<strong>è§£</strong>
<math>x(t) \sqsupset X(s)</math> ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\{ s^2X - 2s + 4 \} + 2 \{ sX - 2 \} + 5X = 0</math>}}
ããã <math>X(s)</math> ã«ã€ããŠè§£ãïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>X = \frac{2s}{s^2 + 2s + 5} = \frac{2(s + 1) - 2}{(s + 1)^2 + 2^2}</math><ref>ããã¯ãŸãäºæ¬¡åŒ <math>s^2 + 2s + 5</math> ãå¹³æ¹åŒ <math>(s + 1)^2 -1 + 5</math> ã«å±éãïŒååã¯äžæ¬¡é
<math>(s + 1)</math> ãå«ãããã«é©åœãªå®æ°ãè¶³ãåŒããããã®ïŒ</ref>}}
ãã®ååãæ±ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) = e^{-t}(2\cos2t-\sin2t)</math><ref>
<math>\frac{2s}{s^2 + 2s + 5} = \frac{2(s+1) - 2}{(s + 1)^2 + 2^2} = \frac{2(s+1)}{(s+1)^2 + 2^2} - \frac{2}{(s+1)^2 + 2^2}</math><br />
<math> \sqsubset e^{-t}\cdot \mathcal{L}^{-1} \left[ 2\cdot\frac{s}{s^2 + 2^2} - \frac{2}{s^2 + 2^2} \right]</math><br />
<math>=e^{-t} \left( 2\cos2t - \sin 2t \right)</math>
</ref>}}
<math>\diamondsuit</math>
<!-- ex:042:end-->
<!-- ex:043:start-->
<div id="ex:43">
<strong>äŸ43</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = f(x)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(0)=x'(0)=0</math>}}
ãè§£ãïŒ
<strong>è§£</strong>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t) \sqsupset X(s), f(t) \sqsupset F(s)</math>}}
ãšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>s^2X + sX + X = F</math>}}
ãšãªãïŒããã <math>X</math> ã«ã€ããŠè§£ããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>X = \frac{F}{s^2 + s + 1}</math>}}
ãšããã§
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s^2 + s + 1} = \frac{1}{\left( s + \frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \sqsubset \frac{2}{\sqrt{3}} e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{2}t</math>}}
ã§ãããã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x(t)=\frac{2}{\sqrt{3}} \int_0^t \left\{ e^{-\frac{1}{2}(t-\tau)} \sin\frac{\sqrt{3}}{2}(t-\tau) \right\} f(\tau)d\tau</math><ref>
<math>\because \frac{F}{s^2 + s + 1} = \frac{F}{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \sqsubset </math><math> \mathcal{L}^{-1} \left[ \frac{1}{\left( s + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2}\right)^2 } \right] * f(t) = \left( e^{-\frac{1}{2}t} \cdot \mathcal{L}^{-1} \left[ \frac{2}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2} } {s^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right]\right) * f(t)</math><br />
<math>= \frac{2}{\sqrt{3}} \left( e^{-\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t \right) * f(t)</math><br />
</ref>}}
<math>\diamondsuit</math>
<!-- ex:043:end-->
<!-- ex:044:start-->
<div id="ex:44">
<strong>äŸ44</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx^2}{dt^2} + \frac{dx}{dt} + x = 7e^{2t}\quad x(0) = x'(0) = 0</math>}}
<strong>è§£çäŸ</strong>
:<math>x(t) \sqsupset X</math><br />
ãšãããšïŒ
:<math>s^2X + sX + X = \frac{7}{s - 2}</math><br />
:<math>\therefore X = \frac{7}{(s - 2)(s^2 + s + 1)} = \frac{A}{s - 2} + \frac{Bs + C}{s^2 + s + 1}</math><br />
ãšãããŠïŒ
:<math>A = 1, B = -1, C = -3</math><br />
ããªãã¡
:<math>X = \frac{1}{s - 2} + \frac{-s-3}{s^2 + s + 1}</math><br />
:<math>= \frac{1}{s - 2} + \frac{-(s + \frac{1}{2})}{s^2 + s + 1} + \frac{-\frac{5}{2}}{s^2 + s + 1}</math><br />
:<math>= \frac{1}{s - 2} +</math><math> \frac{-(s + \frac{1}{2})}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} + \frac{-5}{\sqrt{3}}\frac{\frac{\sqrt{3}}{2}}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}</math><br />
ãã®ååã¯ïŒ
:<math>x(t) = e^{2t} - e^{-\frac{t}{2}}\left(\cos\frac{\sqrt{3}}{2}t + \frac{5}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}t\right)</math>
<math>\diamondsuit</math>
<strong>å¥è§£äŸ</strong>
[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#ex:43|äŸ43]] ã§æ±ãã解㫠<math>f(t) = 7e^{2t}</math> ã代å
¥ããïŒ
:<math>x(t)=\frac{2}{\sqrt{3}} \int_0^t \left\{ e^{-\frac{1}{2}(t-\tau)} \sin\frac{\sqrt{3}}{2}(t-\tau) \right\} f(\tau)d\tau</math><br />
ã« <math>f(t) = 7e^{2t}</math> ã代å
¥ãããšïŒ
:<math>x(t)=\frac{2}{\sqrt{3}}\int_0^t e^{\frac{-t+\tau}{2}}\sin\frac{\sqrt{3}}{2}(t-\tau)\cdot 7e^{2\tau}d\tau</math>
:<math>=\frac{14}{\sqrt{3}}e^{-\frac{t}{2}}\int_0^t e^{\frac{5\tau}{2}}\sin\frac{\sqrt{3}}{2}(t-\tau)d\tau</math><ref>ããã«å æ³å®çã䜿ããããªããïŒããã¯ææ
¢ã®ãã©ããã§ããâŠïŒ</ref>
:<math>I_1 = \int_0^t e^{\frac{5}{2}\tau}\sin\frac{\sqrt{3}}{2}(t-\tau)d\tau</math> ãšãããŠéšåç©åãå®è¡ãããšïŒ
:<math>I_1 = \frac{2}{\sqrt{3}} \left[ e^{\frac{5\tau}{2}}\cos\frac{\sqrt{3}}{2}(t-\tau) \right]_0^t - \frac{5}{2}\cdot\frac{2}{\sqrt{3}}\int_0^t e^{\frac{5\tau}{2}}\cos\frac{\sqrt{3}}{2}(t-\tau)d\tau</math>
:<math>=\frac{2}{\sqrt{3}} \left\{ e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2} t \right\} - \frac{5}{\sqrt{3}}\int_0^t e^{\frac{5\tau}{2}}\cos\frac{\sqrt{3}}{2}(t-\tau)d\tau</math>
:<math>I_2 = \int_0^t e^{\frac{5\tau}{2}}\cos\frac{\sqrt{3}}{2}(t-\tau)d\tau</math> ãšãããŠéšåç©åãå®è¡ãããšïŒ
:<math>I_2 = \frac{-2}{\sqrt{3}} \left[ e^{\frac{5}{2}\tau}\sin\frac{\sqrt{3}}{2}(t-\tau) \right]_0^t + \frac{5}{2}\cdot\frac{2}{\sqrt{3}}\int_0^t e^{\frac{5}{2}\tau}\sin\frac{\sqrt{3}}{2}(t-\tau)d\tau</math>
:<math>= \frac{-2}{\sqrt{3}} \left\{ 0 - \sin\frac{\sqrt{3}}{2} t \right\} + \frac{5}{\sqrt{3}}\int_0^t e^{\frac{5}{2}\tau}\sin\frac{\sqrt{3}}{2}(t-\tau)d\tau</math>
:<math>= \frac{2}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}t + \frac{5}{\sqrt{3}}I_1</math>
åã«æ»ã£ãŠïŒ
:<math>I_1 = \frac{2}{\sqrt{3}} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{5}{\sqrt{3}} \left( \frac{2}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}t + \frac{5}{\sqrt{3}} I_1 \right)</math>
:<math>= \frac{2}{\sqrt{3}} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{10}{3}\sin\frac{\sqrt{3}}{2}t - \frac{25}{3}I_1</math>
ããªãã¡ïŒ
:<math>\left(1 + \frac{25}{3}\right)I_1 = \frac{2}{\sqrt{3}} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{10}{3}\sin\frac{\sqrt{3}}{2}t</math>
:<math>\therefore I_1 = \frac{3}{28}\cdot\frac{2}{\sqrt{3}} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{3}{28}\cdot\frac{10}{3}\sin\frac{\sqrt{3}}{2}t
</math>
:<math>=\frac{\sqrt{3}}{14} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{5}{14}\sin\frac{\sqrt{3}}{2}t</math>
:<math>\therefore x(t) = \frac{14}{\sqrt{3}}e^{-\frac{t}{2}} \left\{ \frac{\sqrt{3}}{14} \left( e^{\frac{5}{2}t} - \cos\frac{\sqrt{3}}{2}t \right) - \frac{5}{14}\sin\frac{\sqrt{3}}{2}t \right\}</math>
:<math>= e^{2t} - e^{-\frac{t}{2}}\left(\cos\frac{\sqrt{3}}{2}t + \frac{5}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}t\right)</math>
<math>\diamondsuit</math>
<!-- ex:044:end-->
<!-- ex:045:start-->
<div id="ex:45">
<strong>äŸ45</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx^2}{dt^2} + \frac{dx}{dt} + x = f(t), \quad x(0) = x_0, x'(0) = v_0</math>}}
<strong>è§£çäŸ</strong>
:<math>x(t) \sqsupset X, f(t) \sqsupset F</math>
ãšãããš
:<math>(s^2X-x_0s - v_0) + (sX - x_0) + X = F</math>
:<math>\therefore X = \frac{x_0s + v_0 + x_0}{s^2 + s + 1} + \frac{F}{s^2 + s + 1}</math>
éæž¡è§£ <math>u(t)</math> ã«ã€ããŠã¯ïŒ
:<math>\frac{x_0s + v_0 + x_0}{s^2 + s + 1} = \frac{x_0(s + \frac{1}{2}) + v_0 + \frac{x_0}{2}}{(s + \frac{1}{2})^2 + \frac{3}{4}}</math>
:<math>=x_0\cdot\frac{s + \frac{1}{2}}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} + (v_0 + \frac{x_0}{2}) \cdot\frac{2}{\sqrt{3}}\cdot\frac{\frac{\sqrt{3}}{2}}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}</math>
ãã®ååã¯ïŒ
:<math>u(t)=x_0e^{-\frac{1}{2}t}\cos\frac{\sqrt{3}}{2}t + (v_0 + \frac{x_0}{2}) \cdot\frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t</math>
å®åžžè§£ <math>v(t)</math> ã«ã€ããŠã¯ [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#ex:43|äŸ43]] ãã
:<math>v(t)= \frac{2}{\sqrt{3}} \left( e^{-\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t \right) * f(t)</math>
:<math>= \frac{2}{\sqrt{3}} \int_0^t \left\{ e^{-\frac{1}{2}(t-\tau)} \sin\frac{\sqrt{3}}{2}(t-\tau) \right\} f(\tau)d\tau</math>
ãã£ãŠè§£ <math>x(t)</math> ã¯ïŒ
:<math>x(t) = u(t) + v(t) = x_0e^{-\frac{1}{2}t}\cos\frac{\sqrt{3}}{2}t + (v_0 + \frac{x_0}{2}) \cdot\frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t + \frac{2}{\sqrt{3}} \int_0^t \left\{ e^{-\frac{1}{2}(t-\tau)} \sin\frac{\sqrt{3}}{2}(t-\tau) \right\} f(\tau)d\tau</math>
<math>\diamondsuit</math>
<!-- ex:045:end-->
<references />
==§3==
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{(s^2 + \beta^2)^2}</math> ããã³ <math>\frac{s}{(s^2 + \beta^2)^2}</math>}}
ã®ååãæ±ãããïŒ
(i)
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{s^2 + \beta^2} \sqsubset \frac{1}{\beta}\sin\beta t</math>}}
ã§ãã£ãããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{(s^2 + \beta^2)^2} \sqsubset \frac{1}{\beta}\sin\beta t * \frac{1}{\beta}\sin\beta t = \frac{1}{\beta^2}\int_0^t\sin\beta(t-\tau)\sin\beta\tau d\tau</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>= \frac{1}{2\beta^2}\int_0^t \{ \cos\beta(t-2\tau)-\cos\beta t \}d\tau</math><ref>
å æ³å®çãã
:<math>\cos(A + B) = \cos A\cos B - \sin A\sin B</math>âŠâ <br />
:<math>\cos(A - B) = \cos A\cos B + \sin A\sin B</math>âŠâ¡<br />
â¡ - â ãã <math>\cos(A - B) - \cos(A + B) = 2\sin A\sin B</math><br />
ããªãã¡ã<math>\sin A\sin B = \frac{1}{2} \left\{ \cos(A - B) - \cos(A + B) \right\}</math> ïŒç©åã®å
¬åŒïŒ<br />
ãããé©çšããïŒ
</ref>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>=\frac{1}{2\beta^2} \left[ \frac{\sin\beta(t-2\tau)}{-2\beta} - \tau\cos\beta t \right]_0^t</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>=\frac{1}{2\beta^2} \left[ \frac{1}{-2\beta} \left\{ \sin\beta(-t) - \sin\beta t \right\} - t\cos\beta t \right]</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>=\frac{1}{2\beta^2} \left( \frac{1}{\beta}\sin\beta t - t\cos\beta t \right)</math>}}
<div id="(ii)">
(ii)
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{(s^2 + \beta^2)^2} \sqsubset x(t)</math>}}
ãšãããšïŒä»æ±ãã <math>x = \frac{1}{2\beta^2} \left( \frac{1}{\beta}\sin\beta t - t\cos\beta t \right)</math> ãã <math>x(0) = 0</math> ã§ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} \sqsupset s\cdot\frac{1}{(s^2 + \beta^2)^2} - sx(0)</math>}}
ã«ãŠ <math>x(0) = 0</math> ãã
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{dx}{dt} \sqsupset s\cdot\frac{1}{(s^2 + \beta^2)^2}</math>}}
ãšãªããããäžã®çµæãçšããŠ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{s}{(s^2 + \beta^2)} \sqsubset \frac{d}{dt} \left\{ \frac{1}{2\beta^2} \left( \frac{1}{\beta}\sin\beta t - t\cos\beta t \right) \right\} = \frac{1}{2\beta^2}\left( \frac{1}{\beta}\cdot\beta\cos\beta t - \cos\beta t + t\beta\sin\beta t \right) = \frac{t}{2\beta}\sin\beta t</math>}}
