title
stringlengths
1
182
passage_id
int64
12
4.55M
section_title
stringlengths
0
402
text
stringlengths
0
99.6k
Albert Einstein
736
Life and career
Locker-Lampson took Einstein to meet Winston Churchill at his home, and later, Austen Chamberlain and former Prime Minister Lloyd George. Einstein asked them to help bring Jewish scientists out of Germany. British historian Martin Gilbert notes that Churchill responded immediately, and sent his friend, physicist Frederick Lindemann, to Germany to seek out Jewish scientists and place them in British universities. Churchill later observed that as a result of Germany having driven the Jews out, they had lowered their "technical standards" and put the Allies' technology ahead of theirs.
Albert Einstein
736
Life and career
Einstein later contacted leaders of other nations, including Turkey's Prime Minister, İsmet İnönü, to whom he wrote in September 1933 requesting placement of unemployed German-Jewish scientists. As a result of Einstein's letter, Jewish invitees to Turkey eventually totaled over "1,000 saved individuals".
Albert Einstein
736
Life and career
Locker-Lampson also submitted a bill to parliament to extend British citizenship to Einstein, during which period Einstein made a number of public appearances describing the crisis brewing in Europe. In one of his speeches he denounced Germany's treatment of Jews, while at the same time he introduced a bill promoting Jewish citizenship in Palestine, as they were being denied citizenship elsewhere. In his speech he described Einstein as a "citizen of the world" who should be offered a temporary shelter in the UK. Both bills failed, however, and Einstein then accepted an earlier offer from the Institute for Advanced Study, in Princeton, New Jersey, US, to become a resident scholar.
Albert Einstein
736
Life and career
On 3 October 1933, Einstein delivered a speech on the importance of academic freedom before a packed audience at the Royal Albert Hall in London, with The Times reporting he was wildly cheered throughout. Four days later he returned to the US and took up a position at the Institute for Advanced Study, noted for having become a refuge for scientists fleeing Nazi Germany. At the time, most American universities, including Harvard, Princeton and Yale, had minimal or no Jewish faculty or students, as a result of their Jewish quotas, which lasted until the late 1940s.
Albert Einstein
736
Life and career
Einstein was still undecided on his future. He had offers from several European universities, including Christ Church, Oxford, where he stayed for three short periods between May 1931 and June 1933 and was offered a five-year research fellowship (called a "studentship" at Christ Church), but in 1935, he arrived at the decision to remain permanently in the United States and apply for citizenship.
Albert Einstein
736
Life and career
Einstein's affiliation with the Institute for Advanced Study would last until his death in 1955. He was one of the four first selected (along with John von Neumann, Kurt Gödel, and Hermann Weyl) at the new Institute. He soon developed a close friendship with Gödel; the two would take long walks together discussing their work. Bruria Kaufman, his assistant, later became a physicist. During this period, Einstein tried to develop a unified field theory and to refute the accepted interpretation of quantum physics, both unsuccessfully. He lived in Princeton at his home from 1935 onwards. The Albert Einstein House was made a National Historic Landmark in 1976.
Albert Einstein
736
Life and career
In 1939, a group of Hungarian scientists that included émigré physicist Leó Szilárd attempted to alert Washington to ongoing Nazi atomic bomb research. The group's warnings were discounted. Einstein and Szilárd, along with other refugees such as Edward Teller and Eugene Wigner, "regarded it as their responsibility to alert Americans to the possibility that German scientists might win the race to build an atomic bomb, and to warn that Hitler would be more than willing to resort to such a weapon." To make certain the US was aware of the danger, in July 1939, a few months before the beginning of World War II in Europe, Szilárd and Wigner visited Einstein to explain the possibility of atomic bombs, which Einstein, a pacifist, said he had never considered. He was asked to lend his support by writing a letter, with Szilárd, to President Roosevelt, recommending the US pay attention and engage in its own nuclear weapons research.
Albert Einstein
736
Life and career
The letter is believed to be "arguably the key stimulus for the U.S. adoption of serious investigations into nuclear weapons on the eve of the U.S. entry into World War II". In addition to the letter, Einstein used his connections with the Belgian royal family and the Belgian queen mother to get access with a personal envoy to the White House's Oval Office. Some say that as a result of Einstein's letter and his meetings with Roosevelt, the US entered the "race" to develop the bomb, drawing on its "immense material, financial, and scientific resources" to initiate the Manhattan Project.