ãåŸã<ref>
ãŸãã¯ïŒ<math>\frac{s}{(s^2 + \beta^2)^2} = \frac{s}{s^2 + \beta^2}\cdot\frac{1}{\beta}\frac{\beta}{s^2 + \beta^2} \sqsubset \frac{1}{\beta}\cos\beta t * \sin\beta t</math> ãšãïŒãããæ±ããïŒ<br />
:<math>\frac{1}{\beta}\cos\beta t * \sin\beta t = \frac{1}{\beta}\int_0^t \cos\beta(t-\tau)\sin\beta\tau d\tau</math><br />
å æ³å®çãã
:<math>\sin(A + B) = \sin A\cos B + \cos A\sin B</math>âŠâ <br />
:<math>\sin(A - B) = \sin A\cos B - \cos A\sin B</math>âŠâ¡<br />
â - â¡ ãã <math>\sin(A + B) - \sin(A - B) = 2\cos A\sin B</math><br />
ããªãã¡ã<math>\cos A\sin B = \frac{1}{2} \left\{ \sin(A + B) - \sin(A - B) \right\}</math> ïŒç©åã®å
¬åŒïŒ<br />
ãããé©çšãããšïŒ<br />
:<math>\frac{1}{\beta}\int_0^t \cos\beta(t-\tau)\sin\beta\tau d\tau = \frac{1}{2\beta}\int_0^t \{ \sin\beta t - \sin\beta(t-2\tau)\}d\tau</math><br />
:<math>= \frac{1}{2\beta} \left\{ t\sin\beta t + \left[\frac{\cos\beta(t-2\tau)}{-2\beta}\right]_0^t \right\}</math><br />
:<math>= \frac{1}{2\beta} \left[ t\sin\beta t + \frac{1}{-2\beta} \left\{ \cos(-t) - \cos(t) \right\} \right]</math><br />
:<math>= \frac{t}{2\beta} \sin\beta t</math>
</ref>ïŒä»¥äžããŸãšãããš
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{(s^2 + \beta^2)^2} \sqsubset \frac{1}{2\beta^2}\left( \frac{1}{\beta}\sin\beta t - t\cos\beta t \right)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{s}{(s^2 + \beta^2)^2} \sqsubset \frac{t}{2\beta}\sin\beta t</math>|tag=(2.21)|label=eq:2.21}}
ãã®å¿çšãšããŠïŒå€åã䌎ã忝åãåãæ±ããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>m\frac{d^2x}{dt^2} + kx = F\sin\omega t</math>}}
<math>t = 0</math> ã§ã¯éæ¢ããŠãããã®ãšããïŒ<ref>
æ°Žå¹³é¢äžïŒè³ªé <math>m</math> ã®ããããšèªç±é· <math>L</math>ïŒãã宿° <math>k</math> ã®ãããçµåããç³»ã <math>X</math> 軞äžã«çœ®ãããã®ãšãã®ãããã®äœçœ®ã <math>x = 0</math>ïŒ
ããã®ããããšã¯å察åŽã®äžç«¯ïŒéæ¢ããç¶æ
ã§ã¯ <math>X = -L</math>) ã®äœçœ®ã«æ°ãã座æšç³» <math>Y</math> ã眮ã㊠<math>Y</math> ã®å€§ããããã³æ£ã®åã㯠<math>X</math> ãšåäžãšãïŒãã®ããã®äžç«¯ã®åº§æšè»ž <math>Y = 0</math> ã«å¯Ÿããåããå«ããå€äœã <math>y</math> ãšããïŒä» <math>x</math> ããã³ <math>y</math> ãä»»æã®å€ããšããšãïŒããã®èªç±é·ããã®äŒžã³ã¯ç¬Šå·ãå«ã㊠<math>x - y</math>ïŒãããã«å¯Ÿããéåæ¹çšåŒãç«ãŠããšïŒ<br />
:<math>m\frac{d^2x}{dt^2} = -k(x - y)</math>
ããªãã¡ïŒ
:<math>m\frac{d^2x}{dt^2} + kx = ky</math>
ããŸïŒ<math>y</math> ã匷å¶çã«å€äœããïŒããã <math>y = A\sin\omega t</math> ãªãã°ïŒ
:<math>m\frac{d^2x}{dt^2} + kx = kA\sin\omega t</math>
ãã㯠<math>kA = F</math> ãšããã°ïŒããã <math>m</math> ã«é éåãšããŠã®å€å <math>F\sin\omega t</math> ãäžããããšãšåãã§ããïŒ
</ref>ããŸïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{k}{m} =: \beta^2, \quad \frac{F}{m} =: K</math>}}
ãšãããšïŒäžåŒã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + \beta^2x = K\sin\omega t; \quad x(0) = x'(0) = 0</math>|tag=(2.22)|label=eq:2.22}}
ãšãªãïŒãããè§£ãã°ããïŒ
(i) <math>\quad \omega \ne \beta</math> ã®å Žå
[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.22|åŒ(2.22)]] ã Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>(s^2 + \beta^2)X = \frac{K\omega}{s^2 + \omega^2}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>X = \frac{K\omega}{(s^2 + \omega^2)(s^2 + \omega^2)}</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>X = \frac{K\omega}{\omega^2 - \beta^2}\left(\frac{1}{s^2 + \beta^2} - \frac{1}{s^2 + \omega^2}\right)</math>}}
ãã®ååã¯
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{K\omega}{\omega^2 - \beta^2} \left( \frac{1}{\beta}\sin\beta t - \frac{1}{\omega}\sin\omega t \right)</math>}}
ãããã®äœçœ® <math>x</math> ã«ïŒåŸ®åæ¹çšåŒã®åœ¢ã«ç±æ¥ããååŠç³»ã®åºææ¯åã®é
<math>\sin\beta t</math> ã®ä»ïŒ
å€åã«ããæ¯åã®é
<math>\sin\omega t</math> ãçŸããŠããããšã«æ³šç®ããïŒãã®äºã€ã®æ¯åæ°ãè¿ã¥ãã»ã©
<math>\frac{K\omega}{\omega^2 - \beta^2}</math> ã®åæ¯ã®åœ±é¿ã«ããïŒ<math>|x|</math> ã倧ãããªãããšããããïŒ
ååŠç³»ã®åºææ¯åæ° <math>\beta</math> ãšå€åã®æ¯åæ° <math>\omega</math> ãåäžãšãªããšãã€ãã«ã¯ãã®ååŠç³»ã«ãŠåé¡ãåŒãèµ·ããã®ã§ããïŒ
(ii)<math>\quad \omega = \beta</math> ã®å Žå
åããïŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.22|åŒ(2.22)]] ã Laplace 倿ãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>X = \frac{K\beta}{(s^2 + \beta^2)^2}</math>}}
ãã®ååã¯ïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>x = \frac{K}{2\beta^2}(\sin\beta t - \beta t\cdot\cos\beta t)</math>}}
第äºé
ã«æ³šç®ããïŒãã®é
ã«ã¯ <math>t</math> ãããããïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>t\to\infty</math> ã®ãšã <math>|x(t)|\to\infty</math>}}
ãšãªãïŒå»ºé ç©ã®å Žåãªã©ã§ã¯ç Žå£ãèµ·ããïŒããããå
±æ¯çŸè±¡ãšåŒã°ããŠãããã®ãããã§ããïŒ
<!-- ex:046:start-->
<div id="ex:46">
<strong>äŸ46</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 9x = 6\cos3t, \quad x(0)=2, x'(0) = 0</math>}}
ãè§£ãïŒ
<strong>è§£çäŸ</strong>
:<math>X \sqsubset x</math>
ãšãããš
:<math>s^2X - 2s - 0 + 9X = \frac{6s}{s^2 + 9}</math>
:<math>X = \frac{2s}{s^2 + 9} + \frac{6s}{(s^2 + 9)^2}</math>
ãã®ååã¯ïŒ
:<math>x = 2\cos3t + 6\cdot\frac{t}{2\cdot3}\sin3t</math>
:<math>= 2\cos3t + t\sin3t</math>
<math>\diamondsuit</math>
<!-- ex:046:end-->
åŒ[[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/äžè§é¢æ°ã® Laplace 倿ãšãã®å¿çš#eq:2.21|(2.21)]] ã« [[å¶åŸ¡ãšæ¯åã®æ°åŠ/第äžé¡/Laplace 倿/ææ°é¢æ°ã® Laplace 倿ãšãã®å¿çš#第äžç§»åå®ç|第äžç§»åå®ç]] ãçšãããšïŒ
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{1}{[(s-\alpha)^2 + \beta^2]^2} \sqsubset \frac{e^{\alpha t}}{2\beta^2}\left( \frac{1}{\beta}\sin\beta t - t\cos\beta t \right)</math>}}
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{s-\alpha}{[(s-\alpha)^2 + \beta^2]^2} \sqsubset \frac{e^{\alpha t}}{2\beta}t\sin\beta t</math>|tag=(2.23)|label=eq:2.23}}
ãåŸãïŒ
<!-- ex:047:start-->
<div id="ex:47">
<strong>äŸ47</strong><math>\quad</math>
{{å¶åŸ¡ãšæ¯åã®æ°åŠ/equation|<math>\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = -2e^{-t}\sin t, \quad x(0) = 0, x'(0) = 1</math>}}
ãè§£ãïŒ
<strong>è§£çäŸ</strong>
:<math>X \sqsubset x</math>
ãšãããš
:<math>s^2X - 1 + 2sX + 2X = -2\cdot\frac{1}{(s + 1)^2 + 1}</math>
:<math>(s^2 + 2s + 2)X = 1 - 2\cdot\frac{1}{(s + 1)^2 + 1}</math>
:<math>X = \frac{1}{(s + 1)^2 + 1} - 2\cdot\frac{1}{[(s + 1)^2 + 1]^2}</math>
ãã®ååã¯ïŒ
:<math>x = e^{-t}\sin t - 2 \cdot \frac{e^{-t}}{2} \left( \frac{1}{1}\sin t - t\cos t \right)</math>
:<math>x = e^{-t}\sin t - e^{-t} ( \sin t - t\cos t )</math>
:<math>x = te^{-t}\cos t</math>
<math>\diamondsuit</math>
<!-- ex:047:end-->
[[ã«ããŽãª:ã©ãã©ã¹å€æ]] | null | 2022-11-23T14:24:16Z | [
"ãã³ãã¬ãŒã:å¶åŸ¡ãšæ¯åã®æ°åŠ/equation"
]
| https://ja.wikibooks.org/wiki/%E5%88%B6%E5%BE%A1%E3%81%A8%E6%8C%AF%E5%8B%95%E3%81%AE%E6%95%B0%E5%AD%A6/%E7%AC%AC%E4%B8%80%E9%A1%9E/Laplace_%E5%A4%89%E6%8F%9B/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE_Laplace_%E5%A4%89%E6%8F%9B%E3%81%A8%E3%81%9D%E3%81%AE%E5%BF%9C%E7%94%A8 |
25,284 | ç·å代æ°åŠ/è¡åãšè¡ååŒ/第äžé¡/è¡åã®å®çŸ©ã»åã»å·® | ç·åœ¢ä»£æ°ã§ã¯ãè¡åãšåŒã°ãããã®ãæ±ã.
æ°åãé·æ¹åœ¢ã®åœ¢ã«äžŠã¹ãŠæ¬åŒ§ã§æ¬ã£ããã®ãè¡åãšãã. 暪ã«äžŠãã æ°ã®äžŠã³ãè¡ãšåŒã³,äžãã第 1 è¡,第 2 è¡, ⯠{\displaystyle \cdots } , 瞊ã«äžŠãã æ°ã®äžŠã³ãåãšåŒã³,å·Šãã第 1 å,第 2 å, ⯠{\displaystyle \cdots } ãšæ°ãã. m {\displaystyle m} à n {\displaystyle n} ã®é·æ¹åœ¢ã«äžŠãã ãã®ã, m {\displaystyle m} è¡ n {\displaystyle n} åã®è¡å, ãŸã㯠( m , n ) {\displaystyle (m,n)} åè¡åãšãã.
n {\displaystyle n} å
åãã¯ãã«ã¯ ( n , 1 ) {\displaystyle (n,1)} åè¡å, n {\displaystyle n} å
è¡ãã¯ãã«ã¯ ( 1 , n ) {\displaystyle (1,n)} åè¡åãšã¿ãªãããšãã§ãã.
äŸãã° ( 3 , 4 ) {\displaystyle (3,4)} åè¡åããã£ãŠããã®ç¬¬ 2 è¡ã第 3 åã«æžãããŠããæ°ã 4 {\displaystyle 4} ã§ãããšãã ããã ( 2 , 3 ) {\displaystyle (2,3)} æåã 4 {\displaystyle 4} ã§ãããšè¡šçŸãã.
çžŠãšæšªã«äžŠãã æ°ã®åæ°ãçãããšã,ã€ãŸãæ£æ¹åœ¢ã®åœ¢ã«äžŠã¶ãšã,æ£æ¹è¡åãšãã. ( n , n ) {\displaystyle (n,n)} åã®æ£æ¹è¡åã n {\displaystyle n} æ¬¡æ£æ¹è¡å ãšãã. æ£æ¹è¡åã«ãããŠ, ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) , ⯠{\displaystyle (1,1),(2,2),(3,3),\cdots } ã®æåãå¯Ÿè§æåãšãã. å¯Ÿè§æå以å€ã®æåã 0 {\displaystyle 0} ã§ããè¡åã 察è§è¡å ãšãã. æåã 0 {\displaystyle 0} ã®ãšããã¯æžããªãã§æžãŸãå Žåããã.
ãã¯ãã«ãäžã€ã®æåã§çœ®ããããã«,è¡åãäžã€ã®æåã§çœ®ããŠè¡šã. A , B {\displaystyle A,B} ãªã©å€§æåã§çœ®ãããã®ãéäŸã§ãã.
åãåã®è¡åã«å¯ŸããŠ,å,å·®ãèšç®ããããšãã§ãã. ããšãã°, A = ( â 4 3 2 â 1 ) , B = ( 1 â 2 â 3 5 ) {\displaystyle A=\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right),B=\left({\begin{array}{c}1&-2\\-3&5\end{array}}\right)} ã®ãšã,
A + B = ( â 4 3 2 â 1 ) + ( 1 â 2 â 3 5 ) = ( â 4 + 1 3 + ( â 2 ) 2 + ( â 3 ) â 1 + 5 ) = ( â 3 1 â 1 4 ) {\displaystyle A+B=\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right)+\left({\begin{array}{c}1&-2\\-3&5\end{array}}\right)=\left({\begin{array}{c}-4+1&3+(-2)\\2+(-3)&-1+5\end{array}}\right)=\left({\begin{array}{c}-3&1\\-1&4\end{array}}\right)}
A â B = ( â 4 3 2 â 1 ) â ( 1 â 2 â 3 5 ) = ( â 4 â 1 3 â ( â 2 ) 2 â ( â 3 ) â 1 â 5 ) = ( â 5 5 5 â 6 ) {\displaystyle A-B=\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right)-\left({\begin{array}{c}1&-2\\-3&5\end{array}}\right)=\left({\begin{array}{c}-4-1&3-(-2)\\2-(-3)&-1-5\end{array}}\right)=\left({\begin{array}{c}-5&5\\5&-6\end{array}}\right)}
ãšããããã«,æåããšã«å,å·®ãåã.ãŸãè¡åã®å®æ°åã¯,
3 A = 3 ( â 4 3 2 â 1 ) = ( 3 â
( â 4 ) 3 â
3 3 â
2 3 â
( â 1 ) ) = ( â 12 9 6 â 3 ) {\displaystyle 3A=3\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right)=\left({\begin{array}{c}3\cdot (-4)&3\cdot 3\\3\cdot 2&3\cdot (-1)\end{array}}\right)=\left({\begin{array}{c}-12&9\\6&-3\end{array}}\right)}
ãšããããã«,åæåã宿°åããŠæ±ãã. è¡åã®å,å·®,宿°åã¯ãã¯ãã«ãšåãããã«ããŠèšç®ããããã§ãã. ãã¹ãŠã®æåã 0 {\displaystyle 0} ã®è¡åãé¶è¡å ãšãã O {\displaystyle O} ã§è¡šã.
ãã®è¡åã®æŒç®(å,å·®,宿°å)ã«ã€ããŠ,è¡åãæåã§è¡šããšæ¬¡ã®ãããªèšç®æ³åãæãç«ã€.
å®ç6 è¡åã®èšç®æ³å
A , B , C {\displaystyle A,B,C} ãåãåã®è¡å, k , l {\displaystyle k,l} ã宿°ãšãããšæ¬¡ãæãç«ã€.
(1) ( A + B ) + C = A + ( B + C ) {\displaystyle (A+B)+C=A+(B+C)} (2) A + B = B + A {\displaystyle A+B=B+A} (3) k ( A + B ) = k A + k B {\displaystyle k(A+B)=kA+kB} (4) ( k + l ) A = k A + l A {\displaystyle (k+l)A=kA+lA} (5) ( k l ) A = k ( l A ) {\displaystyle (kl)A=k(lA)}
ããããæãç«ã€ããšã¯,ãã¯ãã«ã®èšç®æ³åãã容æã«æ³åãã€ãã ãã. ãã¯ãã«ã§ãã£ãŠãè¡åã§ãã£ãŠã,åã¯æåã©ããã®å,宿°åã¯æåããšã®å®æ°åã ããã§ãã.
⌠{\displaystyle \blacksquare }
èšç®åé¡ãããŠã¿ãã.
æŒç¿4. {\displaystyle \quad }
A = ( â 4 3 2 â 1 ) , B = ( 1 â 2 â 3 5 ) {\displaystyle A=\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right),B=\left({\begin{array}{c}1&-2\\-3&5\end{array}}\right)} ã®ãšã, 2 A â B â ( 3 A â 2 B ) {\displaystyle 2A-B-(3A-2B)} ãæ±ãã.
è§£çäŸ
äžåŒã«çŽæ¥ä»£å
¥ããŠãããŸããªãã,ãã£ããèšç®æ³åãããã®ã ãã,åé¡é
ããŸãšããŠãã代å
¥ãã.
2 A â B â ( 3 A â 2 B ) = 2 A â B â 3 A + 2 B = â A + B {\displaystyle 2A-B-(3A-2B)=2A-B-3A+2B=-A+B} = â ( â 4 3 2 â 1 ) + ( 1 â 2 â 3 5 ) {\displaystyle =-\left({\begin{array}{c}-4&3\\2&-1\end{array}}\right)+\left({\begin{array}{c}1&-2\\-3&5\end{array}}\right)} = ( â ( â 4 ) + 1 3 â 2 â 2 â 3 â ( â 1 ) + 5 ) = ( 5 1 â 5 6 ) {\displaystyle =\left({\begin{array}{c}-(-4)+1&3-2\\-2-3&-(-1)+5\end{array}}\right)=\left({\begin{array}{c}5&1\\-5&6\end{array}}\right)}
⌠{\displaystyle \blacksquare } | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç·åœ¢ä»£æ°ã§ã¯ãè¡åãšåŒã°ãããã®ãæ±ã.",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ°åãé·æ¹åœ¢ã®åœ¢ã«äžŠã¹ãŠæ¬åŒ§ã§æ¬ã£ããã®ãè¡åãšãã. 暪ã«äžŠãã æ°ã®äžŠã³ãè¡ãšåŒã³,äžãã第 1 è¡,第 2 è¡, ⯠{\\displaystyle \\cdots } , 瞊ã«äžŠãã æ°ã®äžŠã³ãåãšåŒã³,å·Šãã第 1 å,第 2 å, ⯠{\\displaystyle \\cdots } ãšæ°ãã. m {\\displaystyle m} à n {\\displaystyle n} ã®é·æ¹åœ¢ã«äžŠãã ãã®ã, m {\\displaystyle m} è¡ n {\\displaystyle n} åã®è¡å, ãŸã㯠( m , n ) {\\displaystyle (m,n)} åè¡åãšãã.",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "n {\\displaystyle n} å
åãã¯ãã«ã¯ ( n , 1 ) {\\displaystyle (n,1)} åè¡å, n {\\displaystyle n} å
è¡ãã¯ãã«ã¯ ( 1 , n ) {\\displaystyle (1,n)} åè¡åãšã¿ãªãããšãã§ãã.",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äŸãã° ( 3 , 4 ) {\\displaystyle (3,4)} åè¡åããã£ãŠããã®ç¬¬ 2 è¡ã第 3 åã«æžãããŠããæ°ã 4 {\\displaystyle 4} ã§ãããšãã ããã ( 2 , 3 ) {\\displaystyle (2,3)} æåã 4 {\\displaystyle 4} ã§ãããšè¡šçŸãã.",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "çžŠãšæšªã«äžŠãã æ°ã®åæ°ãçãããšã,ã€ãŸãæ£æ¹åœ¢ã®åœ¢ã«äžŠã¶ãšã,æ£æ¹è¡åãšãã. ( n , n ) {\\displaystyle (n,n)} åã®æ£æ¹è¡åã n {\\displaystyle n} æ¬¡æ£æ¹è¡å ãšãã. æ£æ¹è¡åã«ãããŠ, ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) , ⯠{\\displaystyle (1,1),(2,2),(3,3),\\cdots } ã®æåãå¯Ÿè§æåãšãã. å¯Ÿè§æå以å€ã®æåã 0 {\\displaystyle 0} ã§ããè¡åã 察è§è¡å ãšãã. æåã 0 {\\displaystyle 0} ã®ãšããã¯æžããªãã§æžãŸãå Žåããã.",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã¯ãã«ãäžã€ã®æåã§çœ®ããããã«,è¡åãäžã€ã®æåã§çœ®ããŠè¡šã. A , B {\\displaystyle A,B} ãªã©å€§æåã§çœ®ãããã®ãéäŸã§ãã.",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åãåã®è¡åã«å¯ŸããŠ,å,å·®ãèšç®ããããšãã§ãã. ããšãã°, A = ( â 4 3 2 â 1 ) , B = ( 1 â 2 â 3 5 ) {\\displaystyle A=\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right),B=\\left({\\begin{array}{c}1&-2\\\\-3&5\\end{array}}\\right)} ã®ãšã,",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "A + B = ( â 4 3 2 â 1 ) + ( 1 â 2 â 3 5 ) = ( â 4 + 1 3 + ( â 2 ) 2 + ( â 3 ) â 1 + 5 ) = ( â 3 1 â 1 4 ) {\\displaystyle A+B=\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right)+\\left({\\begin{array}{c}1&-2\\\\-3&5\\end{array}}\\right)=\\left({\\begin{array}{c}-4+1&3+(-2)\\\\2+(-3)&-1+5\\end{array}}\\right)=\\left({\\begin{array}{c}-3&1\\\\-1&4\\end{array}}\\right)}",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "A â B = ( â 4 3 2 â 1 ) â ( 1 â 2 â 3 5 ) = ( â 4 â 1 3 â ( â 2 ) 2 â ( â 3 ) â 1 â 5 ) = ( â 5 5 5 â 6 ) {\\displaystyle A-B=\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right)-\\left({\\begin{array}{c}1&-2\\\\-3&5\\end{array}}\\right)=\\left({\\begin{array}{c}-4-1&3-(-2)\\\\2-(-3)&-1-5\\end{array}}\\right)=\\left({\\begin{array}{c}-5&5\\\\5&-6\\end{array}}\\right)}",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšããããã«,æåããšã«å,å·®ãåã.ãŸãè¡åã®å®æ°åã¯,",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "3 A = 3 ( â 4 3 2 â 1 ) = ( 3 â
( â 4 ) 3 â
3 3 â
2 3 â
( â 1 ) ) = ( â 12 9 6 â 3 ) {\\displaystyle 3A=3\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right)=\\left({\\begin{array}{c}3\\cdot (-4)&3\\cdot 3\\\\3\\cdot 2&3\\cdot (-1)\\end{array}}\\right)=\\left({\\begin{array}{c}-12&9\\\\6&-3\\end{array}}\\right)}",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšããããã«,åæåã宿°åããŠæ±ãã. è¡åã®å,å·®,宿°åã¯ãã¯ãã«ãšåãããã«ããŠèšç®ããããã§ãã. ãã¹ãŠã®æåã 0 {\\displaystyle 0} ã®è¡åãé¶è¡å ãšãã O {\\displaystyle O} ã§è¡šã.",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã®è¡åã®æŒç®(å,å·®,宿°å)ã«ã€ããŠ,è¡åãæåã§è¡šããšæ¬¡ã®ãããªèšç®æ³åãæãç«ã€.",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "å®ç6 è¡åã®èšç®æ³å",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "A , B , C {\\displaystyle A,B,C} ãåãåã®è¡å, k , l {\\displaystyle k,l} ã宿°ãšãããšæ¬¡ãæãç«ã€.",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "(1) ( A + B ) + C = A + ( B + C ) {\\displaystyle (A+B)+C=A+(B+C)} (2) A + B = B + A {\\displaystyle A+B=B+A} (3) k ( A + B ) = k A + k B {\\displaystyle k(A+B)=kA+kB} (4) ( k + l ) A = k A + l A {\\displaystyle (k+l)A=kA+lA} (5) ( k l ) A = k ( l A ) {\\displaystyle (kl)A=k(lA)}",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããããæãç«ã€ããšã¯,ãã¯ãã«ã®èšç®æ³åãã容æã«æ³åãã€ãã ãã. ãã¯ãã«ã§ãã£ãŠãè¡åã§ãã£ãŠã,åã¯æåã©ããã®å,宿°åã¯æåããšã®å®æ°åã ããã§ãã.",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "⌠{\\displaystyle \\blacksquare }",
"title": ""
},
{
"paragraph_id": 18,
"tag": "p",
"text": "èšç®åé¡ãããŠã¿ãã.",
"title": ""
},
{
"paragraph_id": 19,
"tag": "p",
"text": "æŒç¿4. {\\displaystyle \\quad }",
"title": ""
},
{
"paragraph_id": 20,
"tag": "p",
"text": "A = ( â 4 3 2 â 1 ) , B = ( 1 â 2 â 3 5 ) {\\displaystyle A=\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right),B=\\left({\\begin{array}{c}1&-2\\\\-3&5\\end{array}}\\right)} ã®ãšã, 2 A â B â ( 3 A â 2 B ) {\\displaystyle 2A-B-(3A-2B)} ãæ±ãã.",
"title": ""
},
{
"paragraph_id": 21,
"tag": "p",
"text": "è§£çäŸ",
"title": ""
},
{
"paragraph_id": 22,
"tag": "p",
"text": "äžåŒã«çŽæ¥ä»£å
¥ããŠãããŸããªãã,ãã£ããèšç®æ³åãããã®ã ãã,åé¡é
ããŸãšããŠãã代å
¥ãã.",
"title": ""
},
{
"paragraph_id": 23,
"tag": "p",
"text": "2 A â B â ( 3 A â 2 B ) = 2 A â B â 3 A + 2 B = â A + B {\\displaystyle 2A-B-(3A-2B)=2A-B-3A+2B=-A+B} = â ( â 4 3 2 â 1 ) + ( 1 â 2 â 3 5 ) {\\displaystyle =-\\left({\\begin{array}{c}-4&3\\\\2&-1\\end{array}}\\right)+\\left({\\begin{array}{c}1&-2\\\\-3&5\\end{array}}\\right)} = ( â ( â 4 ) + 1 3 â 2 â 2 â 3 â ( â 1 ) + 5 ) = ( 5 1 â 5 6 ) {\\displaystyle =\\left({\\begin{array}{c}-(-4)+1&3-2\\\\-2-3&-(-1)+5\\end{array}}\\right)=\\left({\\begin{array}{c}5&1\\\\-5&6\\end{array}}\\right)}",
"title": ""
},
{
"paragraph_id": 24,
"tag": "p",
"text": "⌠{\\displaystyle \\blacksquare }",
"title": ""
}
]
| ç·åœ¢ä»£æ°ã§ã¯ãè¡åãšåŒã°ãããã®ãæ±ãïŒ æ°åãé·æ¹åœ¢ã®åœ¢ã«äžŠã¹ãŠæ¬åŒ§ã§æ¬ã£ããã®ãè¡åãšããïŒ
暪ã«äžŠãã æ°ã®äžŠã³ãè¡ãšåŒã³ïŒäžãã第 1 è¡ïŒç¬¬ 2 è¡ïŒ ⯠ïŒ
瞊ã«äžŠãã æ°ã®äžŠã³ãåãšåŒã³ïŒå·Šãã第 1 åïŒç¬¬ 2 åïŒ â¯ ãšæ°ããïŒ m à n ã®é·æ¹åœ¢ã«äžŠãã ãã®ãïŒ m è¡ n åã®è¡åïŒ
ãŸã㯠åè¡åãšããïŒ n å
åãã¯ãã«ã¯ åè¡åïŒ n å
è¡ãã¯ãã«ã¯ åè¡åãšã¿ãªãããšãã§ããïŒ äŸãã° åè¡åããã£ãŠããã®ç¬¬ 2 è¡ã第 3 åã«æžãããŠããæ°ã 4 ã§ãããšãã
ããã æåã 4 ã§ãããšè¡šçŸããïŒ çžŠãšæšªã«äžŠãã æ°ã®åæ°ãçãããšãïŒã€ãŸãæ£æ¹åœ¢ã®åœ¢ã«äžŠã¶ãšãïŒæ£æ¹è¡åãšããïŒ åã®æ£æ¹è¡åã n æ¬¡æ£æ¹è¡å ãšããïŒ
æ£æ¹è¡åã«ãããŠïŒ , , , â¯ ã®æåãå¯Ÿè§æåãšããïŒ
å¯Ÿè§æå以å€ã®æåã 0 ã§ããè¡åã 察è§è¡å ãšããïŒ
æåã 0 ã®ãšããã¯æžããªãã§æžãŸãå ŽåãããïŒ ãã¯ãã«ãäžã€ã®æåã§çœ®ããããã«ïŒè¡åãäžã€ã®æåã§çœ®ããŠè¡šãïŒ A , B ãªã©å€§æåã§çœ®ãããã®ãéäŸã§ããïŒ åãåã®è¡åã«å¯ŸããŠïŒåïŒå·®ãèšç®ããããšãã§ããïŒ
ããšãã°ïŒ A = , B = ã®ãšãïŒ A + B = + = = A â B = â = = ãšããããã«ïŒæåããšã«åïŒå·®ãåãïŒãŸãè¡åã®å®æ°åã¯ïŒ 3 A = 3 = = ãšããããã«ïŒåæåã宿°åããŠæ±ããïŒ
è¡åã®åïŒå·®ïŒå®æ°åã¯ãã¯ãã«ãšåãããã«ããŠèšç®ããããã§ããïŒ
ãã¹ãŠã®æåã 0 ã®è¡åãé¶è¡å ãšãã O ã§è¡šãïŒ ãã®è¡åã®æŒç®ã«ã€ããŠïŒè¡åãæåã§è¡šããšæ¬¡ã®ãããªèšç®æ³åãæãç«ã€ïŒ å®ç6
è¡åã®èšç®æ³å A , B , C ãåãåã®è¡åïŒ k , l ã宿°ãšãããšæ¬¡ãæãç«ã€ïŒ (1) + C = A + (2) A + B = B + A (3) k = k A + k B (4) A = k A + l A (5) A = k ããããæãç«ã€ããšã¯ïŒãã¯ãã«ã®èšç®æ³åãã容æã«æ³åãã€ãã ããïŒ
ãã¯ãã«ã§ãã£ãŠãè¡åã§ãã£ãŠãïŒåã¯æåã©ããã®åïŒå®æ°åã¯æåããšã®å®æ°åã ããã§ããïŒ âŒ èšç®åé¡ãããŠã¿ããïŒ | ç·åœ¢ä»£æ°ã§ã¯ãè¡åãšåŒã°ãããã®ãæ±ãïŒ
æ°åãé·æ¹åœ¢ã®åœ¢ã«äžŠã¹ãŠæ¬åŒ§ã§æ¬ã£ããã®ãè¡åãšããïŒ
暪ã«äžŠãã æ°ã®äžŠã³ãè¡ãšåŒã³ïŒäžãã第 1 è¡ïŒç¬¬ 2 è¡ïŒ<math>\cdots</math>ïŒ
瞊ã«äžŠãã æ°ã®äžŠã³ãåãšåŒã³ïŒå·Šãã第 1 åïŒç¬¬ 2 åïŒ<math>\cdots</math> ãšæ°ããïŒ
<math>m</math> à <math>n</math> ã®é·æ¹åœ¢ã«äžŠãã ãã®ãïŒ<math>m</math> è¡ <math>n</math> åã®è¡åïŒ