Albert Einstein
736
Life and career
For Einstein, "war was a disease ... [and] he called for resistance to war." By signing the letter to Roosevelt, some argue he went against his pacifist principles. In 1954, a year before his death, Einstein said to his old friend, Linus Pauling, "I made one great mistake in my life—when I signed the letter to President Roosevelt recommending that atom bombs be made; but there was some justification—the danger that the Germans would make them ..." In 1955, Einstein and ten other intellectuals and scientists, including British philosopher Bertrand Russell, signed a manifesto highlighting the danger of nuclear weapons. In 1960 Einstein was included posthumously as a charter member of the World Academy of Art and Science (WAAS), an organization founded by distinguished scientists and intellectuals who committed themselves to the responsible and ethical advances of science, particularly in light of the development of nuclear weapons.
Albert Einstein
736
Life and career
Einstein became an American citizen in 1940. Not long after settling into his career at the Institute for Advanced Study in Princeton, New Jersey, he expressed his appreciation of the meritocracy in American culture compared to Europe. He recognized the "right of individuals to say and think what they pleased" without social barriers. As a result, individuals were encouraged, he said, to be more creative, a trait he valued from his early education.
Albert Einstein
736
Life and career
Einstein joined the National Association for the Advancement of Colored People (NAACP) in Princeton, where he campaigned for the civil rights of African Americans. He considered racism America's "worst disease", seeing it as "handed down from one generation to the next". As part of his involvement, he corresponded with civil rights activist W. E. B. Du Bois and was prepared to testify on his behalf during his trial as an alleged foreign agent in 1951. When Einstein offered to be a character witness for Du Bois, the judge decided to drop the case.
Albert Einstein
736
Life and career
In 1946, Einstein visited Lincoln University in Pennsylvania, a historically black college, where he was awarded an honorary degree. Lincoln was the first university in the United States to grant college degrees to African Americans; alumni include Langston Hughes and Thurgood Marshall. Einstein gave a speech about racism in America, adding, "I do not intend to be quiet about it." A resident of Princeton recalls that Einstein had once paid the college tuition for a black student. Einstein has said, "Being a Jew myself, perhaps I can understand and empathize with how black people feel as victims of discrimination".
Albert Einstein
736
Life and career
In 1918, Einstein was one of the signatories of the founding proclamation of the German Democratic Party, a liberal party. Later in his life, Einstein's political view was in favor of socialism and critical of capitalism, which he detailed in his essays such as "Why Socialism?". His opinions on the Bolsheviks also changed with time. In 1925, he criticized them for not having a "well-regulated system of government" and called their rule a "regime of terror and a tragedy in human history". He later adopted a more moderated view, criticizing their methods but praising them, which is shown by his 1929 remark on Vladimir Lenin:
Albert Einstein
736
Life and career
In Lenin I honor a man, who in total sacrifice of his own person has committed his entire energy to realizing social justice. I do not find his methods advisable. One thing is certain, however: men like him are the guardians and renewers of mankind's conscience.
Albert Einstein
736
Life and career
Einstein offered and was called on to give judgments and opinions on matters often unrelated to theoretical physics or mathematics. He strongly advocated the idea of a democratic global government that would check the power of nation-states in the framework of a world federation. He wrote "I advocate world government because I am convinced that there is no other possible way of eliminating the most terrible danger in which man has ever found himself." The FBI created a secret dossier on Einstein in 1932; by the time of his death, it was 1,427 pages long.
Albert Einstein
736
Life and career
Einstein was deeply impressed by Mahatma Gandhi, with whom he corresponded. He described Gandhi as "a role model for the generations to come". The initial connection was established on 27 September 1931, when Wilfrid Israel took his Indian guest V. A. Sundaram to meet his friend Einstein at his summer home in the town of Caputh. Sundaram was Gandhi's disciple and special envoy, whom Wilfrid Israel met while visiting India and visiting the Indian leader's home in 1925. During the visit, Einstein wrote a short letter to Gandhi that was delivered to him through his envoy, and Gandhi responded quickly with his own letter. Although in the end Einstein and Gandhi were unable to meet as they had hoped, the direct connection between them was established through Wilfrid Israel.