ãŸã㯠<math>(m, n)</math> åè¡åãšããïŒ
<math>n</math> å
åãã¯ãã«ã¯ <math>(n, 1)</math> åè¡åïŒ
<math>n</math> å
è¡ãã¯ãã«ã¯ <math>(1, n)</math> åè¡åãšã¿ãªãããšãã§ããïŒ
äŸãã° <math>(3, 4)</math> åè¡åããã£ãŠããã®ç¬¬ 2 è¡ã第 3 åã«æžãããŠããæ°ã <math>4</math> ã§ãããšãã
ããã <math>(2, 3)</math> æåã <math>4</math> ã§ãããšè¡šçŸããïŒ
çžŠãšæšªã«äžŠãã æ°ã®åæ°ãçãããšãïŒã€ãŸãæ£æ¹åœ¢ã®åœ¢ã«äžŠã¶ãšãïŒæ£æ¹è¡åãšããïŒ
<math>(n, n)</math> åã®æ£æ¹è¡åã <strong><math>n</math> æ¬¡æ£æ¹è¡å</strong> ãšããïŒ
æ£æ¹è¡åã«ãããŠïŒ<math>(1, 1), (2, 2), (3, 3), \cdots</math> ã®æåã<strong>å¯Ÿè§æå</strong>ãšããïŒ
å¯Ÿè§æå以å€ã®æåã <math>0</math> ã§ããè¡åã <strong>察è§è¡å</strong> ãšããïŒ
æåã <math>0</math> ã®ãšããã¯æžããªãã§æžãŸãå ŽåãããïŒ
ãã¯ãã«ãäžã€ã®æåã§çœ®ããããã«ïŒè¡åãäžã€ã®æåã§çœ®ããŠè¡šãïŒ
<math>A, B</math> ãªã©å€§æåã§çœ®ãããã®ãéäŸã§ããïŒ
åãåã®è¡åã«å¯ŸããŠïŒåïŒå·®ãèšç®ããããšãã§ããïŒ
ããšãã°ïŒ
<math>A =
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right)
,
B=
\left(
\begin{array}{c}
1 & -2 \\
-3 & 5
\end{array}
\right)
</math> ã®ãšãïŒ
<math>A + B =
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right)
+
\left(
\begin{array}{c}
1 & -2 \\
-3 & 5
\end{array}
\right)
=
\left(
\begin{array}{c}
-4 + 1 & 3 + (-2) \\
2 + (-3) & -1 + 5
\end{array}
\right)
=
\left(
\begin{array}{c}
-3 & 1 \\
-1 & 4
\end{array}
\right)
</math>
<math>A - B =
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right)
-
\left(
\begin{array}{c}
1 & -2 \\
-3 & 5
\end{array}
\right)
=
\left(
\begin{array}{c}
-4 - 1 & 3 - (-2) \\
2 - (-3) & -1 - 5
\end{array}
\right)
=
\left(
\begin{array}{c}
-5 & 5 \\
5 & -6
\end{array}
\right)
</math>
ãšããããã«ïŒæåããšã«åïŒå·®ãåãïŒãŸãè¡åã®å®æ°åã¯ïŒ
<math>3A = 3
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right)
=
\left(
\begin{array}{c}
3\cdot(-4) & 3\cdot3 \\
3\cdot2 & 3\cdot(-1)
\end{array}
\right)
=
\left(
\begin{array}{c}
-12 & 9 \\
6 & -3
\end{array}
\right)
</math>
ãšããããã«ïŒåæåã宿°åããŠæ±ããïŒ
è¡åã®åïŒå·®ïŒå®æ°åã¯ãã¯ãã«ãšåãããã«ããŠèšç®ããããã§ããïŒ
ãã¹ãŠã®æåã <math>0</math> ã®è¡åã<strong>é¶è¡å</strong> ãšãã <strong><math>O</math></strong> ã§è¡šãïŒ
ãã®è¡åã®æŒç®ïŒåïŒå·®ïŒå®æ°åïŒã«ã€ããŠïŒè¡åãæåã§è¡šããšæ¬¡ã®ãããªèšç®æ³åãæãç«ã€ïŒ
<!-- th:006:start -->
<strong>å®ç6</strong>
<strong>è¡åã®èšç®æ³å</strong>
<math>A, B, C</math> ãåãåã®è¡åïŒ<math>k, l</math> ã宿°ãšãããšæ¬¡ãæãç«ã€ïŒ
(1) <math>(A + B) + C = A + (B + C)</math><br />
(2) <math>A + B = B + A</math><br />
(3) <math>k(A + B) = kA + kB</math><br />
(4) <math>(k + l)A = kA + lA</math><br />
(5) <math>(kl)A = k(lA)</math><br />
ããããæãç«ã€ããšã¯ïŒãã¯ãã«ã®èšç®æ³åãã容æã«æ³åãã€ãã ããïŒ
ãã¯ãã«ã§ãã£ãŠãè¡åã§ãã£ãŠãïŒåã¯æåã©ããã®åïŒå®æ°åã¯æåããšã®å®æ°åã ããã§ããïŒ
<math>\blacksquare</math>
<!-- th:006end -->
èšç®åé¡ãããŠã¿ããïŒ
<!-- ex:004:start-->
<div id="ex:4">
<strong>æŒç¿4.</strong><math>\quad</math>
<math>A=
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right), B=
\left(
\begin{array}{c}
1 & -2 \\
-3 & 5
\end{array}
\right)
</math> ã®ãšãïŒ<math>2A-B-(3A-2B)</math> ãæ±ããïŒ
<strong>è§£çäŸ</strong>
äžåŒã«çŽæ¥ä»£å
¥ããŠãããŸããªããïŒãã£ããèšç®æ³åãããã®ã ããïŒåé¡é
ããŸãšããŠãã代å
¥ããïŒ
<math>2A-B-(3A-2B) = 2A - B - 3A + 2B = -A + B</math><br />
<math>=-
\left(
\begin{array}{c}
-4 & 3 \\
2 & -1
\end{array}
\right)
+
\left(
\begin{array}{c}
1 & -2 \\
-3 & 5
\end{array}
\right)
</math><br />
<math>=
\left(
\begin{array}{c}
-(-4) + 1 & 3 - 2 \\
-2-3 & -(-1)+5
\end{array}
\right)
=
\left(
\begin{array}{c}
5 & 1 \\
-5 & 6
\end{array}
\right)
</math>
<math>\blacksquare</math>
<!-- ex:004:end-->
[[ã«ããŽãª:ç·åœ¢ä»£æ°åŠ]] | null | 2022-11-22T17:06:29Z | []
| https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6/%E8%A1%8C%E5%88%97%E3%81%A8%E8%A1%8C%E5%88%97%E5%BC%8F/%E7%AC%AC%E4%B8%89%E9%A1%9E/%E8%A1%8C%E5%88%97%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%83%BB%E5%92%8C%E3%83%BB%E5%B7%AE |
25,285 | ã¢ã€ã¹ã©ã³ãèª |
å
±éåèªåž³ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å
±éåèªåž³",
"title": ""
}
]
| 第äžé¡ å
±éåèªåž³ | *[[ã¢ã€ã¹ã©ã³ãèª/第äžé¡|第äžé¡]]
[[ã¢ã€ã¹ã©ã³ãèª/å
±éåèªåž³|å
±éåèªåž³]]
[[ã«ããŽãª:ãšãŒãããã®èšèª]]
[[ã«ããŽãª:ã¢ã€ã¹ã©ã³ãèª|*]] | null | 2022-12-21T04:56:52Z | []
| https://ja.wikibooks.org/wiki/%E3%82%A2%E3%82%A4%E3%82%B9%E3%83%A9%E3%83%B3%E3%83%89%E8%AA%9E |
25,286 | CSharpã§å§ããOpenGLããã°ã©ãã³ã° | ãã®æ¬ã¯ãããã°ã©ãã³ã°èšèªãšããŠC#ãçšããOpenGL 3DCGããã°ã©ãã³ã°ã®å
¥éè
åãã®æ¬ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®æ¬ã¯ãããã°ã©ãã³ã°èšèªãšããŠC#ãçšããOpenGL 3DCGããã°ã©ãã³ã°ã®å
¥éè
åãã®æ¬ã§ãã",
"title": ""
}
]
| ãã®æ¬ã¯ãããã°ã©ãã³ã°èšèªãšããŠC#ãçšããOpenGL 3DCGããã°ã©ãã³ã°ã®å
¥éè
åãã®æ¬ã§ãã MonoDevelopãã€ã³ã¹ããŒã«ãã
ãããžã§ã¯ããäœæãã
ç«æ¹äœã衚瀺ãã | ãã®æ¬ã¯ãããã°ã©ãã³ã°èšèªãšããŠC#ãçšããOpenGL 3DCGããã°ã©ãã³ã°ã®å
¥éè
åãã®æ¬ã§ãã
# [[/MonoDevelopãã€ã³ã¹ããŒã«ãã/]]
# [[/ãããžã§ã¯ããäœæãã/]]
# [[/ç«æ¹äœã衚瀺ãã/]]
[[ã«ããŽãª:CSharpã§å§ããOpenGLããã°ã©ãã³ã°|*]] | null | 2021-04-13T09:29:03Z | []
| https://ja.wikibooks.org/wiki/CSharp%E3%81%A7%E5%A7%8B%E3%82%81%E3%82%8BOpenGL%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0 |
25,287 | CSharpã§å§ããOpenGLããã°ã©ãã³ã°/MonoDevelopãã€ã³ã¹ããŒã«ãã | æ¬æžã§ã¯éçºç°å¢ãšããŠw:MonoDevelopã䜿çšããŸããMonoDevelopã¯ãªãŒãã³ãœãŒã¹ã®.NET Frameworkéçºç°å¢ã§ãã
ããã±ãŒãžã¢ãŒã«ã€ãããã€ã³ã¹ããŒã«ã§ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬æžã§ã¯éçºç°å¢ãšããŠw:MonoDevelopã䜿çšããŸããMonoDevelopã¯ãªãŒãã³ãœãŒã¹ã®.NET Frameworkéçºç°å¢ã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã±ãŒãžã¢ãŒã«ã€ãããã€ã³ã¹ããŒã«ã§ããŸãã",
"title": "Ubuntuã®å Žå"
}
]
| æ¬æžã§ã¯éçºç°å¢ãšããŠw:MonoDevelopã䜿çšããŸããMonoDevelopã¯ãªãŒãã³ãœãŒã¹ã®.NET Frameworkéçºç°å¢ã§ãã | æ¬æžã§ã¯éçºç°å¢ãšããŠ[[w:MonoDevelop]]ã䜿çšããŸããMonoDevelopã¯ãªãŒãã³ãœãŒã¹ã®[[w:.NET Framework|.NET Framework]]éçºç°å¢ã§ãã
== Ubuntuã®å Žå ==
ããã±ãŒãžã¢ãŒã«ã€ãããã€ã³ã¹ããŒã«ã§ããŸãã
<pre>
$ sudo apt install monodevelop
</pre>
[[ã«ããŽãª:CSharpã§å§ããOpenGLããã°ã©ãã³ã°]] | null | 2021-10-09T07:08:26Z | []
| https://ja.wikibooks.org/wiki/CSharp%E3%81%A7%E5%A7%8B%E3%82%81%E3%82%8BOpenGL%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0/MonoDevelop%E3%82%92%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%BC%E3%83%AB%E3%81%99%E3%82%8B |
25,289 | CSharpã§å§ããOpenGLããã°ã©ãã³ã°/ãããžã§ã¯ããäœæãã | ãã®ããŒãžã§ã¯ãOpenGLããã°ã©ãã³ã°ãè¡ãéã®ãããžã§ã¯ãã®äœææ¹æ³ã解説ããŸãã
C#ããOpenGLã䜿çšãããããOpenTKãšããã©ã€ãã©ãªã䜿çšããŸãã
OpenGLã§å³åœ¢ãæç»ããããã®ãŠã£ã³ããŠã衚ãã¯ã©ã¹ "MainWindow"ãäœæããŸãã
MainWindow.csã¯æ¬¡ã®ãããªå
容ã«ããŠãã ãã:
Program.csã¯mainã¡ãœãããæ¬¡ã®ããã«ããŸã:
MonoDevelopã®å·Šäžã«ãããâ¶ã(å®è¡)ãã¿ã³ãã¯ãªãã¯ãããšããã°ã©ã ãèµ·åããŸãã ããŸãããã°ç·è²ã§å¡ãã€ã¶ããããŠã£ã³ããŠãåºçŸããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®ããŒãžã§ã¯ãOpenGLããã°ã©ãã³ã°ãè¡ãéã®ãããžã§ã¯ãã®äœææ¹æ³ã解説ããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "C#ããOpenGLã䜿çšãããããOpenTKãšããã©ã€ãã©ãªã䜿çšããŸãã",
"title": "OpenTKããã±ãŒãžã远å ãã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OpenGLã§å³åœ¢ãæç»ããããã®ãŠã£ã³ããŠã衚ãã¯ã©ã¹ \"MainWindow\"ãäœæããŸãã",
"title": "MainWindowã¯ã©ã¹ãäœæãã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "MainWindow.csã¯æ¬¡ã®ãããªå
容ã«ããŠãã ãã:",
"title": "MainWindowã¯ã©ã¹ãäœæãã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Program.csã¯mainã¡ãœãããæ¬¡ã®ããã«ããŸã:",
"title": "MainWindowã¯ã©ã¹ãäœæãã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "MonoDevelopã®å·Šäžã«ãããâ¶ã(å®è¡)ãã¿ã³ãã¯ãªãã¯ãããšããã°ã©ã ãèµ·åããŸãã ããŸãããã°ç·è²ã§å¡ãã€ã¶ããããŠã£ã³ããŠãåºçŸããŸãã",
"title": "å®è¡ããŠã¿ã"
}
]
| ãã®ããŒãžã§ã¯ãOpenGLããã°ã©ãã³ã°ãè¡ãéã®ãããžã§ã¯ãã®äœææ¹æ³ã解説ããŸãã | ãã®ããŒãžã§ã¯ãOpenGLããã°ã©ãã³ã°ãè¡ãéã®ãããžã§ã¯ãã®äœææ¹æ³ã解説ããŸãã
== ãããžã§ã¯ããäœæãã ==
# MonoDevelopãèµ·åããããã¡ã€ã«ãã¡ãã¥ãŒãããæ°ãããœãªã¥ãŒã·ã§ã³(S)...ããã¯ãªãã¯ããŸãã
# ãæ°ãããããžã§ã¯ãããã€ã¢ãã°ãéããŸããå·ŠåŽã®ãªã¹ãã§ã.NETããéžæããå³åŽã®ãªã¹ãã§ãã³ã³ãœãŒã« ãããžã§ã¯ãããéžæããåŸããæ¬¡ãžããã¯ãªãã¯ããŸãã
# ãããžã§ã¯ãåã«é©åœãªåå(TestOpenGLãªã©)ãå
¥åãããäœæããã¿ã³ãã¯ãªãã¯ããŸãã
== OpenTKããã±ãŒãžã远å ãã ==
C#ããOpenGLã䜿çšãããããOpenTKãšããã©ã€ãã©ãªã䜿çšããŸãã
# ãœãªã¥ãŒã·ã§ã³ãªã¹ãã®äžã®ãå
ã»ã©äœæãããããžã§ã¯ãã®é
äžã«ãããããã±ãŒãžããå³ã¯ãªãã¯ãããããã±ãŒãžã®è¿œå (P)...ããã¯ãªãã¯ããŸãã
# åºçŸãããã€ã¢ãã°ã®å³äžã®ããã¹ãããã¯ã¹ã«"OpenTK"ãšå
¥åããŸãã
# OpenTKããã±ãŒãžã«ãã§ãã¯ãå
¥ãããããã±ãŒãžã远å ããã¿ã³ãã¯ãªãã¯ããŸãã
== MainWindowã¯ã©ã¹ãäœæãã ==
OpenGLã§å³åœ¢ãæç»ããããã®ãŠã£ã³ããŠã衚ãã¯ã©ã¹ "MainWindow"ãäœæããŸãã
# ãœãªã¥ãŒã·ã§ã³ãªã¹ãã®äžã®ãäœæãããããžã§ã¯ããå³ã¯ãªãã¯ããã远å â¶æ°ãããã¡ã€ã«(F)...ããã¯ãªãã¯ããŸãã
# åºçŸãããã€ã¢ãã°ã§ãå·ŠåŽã®ãªã¹ãã§"General"ãéžæããäžå€®ã®ãªã¹ãã§"空ã®ã¯ã©ã¹"ãéžæããŸããååã«ã¯"MainWindow"ãšå
¥åããŸãã
# ãæ°èŠ(N)ããã¿ã³ãã¯ãªãã¯ããŠãã€ã¢ãã°ãéããŸããMainWindow.csãšãããã¡ã€ã«ãäœæãããŸãã
# MainWindow.csãšProgram.csãæžãæããŸãã
MainWindow.csã¯æ¬¡ã®ãããªå
容ã«ããŠãã ãã:
<syntaxhighlight lang="C#>
using System;
using OpenTK;
using OpenTK.Graphics;
using OpenTK.Graphics.OpenGL;
namespace Test3DProject
{
public class MainWindow : GameWindow
{
public MainWindow(int width, int height, GraphicsMode mode, string title)
: base(width, height, mode, title)
{
}
protected override void OnLoad(EventArgs e)
{
base.OnLoad(e);
}
protected override void OnUpdateFrame(FrameEventArgs e)
{
base.OnUpdateFrame(e);
}
protected override void OnRenderFrame(FrameEventArgs e)
{
base.OnRenderFrame(e);
GL.ClearColor(0.0f, 1.0f, 0.0f, 1.0f); //ç·è²ãã»ãããã
GL.Clear(ClearBufferMask.ColorBufferBit); //ãããã¡äžé¢ãç·è²ã«ãã
SwapBuffers();
}
protected override void OnUnload(EventArgs e)
{
base.OnUnload(e);
}
}
}
</syntaxhighlight>
Program.csã¯mainã¡ãœãããæ¬¡ã®ããã«ããŸã:
<syntaxhighlight lang="C#">
public static void Main(string[] args)
{
var window = new MainWindow(500, 500, OpenTK.Graphics.GraphicsMode.Default, "Test");
window.Run();
}
</syntaxhighlight>
== å®è¡ããŠã¿ã ==
MonoDevelopã®å·Šäžã«ãããâ¶ã(å®è¡)ãã¿ã³ãã¯ãªãã¯ãããšããã°ã©ã ãèµ·åããŸãã
ããŸãããã°ç·è²ã§å¡ãã€ã¶ããããŠã£ã³ããŠãåºçŸããŸãã
[[ã«ããŽãª:CSharpã§å§ããOpenGLããã°ã©ãã³ã°]] | null | 2021-04-13T09:48:08Z | []
| https://ja.wikibooks.org/wiki/CSharp%E3%81%A7%E5%A7%8B%E3%82%81%E3%82%8BOpenGL%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0/%E3%83%97%E3%83%AD%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88%E3%82%92%E4%BD%9C%E6%88%90%E3%81%99%E3%82%8B |
25,296 | CSharpã§å§ããOpenGLããã°ã©ãã³ã°/ç«æ¹äœã衚瀺ãã | ãããžã§ã¯ããäœæããã§äœæããMainWindow.csãæ¬¡ã®ããã«æžãæããŸãã
ããã°ã©ã ãæžãæãããããâ¶ããã¿ã³ãã¯ãªãã¯ããŠããã°ã©ã ãèµ·åããŸãã3è²ã®ç«æ¹äœãç»é¢äžéšã«æç»ãããã¯ãã§ãã
VSyncããããã£ãOnã«èšå®ããåçŽåæãæå¹ã«ããŠããŸããåçŽåæãšã¯ãç»é¢ã®æŽæ°é »åºŠã«ãããã¡ã®æŽæ°é »åºŠãåãããããšã§ããããšãã°ã1ç§éã«60åããç»é¢ãæžãæããããšããã§ããªããã£ã¹ãã¬ã€ã䜿çšããŠããã®ã«ã1ç§éã«180åãããã¡ãæžãæããŠãæå³ããªãã°ãããããã¢ãªã³ã°ãšåŒã°ããçŸè±¡ãçºçãããããšããããŸãããããæå¶ããããã«åçŽåæãæå¹ã«ããŸãã
vBufNameã¯ãVRAM(ãããªRAMã®ç¥ã§ãã°ã©ãã£ãã¯ããŒãã®äžã«ååšããŸã)äžã«é
眮ããããŒã¿ãèå¥ããçªå·ã§ããããã§ã¯åæåããŠããŸããããåŸã§ä»£å
¥ããŸãã vBufDataã¯ç«æ¹äœã®é ç¹ããŒã¿ã§ãã3次å
空éã§ã¯1ã€ã®åº§æšã«ã€ã3ã€ã®æ°å€ãå¿
èŠ(x, y, z)ã§ãç«æ¹äœãæ£æ¹åœ¢6åã«åããŠæç»ããŠãããããå
šéšã§3 x 4 x 6 = 72åã®æ°å€ãå¿
èŠã§ãã
OnLoadã¡ãœããã¯ããŠã£ã³ããŠãããŒãããããšãã«åŒã³åºãããŸããGL.Enable(EnableCap.DepthTest);ã§ããã¹ãã¹ããšåŒã°ããOpenGLã®æ©èœãæå¹åããŠããŸããããã¹ãã¹ããšã¯ãç©äœã®ååŸé¢ä¿ãæèããŠæç»ããæ©èœã§ããããã¹ãã¹ããç¡å¹ãªç¶æ
ã§å¥¥ã«ååšããç©äœãæåã«ååšããç©äœããåŸã«æç»ãããšã奥ã®ç©äœã«æåã®ç©äœãäžæžããããŠããŸããšããçŸè±¡ãçºçããŸãã
ã«ã¡ã©ã¯ã3次å
空éããã©ã®äœçœ®ããããã©ã®æ¹åã«ããã©ããäžæ¹åãšããŠãçºããããèšå®ããŸãããã®äŸã§ã¯ãx=0.0, y=0.0, z=200.0ã®äœçœ®ãããx=0.3, y=0.3, z=-1.0ã®æ¹åãèŠãŠãx=0.0, y=0.0, z=1.0ãäžæ¹åãšããŠ3次å
空éãçºããããšã«ããŠããŸãã
èŠäœç©ã¯ã3次å
空éãã©ã®ããã«åãåã£ãŠè¡šç€ºãããèšå®ããŠããŸãã3次å
空éã¯åºãããã¹ãŠã®ç©äœãæç»ããããšã¯äžå¯èœãªããã«èšå®ããå¿
èŠããããŸããMatrix4.CreatePerspectiveFieldOfView()ã¡ãœããã§ãããžã§ã¯ã·ã§ã³è¡åãšåŒã°ãããã®ãäœæiããGL.MatrixMode()ã¡ãœãããšGL.LoadMatrix()ã¡ãœããã§OpenGLã«ãããžã§ã¯ã·ã§ã³è¡åãèªã¿èŸŒãŸããŸããMatrix4.CreatePerspectiveFieldOfViewã¡ãœããã¯ã第äžåŒæ°ãèŠéè§(ã©ãžã¢ã³)ã第äºåŒæ°ãã¢ã¹ãã¯ãæ¯(暪ã®é·ã/瞊ã®é·ã)ã第äžåŒæ°ããã¢(ã«ã¡ã©ããã©ãã ãé¢ããé¢ããæç»ãããã0ã«èšå®ããããšã¯äžå¯ã)ã第ååŒæ°ããã¡ãŒ(ã«ã¡ã©ããã©ãã ãé¢ããé¢ãŸã§æç»ãããã)ãšãªã£ãŠããŸãã
æåŸã«ç«æ¹äœã®é ç¹ãã¡ã€ã³ã¡ã¢ãªããVRAMã«è»¢éããŠããŸãããŸããGL.GenBuffer()ã§VRAMäžã®ããŒã¿ãèå¥ããçªå·ãäœæããŠããŸããæ¬¡ã«GL.BindBuffer()ã¡ãœããã§ãGL.BufferData()ã¡ãœããã§ããŒã¿ãæžã蟌ãå
(vBufNameãæãå Žæ)ãæå®ããŠããŸãããããŠããããGL.BufferData()ã¡ãœããã§VRAMã«é ç¹ããŒã¿ã転éããŸããGL.BufferData()ã¯ã第äºåŒæ°ãããŒã¿ã®å€§ãã(sizeof(double)=8ãã€ã x 72åå)ã第äžåŒæ°ãé ç¹ããŒã¿ã第ååŒæ°ãé åã®äœ¿ãæ¹ã§ãã第ååŒæ°ã¯äœãæå®ããŠãè¯ãã®ã§ãããé åã®äœ¿ãæ¹ã«ãã£ããã®ã«ããŸããããä»åãé ç¹ããŒã¿ã¯1床æžã蟌ãã ã倿Žããããšã¯ããªãã®ã§ãBufferUsageHint.StaticDrawã«ããŠããŸãã
GL.ClearColor()ã§ãããã¡ã®èæ¯è²ãæå®ããŠããŸããèµ€ãç·ãéãäžéæåºŠã®é ã«æå®ããŸããããã§ã¯äžéæåºŠ100%ã®ç·è²ãæå®ããŠããŸãã æ¬¡ã«GL.Clear()ã§ãããã¡ãã¯ãªã¢ããŠããŸããGL.ClearColor()ãåŒã³åºããŠãGL.Clear()ãåŒã³åºããªããã°ãããã¡ã¯ã¯ãªã¢ãããªãã®ã§æ³šæããŠãã ããã ãŸããGL.EnableClientState()ã§é ç¹é
åãæå¹åããŸããGL.VertexPointer()ã¯é ç¹é
åãã©ãããããŒã¿ãªã®ããOpenGLã«éç¥ããŸãã第äžåŒæ°ã座æšãããã®æ¬¡å
æ°(x,y,zã§3)ã第äºåŒæ°ãããŒã¿åã第äžåŒæ°ãé ç¹ããŒã¿ãšé ç¹ããŒã¿ã®éé(åäœ:ãã€ã)ã§ãã0ãæå®ãããšãé ç¹ããŒã¿ã¯ééãªãé
åã«æ ŒçŽãããŠããããšã«ãªããŸãã 第ååŒæ°ã¯ãé
åã®æåã®é ç¹ããŒã¿ã®å Žæã§ããvBufDataã¯èŠçŽ 0ããé ç¹ããŒã¿ãæ ŒçŽãããŠããããã0ã§ãã
æåŸã«ç«æ¹äœã2é¢ãã€è²ãåããŠæç»ããŠããŸãã GL.Color4()ã§æç»è²ãèšå®ããGL.DrawArrays()ã§é·æ¹åœ¢ãæç»ããŠããŸããGL.DrawArrays()ã®ç¬¬äžåŒæ°ã¯å³åœ¢ã®åœ¢ã第äºåŒæ°ã¯é ç¹ããŒã¿ã®å
é ã第äžåŒæ°ã¯é ç¹ã®æ°ã衚ããŸããããšãã°GL.DrawArrays(PrimitiveType.Quads, 12, 4)ã®å Žåãé·æ¹åœ¢ãé ç¹ããŒã¿ã®12åç®ã®é ç¹ãã4ã€åã®é ç¹ãåãåºããŠæç»ããããšããæå³ã«ãªããŸãã
SwapBuffers()ã«ã€ããŠã¯çè
ããŸã ããŸãçè§£ããŠããŸããããå¿
ãOnRenderFrame()ã®æåŸã«æžãããã«ããŠãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãããžã§ã¯ããäœæããã§äœæããMainWindow.csãæ¬¡ã®ããã«æžãæããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã°ã©ã ãæžãæãããããâ¶ããã¿ã³ãã¯ãªãã¯ããŠããã°ã©ã ãèµ·åããŸãã3è²ã®ç«æ¹äœãç»é¢äžéšã«æç»ãããã¯ãã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "VSyncããããã£ãOnã«èšå®ããåçŽåæãæå¹ã«ããŠããŸããåçŽåæãšã¯ãç»é¢ã®æŽæ°é »åºŠã«ãããã¡ã®æŽæ°é »åºŠãåãããããšã§ããããšãã°ã1ç§éã«60åããç»é¢ãæžãæããããšããã§ããªããã£ã¹ãã¬ã€ã䜿çšããŠããã®ã«ã1ç§éã«180åãããã¡ãæžãæããŠãæå³ããªãã°ãããããã¢ãªã³ã°ãšåŒã°ããçŸè±¡ãçºçãããããšããããŸãããããæå¶ããããã«åçŽåæãæå¹ã«ããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "vBufNameã¯ãVRAM(ãããªRAMã®ç¥ã§ãã°ã©ãã£ãã¯ããŒãã®äžã«ååšããŸã)äžã«é
眮ããããŒã¿ãèå¥ããçªå·ã§ããããã§ã¯åæåããŠããŸããããåŸã§ä»£å
¥ããŸãã vBufDataã¯ç«æ¹äœã®é ç¹ããŒã¿ã§ãã3次å
空éã§ã¯1ã€ã®åº§æšã«ã€ã3ã€ã®æ°å€ãå¿
èŠ(x, y, z)ã§ãç«æ¹äœãæ£æ¹åœ¢6åã«åããŠæç»ããŠãããããå
šéšã§3 x 4 x 6 = 72åã®æ°å€ãå¿
èŠã§ãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "OnLoadã¡ãœããã¯ããŠã£ã³ããŠãããŒãããããšãã«åŒã³åºãããŸããGL.Enable(EnableCap.DepthTest);ã§ããã¹ãã¹ããšåŒã°ããOpenGLã®æ©èœãæå¹åããŠããŸããããã¹ãã¹ããšã¯ãç©äœã®ååŸé¢ä¿ãæèããŠæç»ããæ©èœã§ããããã¹ãã¹ããç¡å¹ãªç¶æ
ã§å¥¥ã«ååšããç©äœãæåã«ååšããç©äœããåŸã«æç»ãããšã奥ã®ç©äœã«æåã®ç©äœãäžæžããããŠããŸããšããçŸè±¡ãçºçããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã«ã¡ã©ã¯ã3次å
空éããã©ã®äœçœ®ããããã©ã®æ¹åã«ããã©ããäžæ¹åãšããŠãçºããããèšå®ããŸãããã®äŸã§ã¯ãx=0.0, y=0.0, z=200.0ã®äœçœ®ãããx=0.3, y=0.3, z=-1.0ã®æ¹åãèŠãŠãx=0.0, y=0.0, z=1.0ãäžæ¹åãšããŠ3次å
空éãçºããããšã«ããŠããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "èŠäœç©ã¯ã3次å
空éãã©ã®ããã«åãåã£ãŠè¡šç€ºãããèšå®ããŠããŸãã3次å
空éã¯åºãããã¹ãŠã®ç©äœãæç»ããããšã¯äžå¯èœãªããã«èšå®ããå¿
èŠããããŸããMatrix4.CreatePerspectiveFieldOfView()ã¡ãœããã§ãããžã§ã¯ã·ã§ã³è¡åãšåŒã°ãããã®ãäœæiããGL.MatrixMode()ã¡ãœãããšGL.LoadMatrix()ã¡ãœããã§OpenGLã«ãããžã§ã¯ã·ã§ã³è¡åãèªã¿èŸŒãŸããŸããMatrix4.CreatePerspectiveFieldOfViewã¡ãœããã¯ã第äžåŒæ°ãèŠéè§(ã©ãžã¢ã³)ã第äºåŒæ°ãã¢ã¹ãã¯ãæ¯(暪ã®é·ã/瞊ã®é·ã)ã第äžåŒæ°ããã¢(ã«ã¡ã©ããã©ãã ãé¢ããé¢ããæç»ãããã0ã«èšå®ããããšã¯äžå¯ã)ã第ååŒæ°ããã¡ãŒ(ã«ã¡ã©ããã©ãã ãé¢ããé¢ãŸã§æç»ãããã)ãšãªã£ãŠããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æåŸã«ç«æ¹äœã®é ç¹ãã¡ã€ã³ã¡ã¢ãªããVRAMã«è»¢éããŠããŸãããŸããGL.GenBuffer()ã§VRAMäžã®ããŒã¿ãèå¥ããçªå·ãäœæããŠããŸããæ¬¡ã«GL.BindBuffer()ã¡ãœããã§ãGL.BufferData()ã¡ãœããã§ããŒã¿ãæžã蟌ãå
(vBufNameãæãå Žæ)ãæå®ããŠããŸãããããŠããããGL.BufferData()ã¡ãœããã§VRAMã«é ç¹ããŒã¿ã転éããŸããGL.BufferData()ã¯ã第äºåŒæ°ãããŒã¿ã®å€§ãã(sizeof(double)=8ãã€ã x 72åå)ã第äžåŒæ°ãé ç¹ããŒã¿ã第ååŒæ°ãé åã®äœ¿ãæ¹ã§ãã第ååŒæ°ã¯äœãæå®ããŠãè¯ãã®ã§ãããé åã®äœ¿ãæ¹ã«ãã£ããã®ã«ããŸããããä»åãé ç¹ããŒã¿ã¯1床æžã蟌ãã ã倿Žããããšã¯ããªãã®ã§ãBufferUsageHint.StaticDrawã«ããŠããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "GL.ClearColor()ã§ãããã¡ã®èæ¯è²ãæå®ããŠããŸããèµ€ãç·ãéãäžéæåºŠã®é ã«æå®ããŸããããã§ã¯äžéæåºŠ100%ã®ç·è²ãæå®ããŠããŸãã æ¬¡ã«GL.Clear()ã§ãããã¡ãã¯ãªã¢ããŠããŸããGL.ClearColor()ãåŒã³åºããŠãGL.Clear()ãåŒã³åºããªããã°ãããã¡ã¯ã¯ãªã¢ãããªãã®ã§æ³šæããŠãã ããã ãŸããGL.EnableClientState()ã§é ç¹é