Albert Einstein
736
Life and career
Einstein was a figurehead leader in the establishment of the Hebrew University of Jerusalem, which opened in 1925. Earlier, in 1921, he was asked by the biochemist and president of the World Zionist Organization, Chaim Weizmann, to help raise funds for the planned university. He made suggestions for the creation of an Institute of Agriculture, a Chemical Institute and an Institute of Microbiology in order to fight the various ongoing epidemics such as malaria, which he called an "evil" that was undermining a third of the country's development. He also promoted the establishment of an Oriental Studies Institute, to include language courses given in both Hebrew and Arabic.
Albert Einstein
736
Life and career
Einstein was not a nationalist and opposed the creation of an independent Jewish state. He felt that the waves of arriving Jews of the Aliyah could live alongside existing Arabs in Palestine. The state of Israel was established without his help in 1948; Einstein was limited to a marginal role in the Zionist movement. Upon the death of Israeli president Weizmann in November 1952, Prime Minister David Ben-Gurion offered Einstein the largely ceremonial position of President of Israel at the urging of Ezriel Carlebach. The offer was presented by Israel's ambassador in Washington, Abba Eban, who explained that the offer "embodies the deepest respect which the Jewish people can repose in any of its sons". Einstein wrote that he was "deeply moved", but "at once saddened and ashamed" that he could not accept it.
Albert Einstein
736
Life and career
Einstein expounded his spiritual outlook in a wide array of writings and interviews. He said he had sympathy for the impersonal pantheistic God of Baruch Spinoza's philosophy. He did not believe in a personal god who concerns himself with fates and actions of human beings, a view which he described as naïve. He clarified, however, that "I am not an atheist", preferring to call himself an agnostic, or a "deeply religious nonbeliever". When asked if he believed in an afterlife, Einstein replied, "No. And one life is enough for me."
Albert Einstein
736
Life and career
Einstein was primarily affiliated with non-religious humanist and Ethical Culture groups in both the UK and US. He served on the advisory board of the First Humanist Society of New York, and was an honorary associate of the Rationalist Association, which publishes New Humanist in Britain. For the 75th anniversary of the New York Society for Ethical Culture, he stated that the idea of Ethical Culture embodied his personal conception of what is most valuable and enduring in religious idealism. He observed, "Without 'ethical culture' there is no salvation for humanity."
Albert Einstein
736
Life and career
In a German-language letter to philosopher Eric Gutkind, dated 3 January 1954, Einstein wrote:
Albert Einstein
736
Life and career
The word God is for me nothing more than the expression and product of human weaknesses, the Bible a collection of honorable, but still primitive legends which are nevertheless pretty childish. No interpretation no matter how subtle can (for me) change this. ... For me the Jewish religion like all other religions is an incarnation of the most childish superstitions. And the Jewish people to whom I gladly belong and with whose mentality I have a deep affinity have no different quality for me than all other people. ... I cannot see anything 'chosen' about them.
Albert Einstein
736
Life and career
Einstein had been sympathetic toward vegetarianism for a long time. In a letter in 1930 to Hermann Huth, vice-president of the German Vegetarian Federation (Deutsche Vegetarier-Bund), he wrote:
Albert Einstein
736
Life and career
Although I have been prevented by outward circumstances from observing a strictly vegetarian diet, I have long been an adherent to the cause in principle. Besides agreeing with the aims of vegetarianism for aesthetic and moral reasons, it is my view that a vegetarian manner of living by its purely physical effect on the human temperament would most beneficially influence the lot of mankind.
Albert Einstein
736
Life and career
He became a vegetarian himself only during the last part of his life. In March 1954 he wrote in a letter: "So I am living without fats, without meat, without fish, but am feeling quite well this way. It almost seems to me that man was not born to be a carnivore."
Albert Einstein
736
Life and career
Einstein developed an appreciation for music at an early age. In his late journals he wrote:
Albert Einstein
736
Life and career
If I were not a physicist, I would probably be a musician. I often think in music. I live my daydreams in music. I see my life in terms of music ... I get most joy in life out of music.
Albert Einstein
736
Life and career
His mother played the piano reasonably well and wanted her son to learn the violin, not only to instill in him a love of music but also to help him assimilate into German culture. According to conductor Leon Botstein, Einstein began playing when he was 5. However, he did not enjoy it at that age.