åãæå¹åããŸããGL.VertexPointer()ã¯é ç¹é
åãã©ãããããŒã¿ãªã®ããOpenGLã«éç¥ããŸãã第äžåŒæ°ã座æšãããã®æ¬¡å
æ°(x,y,zã§3)ã第äºåŒæ°ãããŒã¿åã第äžåŒæ°ãé ç¹ããŒã¿ãšé ç¹ããŒã¿ã®éé(åäœ:ãã€ã)ã§ãã0ãæå®ãããšãé ç¹ããŒã¿ã¯ééãªãé
åã«æ ŒçŽãããŠããããšã«ãªããŸãã 第ååŒæ°ã¯ãé
åã®æåã®é ç¹ããŒã¿ã®å Žæã§ããvBufDataã¯èŠçŽ 0ããé ç¹ããŒã¿ãæ ŒçŽãããŠããããã0ã§ãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æåŸã«ç«æ¹äœã2é¢ãã€è²ãåããŠæç»ããŠããŸãã GL.Color4()ã§æç»è²ãèšå®ããGL.DrawArrays()ã§é·æ¹åœ¢ãæç»ããŠããŸããGL.DrawArrays()ã®ç¬¬äžåŒæ°ã¯å³åœ¢ã®åœ¢ã第äºåŒæ°ã¯é ç¹ããŒã¿ã®å
é ã第äžåŒæ°ã¯é ç¹ã®æ°ã衚ããŸããããšãã°GL.DrawArrays(PrimitiveType.Quads, 12, 4)ã®å Žåãé·æ¹åœ¢ãé ç¹ããŒã¿ã®12åç®ã®é ç¹ãã4ã€åã®é ç¹ãåãåºããŠæç»ããããšããæå³ã«ãªããŸãã",
"title": "ããã°ã©ã 解説"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "SwapBuffers()ã«ã€ããŠã¯çè
ããŸã ããŸãçè§£ããŠããŸããããå¿
ãOnRenderFrame()ã®æåŸã«æžãããã«ããŠãã ããã",
"title": "ããã°ã©ã 解説"
}
]
| ãããžã§ã¯ããäœæããã§äœæããMainWindow.csãæ¬¡ã®ããã«æžãæããŸãã ããã°ã©ã ãæžãæãããããâ¶ããã¿ã³ãã¯ãªãã¯ããŠããã°ã©ã ãèµ·åããŸãã3è²ã®ç«æ¹äœãç»é¢äžéšã«æç»ãããã¯ãã§ãã | [[../ãããžã§ã¯ããäœæãã/]]ã§äœæããMainWindow.csãæ¬¡ã®ããã«æžãæããŸãã
<syntaxhighlight lang="C#" line="line">
using System;
using OpenTK;
using OpenTK.Graphics;
using OpenTK.Graphics.OpenGL;
namespace Test3DProject
{
public class MainWindow : GameWindow
{
public MainWindow(int width, int height, GraphicsMode mode, string title)
: base(width, height, mode, title)
{
this.VSync = VSyncMode.On;
}
int vBufName;
double[] vBufData = new double[]
{60.0, 120.0, 60.0, //é¢1
120.0, 120.0, 60.0,
120.0, 120.0, 0.0,
60.0, 120.0, 0.0,
60.0, 180.0, 60.0, //é¢2
120.0, 180.0, 60.0,
120.0, 180.0, 0.0,
60.0, 180.0, 0.0,
60.0, 120.0, 60.0, //é¢3
60.0, 180.0, 60.0,
60.0, 180.0, 0.0,
60.0, 120.0, 0.0,
120.0, 120.0, 60.0, //é¢4
120.0, 180.0, 60.0,
120.0, 180.0, 0.0,
120.0, 120.0, 0.0,
60.0, 180.0, 0.0, //é¢5
120.0, 180.0 ,0.0,
120.0, 120.0, 0.0,
60.0, 120.0, 0.0,
60.0, 180.0, 60.0, //é¢6
120.0, 180.0, 60.0,
120.0, 120.0, 60.0,
60.0, 120.0, 60.0,
};
protected override void OnLoad(EventArgs e)
{
base.OnLoad(e);
GL.Enable(EnableCap.DepthTest);
//ã«ã¡ã©
//Matrix4 camera = Matrix4.LookAt(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
Matrix4 camera = Matrix4.LookAt(0.0f, 0.0f, 200.0f, 0.3f, 0.3f, -1.0f, 0.0f, 0.0f, 1.0f);
GL.MatrixMode(MatrixMode.Modelview);
GL.LoadMatrix(ref camera);
//èŠäœç©ãèšå®ãã
Matrix4 perspective = Matrix4.CreatePerspectiveFieldOfView(1.8f, 1.0f, 1.0f, 200.0f);
GL.MatrixMode(MatrixMode.Projection);
GL.LoadMatrix(ref perspective);
//MatrixModeãModelviewã«æ»ã (ããããªããšå転çã®åäœãæ£ããè¡ãªããŸããã)
GL.MatrixMode(MatrixMode.Modelview);
//ç«æ¹äœã®é ç¹
vBufName = GL.GenBuffer();
GL.BindBuffer(BufferTarget.ArrayBuffer, vBufName);
GL.BufferData<double>(BufferTarget.ArrayBuffer, sizeof(double) * vBufData.Length, vBufData, BufferUsageHint.StaticDraw);
}
protected override void OnResize(EventArgs e)
{
base.OnResize(e);
GL.Viewport(0, 0, this.Width, this.Height);
}
protected override void OnUpdateFrame(FrameEventArgs e)
{
base.OnUpdateFrame(e);
}
protected override void OnRenderFrame(FrameEventArgs e)
{
base.OnRenderFrame(e);
GL.ClearColor(0.0f, 1.0f, 0.0f, 1.0f); //ç·è²ãã»ãããã
GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); //ãããã¡äžé¢ãç·è²ã«ãã
GL.EnableClientState(ArrayCap.VertexArray);
GL.BindBuffer(BufferTarget.ArrayBuffer, vBufName);
GL.VertexPointer(3, VertexPointerType.Double, 0, 0);
//è²ãå€ããŠ2é¢ãã€æç»ãã
GL.Color4(1.0f, 0.0f, 0.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 0, 4);
GL.DrawArrays(PrimitiveType.Quads, 4, 4);
GL.Color4(0.0f, 0.0f, 1.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 8, 4);
GL.DrawArrays(PrimitiveType.Quads, 12, 4);
GL.Color4(1.0f, 1.0f, 0.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 16, 4);
GL.DrawArrays(PrimitiveType.Quads, 20, 4);
SwapBuffers();
}
protected override void OnUnload(EventArgs e)
{
base.OnUnload(e);
}
}
}
</syntaxhighlight>
ããã°ã©ã ãæžãæãããããâ¶ããã¿ã³ãã¯ãªãã¯ããŠããã°ã©ã ãèµ·åããŸãã3è²ã®ç«æ¹äœãç»é¢äžéšã«æç»ãããã¯ãã§ãã
== ããã°ã©ã 解説 ==
=== ã³ã³ã¹ãã©ã¯ã¿ ===
<syntaxhighlight lang="C#">
public MainWindow(int width, int height, GraphicsMode mode, string title)
: base(w height, mode, title)
{
this.VSync = VSyncMode.On;
}
</syntaxhighlight>
VSyncããããã£ãOnã«èšå®ããåçŽåæãæå¹ã«ããŠããŸããåçŽåæãšã¯ãç»é¢ã®æŽæ°é »åºŠã«ãããã¡ã®æŽæ°é »åºŠãåãããããšã§ããããšãã°ã1ç§éã«60åããç»é¢ãæžãæããããšããã§ããªããã£ã¹ãã¬ã€ã䜿çšããŠããã®ã«ã1ç§éã«180åãããã¡ãæžãæããŠãæå³ããªãã°ãããããã¢ãªã³ã°ãšåŒã°ããçŸè±¡ãçºçãããããšããããŸãããããæå¶ããããã«åçŽåæãæå¹ã«ããŸãã
=== ãã£ãŒã«ã ===
<syntaxhighlight lang="C#">
int vBufName;
double[] vBufData = new double[]
{60.0, 120.0, 60.0, //é¢1
120.0, 120.0, 60.0,
120.0, 120.0, 0.0,
60.0, 120.0, 0.0,
60.0, 180.0, 60.0, //é¢2
120.0, 180.0, 60.0,
120.0, 180.0, 0.0,
60.0, 180.0, 0.0,
60.0, 120.0, 60.0, //é¢3
60.0, 180.0, 60.0,
60.0, 180.0, 0.0,
60.0, 120.0, 0.0,
120.0, 120.0, 60.0, //é¢4
120.0, 180.0, 60.0,
120.0, 180.0, 0.0,
120.0, 120.0, 0.0,
60.0, 180.0, 0.0, //é¢5
120.0, 180.0 ,0.0,
120.0, 120.0, 0.0,
60.0, 120.0, 0.0,
60.0, 180.0, 60.0, //é¢6
120.0, 180.0, 60.0,
120.0, 120.0, 60.0,
60.0, 120.0, 60.0,
};
</syntaxhighlight>
vBufNameã¯ãVRAM(ãããªRAMã®ç¥ã§ãã°ã©ãã£ãã¯ããŒãã®äžã«ååšããŸã)äžã«é
眮ããããŒã¿ãèå¥ããçªå·ã§ããããã§ã¯åæåããŠããŸããããåŸã§ä»£å
¥ããŸãã
vBufDataã¯ç«æ¹äœã®é ç¹ããŒã¿ã§ãã3次å
空éã§ã¯1ã€ã®åº§æšã«ã€ã3ã€ã®æ°å€ãå¿
èŠ(x, y, z)ã§ãç«æ¹äœãæ£æ¹åœ¢6åã«åããŠæç»ããŠãããããå
šéšã§3 x 4 x 6 = 72åã®æ°å€ãå¿
èŠã§ãã
=== OnLoadã¡ãœãã ===
<syntaxhighlight lang="C#">
protected override void OnLoad(EventArgs e)
{
base.OnLoad(e);
GL.Enable(EnableCap.DepthTest);
//ã«ã¡ã©
//Matrix4 camera = Matrix4.LookAt(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
Matrix4 camera = Matrix4.LookAt(0.0f, 0.0f, 200.0f, 0.3f, 0.3f, -1.0f, 0.0f, 0.0f, 1.0f);
GL.MatrixMode(MatrixMode.Modelview);
GL.LoadMatrix(ref camera);
//èŠäœç©ãèšå®ãã
Matrix4 perspective = Matrix4.CreatePerspectiveFieldOfView(1.8f, 1.0f, 1.0f, 200.0f);
GL.MatrixMode(MatrixMode.Projection);
GL.LoadMatrix(ref perspective);
//ç«æ¹äœã®é ç¹
vBufName = GL.GenBuffer();
GL.BindBuffer(BufferTarget.ArrayBuffer, vBufName);
GL.BufferData<double>(BufferTarget.ArrayBuffer, sizeof(double) * vBufData.Length, vBufData, BufferUsageHint.StaticDraw);
}
</syntaxhighlight>
OnLoadã¡ãœããã¯ããŠã£ã³ããŠãããŒãããããšãã«åŒã³åºãããŸããGL.Enable(EnableCap.DepthTest);ã§ããã¹ãã¹ããšåŒã°ããOpenGLã®æ©èœãæå¹åããŠããŸããããã¹ãã¹ããšã¯ãç©äœã®ååŸé¢ä¿ãæèããŠæç»ããæ©èœã§ããããã¹ãã¹ããç¡å¹ãªç¶æ
ã§å¥¥ã«ååšããç©äœãæåã«ååšããç©äœããåŸã«æç»ãããšã奥ã®ç©äœã«æåã®ç©äœãäžæžããããŠããŸããšããçŸè±¡ãçºçããŸãã
ã«ã¡ã©ã¯ã3次å
空éããã©ã®äœçœ®ããããã©ã®æ¹åã«ããã©ããäžæ¹åãšããŠãçºããããèšå®ããŸãããã®äŸã§ã¯ãx=0.0, y=0.0, z=200.0ã®äœçœ®ãããx=0.3, y=0.3, z=-1.0ã®æ¹åãèŠãŠãx=0.0, y=0.0, z=1.0ãäžæ¹åãšããŠ3次å
空éãçºããããšã«ããŠããŸãã
èŠäœç©ã¯ã3次å
空éãã©ã®ããã«åãåã£ãŠè¡šç€ºãããèšå®ããŠããŸãã3次å
空éã¯åºãããã¹ãŠã®ç©äœãæç»ããããšã¯äžå¯èœãªããã«èšå®ããå¿
èŠããããŸããMatrix4.CreatePerspectiveFieldOfView()ã¡ãœããã§ãããžã§ã¯ã·ã§ã³è¡åãšåŒã°ãããã®ãäœæiããGL.MatrixMode()ã¡ãœãããšGL.LoadMatrix()ã¡ãœããã§OpenGLã«ãããžã§ã¯ã·ã§ã³è¡åãèªã¿èŸŒãŸããŸããMatrix4.CreatePerspectiveFieldOfViewã¡ãœããã¯ã第äžåŒæ°ãèŠéè§(ã©ãžã¢ã³)ã第äºåŒæ°ãã¢ã¹ãã¯ãæ¯(暪ã®é·ã/瞊ã®é·ã)ã第äžåŒæ°ããã¢(ã«ã¡ã©ããã©ãã ãé¢ããé¢ããæç»ãããã0ã«èšå®ããããšã¯äžå¯ã)ã第ååŒæ°ããã¡ãŒ(ã«ã¡ã©ããã©ãã ãé¢ããé¢ãŸã§æç»ãããã)ãšãªã£ãŠããŸãã
æåŸã«ç«æ¹äœã®é ç¹ãã¡ã€ã³ã¡ã¢ãªããVRAMã«è»¢éããŠããŸãããŸããGL.GenBuffer()ã§VRAMäžã®ããŒã¿ãèå¥ããçªå·ãäœæããŠããŸããæ¬¡ã«GL.BindBuffer()ã¡ãœããã§ãGL.BufferData()ã¡ãœããã§ããŒã¿ãæžã蟌ãå
(vBufNameãæãå Žæ)ãæå®ããŠããŸãããããŠããããGL.BufferData()ã¡ãœããã§VRAMã«é ç¹ããŒã¿ã転éããŸããGL.BufferData()ã¯ã第äºåŒæ°ãããŒã¿ã®å€§ãã(sizeof(double)=8ãã€ã x 72åå)ã第äžåŒæ°ãé ç¹ããŒã¿ã第ååŒæ°ãé åã®äœ¿ãæ¹ã§ãã第ååŒæ°ã¯äœãæå®ããŠãè¯ãã®ã§ãããé åã®äœ¿ãæ¹ã«ãã£ããã®ã«ããŸããããä»åãé ç¹ããŒã¿ã¯1床æžã蟌ãã ã倿Žããããšã¯ããªãã®ã§ãBufferUsageHint.StaticDrawã«ããŠããŸãã
=== OnRenderFrame()ã¡ãœãã ===
<syntaxhighlight lang="C#">
protected override void OnRenderFrame(FrameEventArgs e)
{
base.OnRenderFrame(e);
GL.ClearColor(0.0f, 1.0f, 0.0f, 1.0f); //ç·è²ãã»ãããã
GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); //ãããã¡äžé¢ãç·è²ã«ãã
GL.EnableClientState(ArrayCap.VertexArray);
GL.BindBuffer(BufferTarget.ArrayBuffer, vBufName);
GL.VertexPointer(3, VertexPointerType.Double, 0, 0);
//è²ãå€ããŠ2é¢ãã€æç»ãã
GL.Color4(1.0f, 0.0f, 0.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 0, 4);
GL.DrawArrays(PrimitiveType.Quads, 4, 4);
GL.Color4(0.0f, 0.0f, 1.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 8, 4);
GL.DrawArrays(PrimitiveType.Quads, 12, 4);
GL.Color4(1.0f, 1.0f, 0.0f, 1.0f);
GL.DrawArrays(PrimitiveType.Quads, 16, 4);
GL.DrawArrays(PrimitiveType.Quads, 20, 4);
SwapBuffers();
}
</syntaxhighlight>
GL.ClearColor()ã§ãããã¡ã®èæ¯è²ãæå®ããŠããŸããèµ€ãç·ãéãäžéæåºŠã®é ã«æå®ããŸããããã§ã¯äžéæåºŠ100%ã®ç·è²ãæå®ããŠããŸãã
次ã«GL.Clear()ã§ãããã¡ãã¯ãªã¢ããŠããŸããGL.ClearColor()ãåŒã³åºããŠãGL.Clear()ãåŒã³åºããªããã°ãããã¡ã¯ã¯ãªã¢ãããªãã®ã§æ³šæããŠãã ããã
ãŸããGL.EnableClientState()ã§é ç¹é
åãæå¹åããŸããGL.VertexPointer()ã¯é ç¹é
åãã©ãããããŒã¿ãªã®ããOpenGLã«éç¥ããŸãã第äžåŒæ°ã座æšãããã®æ¬¡å
æ°(x,y,zã§3)ã第äºåŒæ°ãããŒã¿åã第äžåŒæ°ãé ç¹ããŒã¿ãšé ç¹ããŒã¿ã®éé(åäœ:ãã€ã)ã§ãã0ãæå®ãããšãé ç¹ããŒã¿ã¯ééãªãé
åã«æ ŒçŽãããŠããããšã«ãªããŸãã
第ååŒæ°ã¯ãé
åã®æåã®é ç¹ããŒã¿ã®å Žæã§ããvBufDataã¯èŠçŽ 0ããé ç¹ããŒã¿ãæ ŒçŽãããŠããããã0ã§ãã
æåŸã«ç«æ¹äœã2é¢ãã€è²ãåããŠæç»ããŠããŸãã
GL.Color4()ã§æç»è²ãèšå®ããGL.DrawArrays()ã§é·æ¹åœ¢ãæç»ããŠããŸããGL.DrawArrays()ã®ç¬¬äžåŒæ°ã¯å³åœ¢ã®åœ¢ã第äºåŒæ°ã¯é ç¹ããŒã¿ã®å
é ã第äžåŒæ°ã¯é ç¹ã®æ°ã衚ããŸããããšãã°GL.DrawArrays(PrimitiveType.Quads, 12, 4)ã®å Žåãé·æ¹åœ¢ãé ç¹ããŒã¿ã®12åç®ã®é ç¹ãã4ã€åã®é ç¹ãåãåºããŠæç»ããããšããæå³ã«ãªããŸãã
SwapBuffers()ã«ã€ããŠã¯çè
ããŸã ããŸãçè§£ããŠããŸããããå¿
ãOnRenderFrame()ã®æåŸã«æžãããã«ããŠãã ããã
[[ã«ããŽãª:CSharpã§å§ããOpenGLããã°ã©ãã³ã°]] | null | 2021-04-13T09:48:17Z | []
| https://ja.wikibooks.org/wiki/CSharp%E3%81%A7%E5%A7%8B%E3%82%81%E3%82%8BOpenGL%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0/%E7%AB%8B%E6%96%B9%E4%BD%93%E3%82%92%E8%A1%A8%E7%A4%BA%E3%81%99%E3%82%8B |
25,301 | äžåŠæ ¡çç§ ç¬¬1åé/æŸå°ç· | åååçºé»ã®æ žçæã«ã¯ããŠã©ã³(ãã€ãèª: Uran)ãªã©ãçšããããã
ãŠã©ã³ãªã©ãäžéšã®ç©è³ªããã¯æŸå°ç·(è±:radial rays ã©ãã£ã¢ã«ã¬ã€ãº)ãåºããæŸå°ç·ã¯ããšãŠããšãã«ã®ãŒã匷ãã®ã§ãå€ã济ã³ããããšå±éºã§ããã æŸå°ç·ã®æ§è³ªãšããŠãç®ã«èŠããªãããã¶ã€ããããç©ãé»é¢ããŠã€ãªã³åããæ§è³ªãããããŸããééèœåãæã¡ãç©äœãéãã¬ããã
ãŸãšãããšãæŸå°ç·ã®ä»£è¡šçãªæ§è³ªãšããŠ
æŸå°ç·ã«ãã£ãŠãæŸå°ç·ããã³ãç©ãé»é¢ãããçç±ã¯ãæŸå°ç·ã®ãšãã«ã®ãŒããšãŠã匷ãã®ã§ãé»åãã¯ãããšã°ãããã§ããã
ãã®æŸå°ç·ã®é»é¢äœçšãªã©ã«ãããçç©ã®DNAãå·ã€ããŠããŸãããŠã©ã³ãæ žçæã»æ žå»æ£ç©ãªã©ãæŸå°æ§ç©è³ªã®ç®¡çã«ãå³éãªç®¡çãå¿
èŠãªçç±ã®äžã€ã¯ã人äœããã³çç©ã®å¥åº·äžã®çç±ã§ããã
æŸå°æ§åäœå
çŽ ãæŸå°æ§åŽ©å£ãèµ·ãããŠå¥ã®å
çŽ ã«å€åããæ§è³ªããæŸå°èœ(è±: radioactivity) ãšèšãã ãŠã©ã³ãªã©ãæŸå°ç·ãåºãç©è³ªããŸãšããŠããæŸå°æ§ç©è³ªããªã©ãšèšãã
æ žçæãªã©ã®ç¡ãèªç¶çã«ããããããããªãããæŸå°ç·ããããèªç¶æŸå°ç·ãšèšãã èªç¶æŸå°ç·ã®ç±æ¥ã¯ãå®å®ããã®èªç¶æŸå°ç·ãããããã¯å€§å°ã倧æ°ãªã©ã®ãããããããªæŸå°æ§ç©è³ª(倩ç¶ã®ãŠã©ã³ãªã©)ãªã©ã®åœ±é¿ã§ããã
(å°äžã§ã®)èªç¶æŸå°ç·ã«ã€ããŠã¯ãèªç¶çã§ã®éã¯å°ãªã被害ãããããå¿
èŠã¯ç¡ãã
ããããæ žçæããæ žå»æ£ç©ãªã©ã«ããæŸå°ç·ã¯ãèªç¶ã®æŸå°ç·ãšæ¯ã¹ãŠããšãŠãéã倧ããã®ã§ãäººå·¥ã®æŸå°ç·ããã³æŸå°èœã¯å±éºã§ããããã£ãŠããããã®æ žç©è³ªã®åãæ±ãã«ã¯å³éãªæ³šæã管çãå¿
èŠã§ããã
æŸå°ç·ã«ã¯ãããã€ãã®çš®é¡ãããã ã¢ã«ãã¡ç·(αç·)ãããŒã¿ç·(βç·)ãã¬ã³ãç·(γç·)ã®ã»ãããšãã¯ã¹ç·(Xç·)ãããããŠã©ã³ãªã©ã®æŸå°æ§ç©è³ªããã¯ã¢ã«ãã¡ç·ãããŒã¿ç·ãã¬ã³ãç·ãçºãããã
ãããæŸå°ç·ã¯ãããããç¹åŸŽãã¡ããã
ãããæŸå°ç·ã®æ£äœãæããã«ãªã£ãæ¹æ³ã®äžã€ã¯ãæŸå°ç·ãé»çãç£çã«çœ®ããšããã®é»æ°ã«å¿ããŠæŸå°ç·ã®é²è¡æ¹åãå€ããã®ã§ãæ£äœãåãã£ãã
ããªãŠã ãã®ãã®ã¯ãå±éºã§ã¯ãªããåæ§ã«ãé»åãã®ãã®ãå±éºã§ã¯ãªãããé»ç£æ³¢ããšãããšèããªããªããããã€ã¯èªç¶çã®å
ãé»ç£æ³¢ã®äžçš®ã§ããã
æŸå°ç·ã®å¿çšã¯ãåååçºé»ã®ã»ãããã®ééèœåãããããŠããšãã¯ã¹ç·ãå»çã®ã¬ã³ãã²ã³ãªã©ã«ãçšããããŠããã
å»çã®CTã¹ãã£ã³ãšPET蚺æã§ã¯ãæŸå°ç·ãå©çšããŠããã(â» åè: PETãšã¯ãéœé»åæŸå°æå±€æ®åœ±è£
眮ã®ããšã§ããããPET蚺æã®ããã«ã被éšè
ã«æŸå°æ§ç©è³ªããµããç¹æ®ãªãããŠç³ãã°ã«ã³ãŒã¹é¡ãæåããŠããã£ãŠããã)
ãŸããå·¥æ¥ã§ã¯ãééèœåãããããéç Žå£æ€æ»(è±: Non Destructive Inspection, ç¥:NDI)ãªã©ã«ãå¿çšãããŠããã
空枯ã®è·ç©æ€æ»ã®æ©åš(ã«ãã³ãªã©ã®äžèº«ãèŠãæ©åš)ããæŸå°ç·ãå©çšããŠããã®ãäžè¬çã§ããã(â» åèæç®: å€§æ¥æ¬å³æž ããã³ æè²å³æž)
ãŸããèªåè»ã¿ã€ã€ãªã©ã«äœ¿ããããŽã ããã©ã¹ããã¯ãªã©ã§ãããçš®é¡ã®ãŽã ããã©ã¹ããã¯ã®è£œé å·¥çšã«ãããŠãæŸå°ç·ãç
§å°ããããšã§ãèç±æ§ãåäžãããããšãã§ãããŽã ããã©ã¹ããã¯ãããããšãç¥ãããŠãããå®éã«èªåè»ç£æ¥ã§æŽ»çšãããŠããã(â» æè¿ã®äžåŠçç§ã®æç§æžã«ã¯ããã®è©±é¡ãæžããŠããã)
ãžã£ã¬ã€ã¢ã«æŸå°ç·ãç
§å°ãããšãèœãåºã«ãããªããé·æä¿åã§ããããã«ãªãã®ã§ããã§ã«å®çšãããŠããã
ãã®ä»ãæŽå²ç ç©¶ã®åéã§ã®æŸå°æ§å¹Žä»£æž¬å®ãªã©ãæŸå°ç·ã«ã¯å€ãã®æŽ»çšãããã
(â» äžåŠçç§ã®ã®æ€å®æç§æžã®ç¯å²å
ã)
é§ç®±ãšããè£
眮ã«ãããé£è¡æ©é²ã®ããã«ãæŸå°ç·ã®ãšãã£ãéçãèŠããè£
眮ãããã
é§ç®±ã®ãªãã«ã¯ãèžæ°ãã€ãŸã£ãŠãããæŸå°ç·ãå
¥å°ãããšããã®æŸå°ç·ã®äœçšã«ãããé£è¡æ©é²ã®ããã«éçãæ¶²åããã®ã§ãæŸå°ç·ã®éçãèŠãããšããä»çµã¿ã§ããã
(ãŠã£ãããã£ã¢ã«é§ç®±ã®ããããããç»åããªãã®ã§ãæ€å®æç§æžãªã©ãåç
§ããŠãã ããã)
æŸå°ç·ã®åŒ·ãã®åäœã«ã¯ããã¯ã¬ã«(åäœ:Bq)ããã³ã·ãŒãã«ã(åäœ:Sv)ãããã
ã·ãŒãã«ãã¯ã人éãããã®éã®æŸå°ç·ããã³ããšãã®åœ±é¿ã®åºŠåãã«ãããæŸå°ç·ã®åŒ·ãã®åºŠåãã§ããã
èªç¶æŸå°ç·ã®åŒ·ããã·ãŒãã«ãã§ãããããšãããã幎é 2.4ããªã·ãŒãã«ããäžçå¹³åã§ãããã·ãŒãã«ãã®åäœèšå·ã®è¡šèšã¯ Sv ãšæžããããªã·ãŒãã«ã㯠mSv ãšæžãã 幎é 2.4 mSv ãèªç¶æŸå°ç·ã®äžçå¹³åã§ããã
ãã¯ã¬ã«ã¯ã人äœã®åœ±é¿ã¯èããŠããããæŸå°ç·ã®åŒ·ãã®ã¿ãèããŠããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "åååçºé»ã®æ žçæã«ã¯ããŠã©ã³(ãã€ãèª: Uran)ãªã©ãçšããããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãŠã©ã³ãªã©ãäžéšã®ç©è³ªããã¯æŸå°ç·(è±:radial rays ã©ãã£ã¢ã«ã¬ã€ãº)ãåºããæŸå°ç·ã¯ããšãŠããšãã«ã®ãŒã匷ãã®ã§ãå€ã济ã³ããããšå±éºã§ããã æŸå°ç·ã®æ§è³ªãšããŠãç®ã«èŠããªãããã¶ã€ããããç©ãé»é¢ããŠã€ãªã³åããæ§è³ªãããããŸããééèœåãæã¡ãç©äœãéãã¬ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãŸãšãããšãæŸå°ç·ã®ä»£è¡šçãªæ§è³ªãšããŠ",
"title": "æŸå°ç·"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æŸå°ç·ã«ãã£ãŠãæŸå°ç·ããã³ãç©ãé»é¢ãããçç±ã¯ãæŸå°ç·ã®ãšãã«ã®ãŒããšãŠã匷ãã®ã§ãé»åãã¯ãããšã°ãããã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®æŸå°ç·ã®é»é¢äœçšãªã©ã«ãããçç©ã®DNAãå·ã€ããŠããŸãããŠã©ã³ãæ žçæã»æ žå»æ£ç©ãªã©ãæŸå°æ§ç©è³ªã®ç®¡çã«ãå³éãªç®¡çãå¿
èŠãªçç±ã®äžã€ã¯ã人äœããã³çç©ã®å¥åº·äžã®çç±ã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æŸå°æ§åäœå
çŽ ãæŸå°æ§åŽ©å£ãèµ·ãããŠå¥ã®å
çŽ ã«å€åããæ§è³ªããæŸå°èœ(è±: radioactivity) ãšèšãã ãŠã©ã³ãªã©ãæŸå°ç·ãåºãç©è³ªããŸãšããŠããæŸå°æ§ç©è³ªããªã©ãšèšãã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æ žçæãªã©ã®ç¡ãèªç¶çã«ããããããããªãããæŸå°ç·ããããèªç¶æŸå°ç·ãšèšãã èªç¶æŸå°ç·ã®ç±æ¥ã¯ãå®å®ããã®èªç¶æŸå°ç·ãããããã¯å€§å°ã倧æ°ãªã©ã®ãããããããªæŸå°æ§ç©è³ª(倩ç¶ã®ãŠã©ã³ãªã©)ãªã©ã®åœ±é¿ã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(å°äžã§ã®)èªç¶æŸå°ç·ã«ã€ããŠã¯ãèªç¶çã§ã®éã¯å°ãªã被害ãããããå¿
èŠã¯ç¡ãã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããããæ žçæããæ žå»æ£ç©ãªã©ã«ããæŸå°ç·ã¯ãèªç¶ã®æŸå°ç·ãšæ¯ã¹ãŠããšãŠãéã倧ããã®ã§ãäººå·¥ã®æŸå°ç·ããã³æŸå°èœã¯å±éºã§ããããã£ãŠããããã®æ žç©è³ªã®åãæ±ãã«ã¯å³éãªæ³šæã管çãå¿
èŠã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": "æŸå°ç·"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æŸå°ç·ã«ã¯ãããã€ãã®çš®é¡ãããã ã¢ã«ãã¡ç·(αç·)ãããŒã¿ç·(βç·)ãã¬ã³ãç·(γç·)ã®ã»ãããšãã¯ã¹ç·(Xç·)ãããããŠã©ã³ãªã©ã®æŸå°æ§ç©è³ªããã¯ã¢ã«ãã¡ç·ãããŒã¿ç·ãã¬ã³ãç·ãçºãããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãããæŸå°ç·ã¯ãããããç¹åŸŽãã¡ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãããæŸå°ç·ã®æ£äœãæããã«ãªã£ãæ¹æ³ã®äžã€ã¯ãæŸå°ç·ãé»çãç£çã«çœ®ããšããã®é»æ°ã«å¿ããŠæŸå°ç·ã®é²è¡æ¹åãå€ããã®ã§ãæ£äœãåãã£ãã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããªãŠã ãã®ãã®ã¯ãå±éºã§ã¯ãªããåæ§ã«ãé»åãã®ãã®ãå±éºã§ã¯ãªãããé»ç£æ³¢ããšãããšèããªããªããããã€ã¯èªç¶çã®å
ãé»ç£æ³¢ã®äžçš®ã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æŸå°ç·ã®å¿çšã¯ãåååçºé»ã®ã»ãããã®ééèœåãããããŠããšãã¯ã¹ç·ãå»çã®ã¬ã³ãã²ã³ãªã©ã«ãçšããããŠããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "å»çã®CTã¹ãã£ã³ãšPET蚺æã§ã¯ãæŸå°ç·ãå©çšããŠããã(â» åè: PETãšã¯ãéœé»åæŸå°æå±€æ®åœ±è£
眮ã®ããšã§ããããPET蚺æã®ããã«ã被éšè
ã«æŸå°æ§ç©è³ªããµããç¹æ®ãªãããŠç³ãã°ã«ã³ãŒã¹é¡ãæåããŠããã£ãŠããã)",
"title": "æŸå°ç·"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãŸããå·¥æ¥ã§ã¯ãééèœåãããããéç Žå£æ€æ»(è±: Non Destructive Inspection, ç¥:NDI)ãªã©ã«ãå¿çšãããŠããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "空枯ã®è·ç©æ€æ»ã®æ©åš(ã«ãã³ãªã©ã®äžèº«ãèŠãæ©åš)ããæŸå°ç·ãå©çšããŠããã®ãäžè¬çã§ããã(â» åèæç®: å€§æ¥æ¬å³æž ããã³ æè²å³æž)",