Albert Einstein
736
Life and career
When he turned 13, he discovered the violin sonatas of Mozart, whereupon he became enamored of Mozart's compositions and studied music more willingly. Einstein taught himself to play without "ever practicing systematically". He said that "love is a better teacher than a sense of duty". At the age of 17, he was heard by a school examiner in Aarau while playing Beethoven's violin sonatas. The examiner stated afterward that his playing was "remarkable and revealing of 'great insight'". What struck the examiner, writes Botstein, was that Einstein "displayed a deep love of the music, a quality that was and remains in short supply. Music possessed an unusual meaning for this student."
Albert Einstein
736
Life and career
Music took on a pivotal and permanent role in Einstein's life from that period on. Although the idea of becoming a professional musician himself was not on his mind at any time, among those with whom Einstein played chamber music were a few professionals, including Kurt Appelbaum, and he performed for private audiences and friends. Chamber music had also become a regular part of his social life while living in Bern, Zürich, and Berlin, where he played with Max Planck and his son, among others. He is sometimes erroneously credited as the editor of the 1937 edition of the Köchel catalog of Mozart's work; that edition was prepared by Alfred Einstein, who may have been a distant relation.
Albert Einstein
736
Life and career
In 1931, while engaged in research at the California Institute of Technology, he visited the Zoellner family conservatory in Los Angeles, where he played some of Beethoven and Mozart's works with members of the Zoellner Quartet. Near the end of his life, when the young Juilliard Quartet visited him in Princeton, he played his violin with them, and the quartet was "impressed by Einstein's level of coordination and intonation".
Albert Einstein
736
Life and career
On 17 April 1955, Einstein experienced internal bleeding caused by the rupture of an abdominal aortic aneurysm, which had previously been reinforced surgically by Rudolph Nissen in 1948. He took the draft of a speech he was preparing for a television appearance commemorating the state of Israel's seventh anniversary with him to the hospital, but he did not live to complete it.
Albert Einstein
736
Life and career
Einstein refused surgery, saying, "I want to go when I want. It is tasteless to prolong life artificially. I have done my share; it is time to go. I will do it elegantly." He died in the University Medical Center of Princeton at Plainsboro early the next morning at the age of 76, having continued to work until near the end.
Albert Einstein
736
Life and career
During the autopsy, the pathologist Thomas Stoltz Harvey removed Einstein's brain for preservation without the permission of his family, in the hope that the neuroscience of the future would be able to discover what made Einstein so intelligent. Einstein's remains were cremated in Trenton, New Jersey, and his ashes were scattered at an undisclosed location.
Albert Einstein
736
Life and career
In a memorial lecture delivered on 13 December 1965 at UNESCO headquarters, nuclear physicist J. Robert Oppenheimer summarized his impression of Einstein as a person: "He was almost wholly without sophistication and wholly without worldliness ... There was always with him a wonderful purity at once childlike and profoundly stubborn."
Albert Einstein
736
Life and career
Einstein bequeathed his personal archives, library, and intellectual assets to the Hebrew University of Jerusalem in Israel.
Albert Einstein
736
Scientific career
Throughout his life, Einstein published hundreds of books and articles. He published more than 300 scientific papers and 150 non-scientific ones. On 5 December 2014, universities and archives announced the release of Einstein's papers, comprising more than 30,000 unique documents. Einstein's intellectual achievements and originality have made the word "Einstein" synonymous with "genius". In addition to the work he did by himself he also collaborated with other scientists on additional projects including the Bose–Einstein statistics, the Einstein refrigerator and others.
Albert Einstein
736
Scientific career
There is some evidence from Einstein's writings that he collaborated with his first wife, Mileva Marić. In 13 December 1900, a first article on capillarity signed only under his name was submitted. The decision to publish only under his name seems to have been mutual, but the exact reason is unknown.
Albert Einstein
736
Scientific career
The Annus Mirabilis papers are four articles pertaining to the photoelectric effect (which gave rise to quantum theory), Brownian motion, the special theory of relativity, and E = mc that Einstein published in the Annalen der Physik scientific journal in 1905. These four works contributed substantially to the foundation of modern physics and changed views on space, time, and matter. The four papers are:
Albert Einstein
736
Scientific career
Einstein's first paper submitted in 1900 to Annalen der Physik was on capillary attraction. It was published in 1901 with the title "Folgerungen aus den Capillaritätserscheinungen", which translates as "Conclusions from the capillarity phenomena". Two papers he published in 1902–1903 (thermodynamics) attempted to interpret atomic phenomena from a statistical point of view. These papers were the foundation for the 1905 paper on Brownian motion, which showed that Brownian movement can be construed as firm evidence that molecules exist. His research in 1903 and 1904 was mainly concerned with the effect of finite atomic size on diffusion phenomena.