"title": "æŸå°ç·"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãŸããèªåè»ã¿ã€ã€ãªã©ã«äœ¿ããããŽã ããã©ã¹ããã¯ãªã©ã§ãããçš®é¡ã®ãŽã ããã©ã¹ããã¯ã®è£œé å·¥çšã«ãããŠãæŸå°ç·ãç
§å°ããããšã§ãèç±æ§ãåäžãããããšãã§ãããŽã ããã©ã¹ããã¯ãããããšãç¥ãããŠãããå®éã«èªåè»ç£æ¥ã§æŽ»çšãããŠããã(â» æè¿ã®äžåŠçç§ã®æç§æžã«ã¯ããã®è©±é¡ãæžããŠããã)",
"title": "æŸå°ç·"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãžã£ã¬ã€ã¢ã«æŸå°ç·ãç
§å°ãããšãèœãåºã«ãããªããé·æä¿åã§ããããã«ãªãã®ã§ããã§ã«å®çšãããŠããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã®ä»ãæŽå²ç ç©¶ã®åéã§ã®æŸå°æ§å¹Žä»£æž¬å®ãªã©ãæŸå°ç·ã«ã¯å€ãã®æŽ»çšãããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "(â» äžåŠçç§ã®ã®æ€å®æç§æžã®ç¯å²å
ã)",
"title": "æŸå°ç·"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "é§ç®±ãšããè£
眮ã«ãããé£è¡æ©é²ã®ããã«ãæŸå°ç·ã®ãšãã£ãéçãèŠããè£
眮ãããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "é§ç®±ã®ãªãã«ã¯ãèžæ°ãã€ãŸã£ãŠãããæŸå°ç·ãå
¥å°ãããšããã®æŸå°ç·ã®äœçšã«ãããé£è¡æ©é²ã®ããã«éçãæ¶²åããã®ã§ãæŸå°ç·ã®éçãèŠãããšããä»çµã¿ã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "(ãŠã£ãããã£ã¢ã«é§ç®±ã®ããããããç»åããªãã®ã§ãæ€å®æç§æžãªã©ãåç
§ããŠãã ããã)",
"title": "æŸå°ç·"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "",
"title": "æŸå°ç·"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "æŸå°ç·ã®åŒ·ãã®åäœã«ã¯ããã¯ã¬ã«(åäœ:Bq)ããã³ã·ãŒãã«ã(åäœ:Sv)ãããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã·ãŒãã«ãã¯ã人éãããã®éã®æŸå°ç·ããã³ããšãã®åœ±é¿ã®åºŠåãã«ãããæŸå°ç·ã®åŒ·ãã®åºŠåãã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "èªç¶æŸå°ç·ã®åŒ·ããã·ãŒãã«ãã§ãããããšãããã幎é 2.4ããªã·ãŒãã«ããäžçå¹³åã§ãããã·ãŒãã«ãã®åäœèšå·ã®è¡šèšã¯ Sv ãšæžããããªã·ãŒãã«ã㯠mSv ãšæžãã 幎é 2.4 mSv ãèªç¶æŸå°ç·ã®äžçå¹³åã§ããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã¯ã¬ã«ã¯ã人äœã®åœ±é¿ã¯èããŠããããæŸå°ç·ã®åŒ·ãã®ã¿ãèããŠããã",
"title": "æŸå°ç·"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "",
"title": "æŸå°ç·"
}
]
| null | {{Nav}}
== æŸå°ç· ==
åååçºé»ã®{{ruby|æ žçæ|nuclear fuel}}ã«ã¯ããŠã©ã³ïŒãã€ãèª: UranïŒãªã©ãçšããããã
ãŠã©ã³ãªã©ãäžéšã®ç©è³ªããã¯{{ruby|æŸå°ç·|ã»ããããã}}ïŒè±ïŒradial rays ã©ãã£ã¢ã«ã¬ã€ãºïŒãåºããæŸå°ç·ã¯ããšãŠããšãã«ã®ãŒã匷ãã®ã§ãå€ã济ã³ããããšå±éºã§ããã
æŸå°ç·ã®æ§è³ªãšããŠãç®ã«èŠããªãããã¶ã€ããããç©ãé»é¢ããŠã€ãªã³åããæ§è³ªãããããŸããééèœåãæã¡ãç©äœãéãã¬ããã
ãŸãšãããšãæŸå°ç·ã®ä»£è¡šçãªæ§è³ªãšããŠ
# ç®ã«èŠããªãã
# ç©äœãéãæããèœåïŒééåïŒãããã
# ååãååãã€ãªã³åããèœåïŒé»é¢èœãé»é¢äœçšïŒãããã
æŸå°ç·ã«ãã£ãŠãæŸå°ç·ããã³ãç©ãé»é¢ãããçç±ã¯ãæŸå°ç·ã®ãšãã«ã®ãŒããšãŠã匷ãã®ã§ãé»åãã¯ãããšã°ãããã§ããã
ãã®æŸå°ç·ã®é»é¢äœçšãªã©ã«ãããçç©ã®DNAãå·ã€ããŠããŸãããŠã©ã³ãæ žçæã»æ žå»æ£ç©ãªã©ãæŸå°æ§ç©è³ªã®ç®¡çã«ãå³éãªç®¡çãå¿
èŠãªçç±ã®äžã€ã¯ã人äœããã³çç©ã®å¥åº·äžã®çç±ã§ããã
æŸå°æ§åäœå
çŽ ãæŸå°æ§åŽ©å£ãèµ·ãããŠå¥ã®å
çŽ ã«å€åããæ§è³ªãã{{ruby|æŸå°èœ|ã»ãããã®ã}}ïŒè±: radioactivityïŒ ãšèšãã
ãŠã©ã³ãªã©ãæŸå°ç·ãåºãç©è³ªããŸãšããŠããæŸå°æ§ç©è³ªããªã©ãšèšãã
æ žçæãªã©ã®ç¡ãèªç¶çã«ããããããããªãããæŸå°ç·ãããã{{ruby|èªç¶æŸå°ç·|ãããã»ããããã}}ãšèšãã
èªç¶æŸå°ç·ã®ç±æ¥ã¯ãå®å®ããã®èªç¶æŸå°ç·ãããããã¯å€§å°ã倧æ°ãªã©ã®ãããããããªæŸå°æ§ç©è³ª(倩ç¶ã®ãŠã©ã³ãªã©)ãªã©ã®åœ±é¿ã§ããã
ïŒå°äžã§ã®ïŒèªç¶æŸå°ç·ã«ã€ããŠã¯ãèªç¶çã§ã®éã¯å°ãªã被害ãããããå¿
èŠã¯ç¡ãã
ããããæ žçæããæ žå»æ£ç©ãªã©ã«ããæŸå°ç·ã¯ãèªç¶ã®æŸå°ç·ãšæ¯ã¹ãŠããšãŠãéã倧ããã®ã§ãäººå·¥ã®æŸå°ç·ããã³æŸå°èœã¯å±éºã§ããããã£ãŠããããã®æ žç©è³ªã®åãæ±ãã«ã¯å³éãªæ³šæã管çãå¿
èŠã§ããã
=== æŸå°ç·ã®çš®é¡ ===
[[File:æŸå°ç·ã®ééæ§.svg|thumb|500px|æŸå°ç·ã®ééæ§]]
æŸå°ç·ã«ã¯ãããã€ãã®çš®é¡ãããã
ã¢ã«ãã¡ç·ïŒÎ±ç·ïŒãããŒã¿ç·ïŒÎ²ç·ïŒãã¬ã³ãç·ïŒÎ³ç·ïŒã®ã»ãããšãã¯ã¹ç·ïŒXç·ïŒãããããŠã©ã³ãªã©ã®æŸå°æ§ç©è³ªããã¯ã¢ã«ãã¡ç·ãããŒã¿ç·ãã¬ã³ãç·ãçºãããã
:ãªããæŸå°ç·ã®ãαç·ãããβç·ããªã©ã®ããã«ãéåžžãæŸå°ç·ã®è¡šèšã§ã¯ã®ãªã·ã£æåãå°æåã§ãαç·ãããβç·ãããγç·ããæžãã
:ãã£ãœãããšãã¯ã¹ç·ãè±åã§æžãå Žåã¯ã倧æåã§ãXç·ããæžãã®ãæ®éã§ããã
ãããæŸå°ç·ã¯ãããããç¹åŸŽãã¡ããã
; ã¢ã«ãã¡ç·ïŒÎ±ç·ãè±ïŒalpha ray ã¢ã«ãã¡ã¬ã€ïŒ
: ã¢ã«ãã¡ç·ã®æ£äœã¯ãããªãŠã ã®ååæ žã§ããããšãåãã£ãŠãããååã§ã¯ãªããé»åããããªãç¶æ
ã®ååæ žã§ãããã€ãŸããéœå2åãšäžæ§å2åã®ã¿ã§ãããé»åãæããªããããã¢ã«ãã¡ç·ã¯ãã©ã¹ã®é»æ°ããã£ãŠãããïŒãã©ã¹ã®é»æ°ã¯ãéœåã«ç±æ¥ãïŒ
; ããŒã¿ç·ïŒÎ²ç·ãè±ïŒbeta ray ããŒã¿ã¬ã€ïŒ
: æ£äœã¯é»åã§ããããã£ãŠããŒã¿ç·ã¯ããã€ãã¹ã®é»æ°ã§ããã
; ã¬ã³ãç·ïŒÎ³ç·ãè±ïŒgamma rayãã®ã£ã³ãã¬ã€ïŒ
: æ£äœã¯é»ç£æ³¢ã®äžçš®ã§ããããã£ãŠã¬ã³ãç·ã«é»æ°ã¯ç¡ãã
; ãšãã¯ã¹ç·ïŒXç·ãè±ïŒX ray ãšãã¯ã¹ã¬ã€ïŒ
: æ£äœã¯é»ç£æ³¢ã®äžçš®ã§ããããã£ãŠãšãã¯ã¹ç·ã«é»æ°ã¯ç¡ãã
<!-- ã黿°ãããé»è·ãã«èšæ£ãããããäžåŠæ ¡ã®ç¯å²ãéžè±ããæããããæ§ããïŒäžæ§åç·ã¯ïŒïŒïŒ -->
ãããæŸå°ç·ã®æ£äœãæããã«ãªã£ãæ¹æ³ã®äžã€ã¯ãæŸå°ç·ãé»çãç£çã«çœ®ããšããã®é»æ°ã«å¿ããŠæŸå°ç·ã®é²è¡æ¹åãå€ããã®ã§ãæ£äœãåãã£ãã
ããªãŠã ãã®ãã®ã¯ãå±éºã§ã¯ãªããåæ§ã«ãé»åãã®ãã®ãå±éºã§ã¯ãªãããé»ç£æ³¢ããšãããšèããªããªããããã€ã¯èªç¶çã®å
ãé»ç£æ³¢ã®äžçš®ã§ããã
=== æŸå°ç·ã®å¿çš ===
[[File:64 slice scanner.JPG|thumb|right|300px|CTæ©åš]]
æŸå°ç·ã®å¿çšã¯ãåååçºé»ã®ã»ãããã®ééèœåãããããŠããšãã¯ã¹ç·ãå»çã®ã¬ã³ãã²ã³ãªã©ã«ãçšããããŠããã
å»çã®{{ruby|CT|ã·ãŒã»ãã£ãŒ}}ã¹ãã£ã³ãšPET蚺æã§ã¯ãæŸå°ç·ãå©çšããŠãããïŒâ» åè: PETãšã¯ã[[w:ããžããã³æå±€æ³|éœé»åæŸå°æå±€æ®åœ±è£
眮]]ã®ããšã§ããããPET蚺æã®ããã«ã被éšè
ã«æŸå°æ§ç©è³ªããµããç¹æ®ãªãããŠç³ãã°ã«ã³ãŒã¹é¡ãæåããŠããã£ãŠãããïŒ
ãŸããå·¥æ¥ã§ã¯ãééèœåããããã{{ruby|éç Žå£æ€æ»|ã²ã¯ããããã}}ïŒè±: Non Destructive Inspection,ãç¥ïŒNDIïŒãªã©ã«ãå¿çšãããŠããã
空枯ã®è·ç©æ€æ»ã®æ©åšïŒã«ãã³ãªã©ã®äžèº«ãèŠãæ©åšïŒããæŸå°ç·ãå©çšããŠããã®ãäžè¬çã§ãããïŒâ» åèæç®: å€§æ¥æ¬å³æž ããã³ æè²å³æžïŒ
ãŸããèªåè»ã¿ã€ã€ãªã©ã«äœ¿ããããŽã ããã©ã¹ããã¯ãªã©ã§ãããçš®é¡ã®ãŽã ããã©ã¹ããã¯ã®è£œé å·¥çšã«ãããŠãæŸå°ç·ãç
§å°ããããšã§ãèç±æ§ãåäžãããããšãã§ãããŽã ããã©ã¹ããã¯ãããããšãç¥ãããŠãããå®éã«èªåè»ç£æ¥ã§æŽ»çšãããŠãããïŒâ» æè¿ã®äžåŠçç§ã®æç§æžã«ã¯ããã®è©±é¡ãæžããŠãããïŒ
{{See also|w:æ¶æ©}}
ãžã£ã¬ã€ã¢ã«æŸå°ç·ãç
§å°ãããšãèœãåºã«ãããªããé·æä¿åã§ããããã«ãªãã®ã§ããã§ã«å®çšãããŠããã
:ïŒâ» ç¯å²å€: ïŒäœè«ã ããæ¥æ¬ã§ã¯ãžã£ã¬ã€ã¢ä»¥å€ã®é£åã«æŸå°ç·ãç
§å°ããããšã¯ãé£åè¡çæ³ãªã©ã®æ³åŸã§çŠããããŠãã<ref>John McMurry ã»ãåèã第4çïŒåæž7çïŒ ãã¯ããªãŒçç©ææ©ååŠ åºç€ååŠç·šããè
åäºäžç· ç£èš³ãå¹³æ25幎1æ25æ¥ çºè¡ãp370ã®è𳿳š</ref>ïŒäžæ¹ãã¢ã¡ãªã«ã§ã¯é£èã®æ»
èã®ç®çã§ã®æŸå°ç·ç
§å°ãåæ³ã§ãããå®çšãããŠãã<ref>John McMurry ã»ãåèã第4çïŒåæž7çïŒ ãã¯ããªãŒçç©ææ©ååŠ åºç€ååŠç·šããè
åäºäžç· ç£èš³ãå¹³æ25幎1æ25æ¥ çºè¡ãp370ã®ã³ã©ã æ¬æ</ref>ïŒã
ãã®ä»ãæŽå²ç ç©¶ã®åéã§ã®æŸå°æ§å¹Žä»£æž¬å®ãªã©ãæŸå°ç·ã«ã¯å€ãã®æŽ»çšãããã
=== æŸå°ç·ã®èŠ³æž¬ãšæž¬å® ===
==== é§ç®±ïŒããã°ãïŒ ====
ïŒâ» äžåŠçç§ã®ã®æ€å®æç§æžã®ç¯å²å
ãïŒ
{{ruby|é§ç®±|ããã°ã}}ãšããè£
眮ã«ãããé£è¡æ©é²ã®ããã«ãæŸå°ç·ã®ãšãã£ã{{ruby|éç|ã¿ã¡ãã}}ãèŠããè£
眮ãããã
é§ç®±ã®ãªãã«ã¯ãèžæ°ãã€ãŸã£ãŠãããæŸå°ç·ãå
¥å°ãããšããã®æŸå°ç·ã®äœçšã«ãããé£è¡æ©é²ã®ããã«éçãæ¶²åããã®ã§ãæŸå°ç·ã®éçãèŠãããšããä»çµã¿ã§ããã
ïŒãŠã£ãããã£ã¢ã«é§ç®±ã®ããããããç»åããªãã®ã§ãæ€å®æç§æžãªã©ãåç
§ããŠãã ãããïŒ
==== æŸå°ç·æž¬å®åš ====
[[File:GammaScout GeigerzÀhler.JPG|thumb|æŸå°ç·æž¬å®åšïŒâ» å€åœè£œãããããªãã®ã§ãããŸããç»åäžã®æ°åãæåãªã©ã¯æ°ã«ããªãã§ãã ãããïŒ]]
==== æŸå°ç·ã®åŒ·ãã®åäœ ====
æŸå°ç·ã®åŒ·ãã®åäœã«ã¯ã'''ãã¯ã¬ã«'''ïŒåäœïŒBqïŒããã³'''ã·ãŒãã«ã'''ïŒåäœïŒSvïŒãããã
'''ã·ãŒãã«ã'''ã¯ã人éãããã®éã®æŸå°ç·ããã³ããšãã®åœ±é¿ã®åºŠåãã«ãããæŸå°ç·ã®åŒ·ãã®åºŠåãã§ããã
èªç¶æŸå°ç·ã®åŒ·ããã·ãŒãã«ãã§ãããããšãããã幎é 2.4ããªã·ãŒãã«ããäžçå¹³åã§ãããã·ãŒãã«ãã®åäœèšå·ã®è¡šèšã¯ Sv ãšæžããããªã·ãŒãã«ã㯠mSv ãšæžãã 幎é 2.4 mSv ãèªç¶æŸå°ç·ã®äžçå¹³åã§ããã
'''ãã¯ã¬ã«'''ã¯ã人äœã®åœ±é¿ã¯èããŠããããæŸå°ç·ã®åŒ·ãã®ã¿ãèããŠããã
{{ã³ã©ã |æŸå°ç·ã®çºèŠã®æŽå²|
[[File:WilhelmRöntgen.JPG|thumb|ãŠã£ã«ãã«ã ã»ã¬ã³ãã²ã³]]
1895幎ã«ã¬ã³ãã²ã³ïŒäººåïŒã¯ãç空æŸé»ã®å®éšãããŠãããšããæŸé»ç®¡ãããç®ã«èŠããªãæªç¥ã®ãªã«ããåºãŠããŠåçãã£ã«ã ãæå
ãããããšãçºèŠãããã®ïŒåçãã£ã«ã ãæå
ãããïŒæªç¥ã®ãªã«ããXç·ãšåã¥ããã
[[File:X-ray by Wilhelm Röntgen of Albert von Kölliker's hand - 18960123-02.jpg|thumb|150px|ã¬ã³ãã²ã³ãæ®åœ±ããXç·åç]]
1896幎ããã¯ã¬ã«ïŒäººåïŒã¯ããŠã©ã³ãããXç·ã«äŒŒãäœããåºãŠããããšãçºèŠããŸãããïŒãã¯ã¬ã«ã®çºèŠããïŒãã®äœãã¯ãã®ã¡ã«æŸå°ç·ãšåã¥ããããŸããã
ã¬ã³ãã²ã³ä»¥éããã¥ãªãŒå€«åŠ»ãªã©å€ãã®ç§åŠè
ããæŸå°ç·ã®æ§è³ªãè§£æããŠãããŸããã
}}
[[Category:äžåŠæ ¡æè²|ãã1]]
[[Category:çç§æè²|äž1]] | null | 2021-07-22T05:17:33Z | [
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:Ruby",
"ãã³ãã¬ãŒã:See also",
"ãã³ãã¬ãŒã:ã³ã©ã "
]
| https://ja.wikibooks.org/wiki/%E4%B8%AD%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91_%E7%AC%AC1%E5%88%86%E9%87%8E/%E6%94%BE%E5%B0%84%E7%B7%9A |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.