Albert Einstein
736
Scientific career
Einstein returned to the problem of thermodynamic fluctuations, giving a treatment of the density variations in a fluid at its critical point. Ordinarily the density fluctuations are controlled by the second derivative of the free energy with respect to the density. At the critical point, this derivative is zero, leading to large fluctuations. The effect of density fluctuations is that light of all wavelengths is scattered, making the fluid look milky white. Einstein relates this to Rayleigh scattering, which is what happens when the fluctuation size is much smaller than the wavelength, and which explains why the sky is blue. Einstein quantitatively derived critical opalescence from a treatment of density fluctuations, and demonstrated how both the effect and Rayleigh scattering originate from the atomistic constitution of matter.
Albert Einstein
736
Scientific career
Einstein's "Zur Elektrodynamik bewegter Körper" ("On the Electrodynamics of Moving Bodies") was received on 30 June 1905 and published 26 September of that same year. It reconciled conflicts between Maxwell's equations (the laws of electricity and magnetism) and the laws of Newtonian mechanics by introducing changes to the laws of mechanics. Observationally, the effects of these changes are most apparent at high speeds (where objects are moving at speeds close to the speed of light). The theory developed in this paper later became known as Einstein's special theory of relativity.
Albert Einstein
736
Scientific career
This paper predicted that, when measured in the frame of a relatively moving observer, a clock carried by a moving body would appear to slow down, and the body itself would contract in its direction of motion. This paper also argued that the idea of a luminiferous aether—one of the leading theoretical entities in physics at the time—was superfluous.
Albert Einstein
736
Scientific career
In his paper on mass–energy equivalence, Einstein produced E = mc as a consequence of his special relativity equations. Einstein's 1905 work on relativity remained controversial for many years, but was accepted by leading physicists, starting with Max Planck.
Albert Einstein
736
Scientific career
Einstein originally framed special relativity in terms of kinematics (the study of moving bodies). In 1908, Hermann Minkowski reinterpreted special relativity in geometric terms as a theory of spacetime. Einstein adopted Minkowski's formalism in his 1915 general theory of relativity.
Albert Einstein
736
Scientific career
General relativity (GR) is a theory of gravitation that was developed by Einstein between 1907 and 1915. According to it, the observed gravitational attraction between masses results from the warping of spacetime by those masses. General relativity has developed into an essential tool in modern astrophysics; it provides the foundation for the current understanding of black holes, regions of space where gravitational attraction is so strong that not even light can escape.
Albert Einstein
736
Scientific career
As Einstein later said, the reason for the development of general relativity was that the preference of inertial motions within special relativity was unsatisfactory, while a theory which from the outset prefers no state of motion (even accelerated ones) should appear more satisfactory. Consequently, in 1907 he published an article on acceleration under special relativity. In that article titled "On the Relativity Principle and the Conclusions Drawn from It", he argued that free fall is really inertial motion, and that for a free-falling observer the rules of special relativity must apply. This argument is called the equivalence principle. In the same article, Einstein also predicted the phenomena of gravitational time dilation, gravitational redshift and gravitational lensing.
Albert Einstein
736
Scientific career
In 1911, Einstein published another article "On the Influence of Gravitation on the Propagation of Light" expanding on the 1907 article, in which he estimated the amount of deflection of light by massive bodies. Thus, the theoretical prediction of general relativity could for the first time be tested experimentally.
Albert Einstein
736
Scientific career
In 1916, Einstein predicted gravitational waves, ripples in the curvature of spacetime which propagate as waves, traveling outward from the source, transporting energy as gravitational radiation. The existence of gravitational waves is possible under general relativity due to its Lorentz invariance which brings the concept of a finite speed of propagation of the physical interactions of gravity with it. By contrast, gravitational waves cannot exist in the Newtonian theory of gravitation, which postulates that the physical interactions of gravity propagate at infinite speed.
Albert Einstein
736
Scientific career
The first, indirect, detection of gravitational waves came in the 1970s through observation of a pair of closely orbiting neutron stars, PSR B1913+16. The explanation for the decay in their orbital period was that they were emitting gravitational waves. Einstein's prediction was confirmed on 11 February 2016, when researchers at LIGO published the first observation of gravitational waves, detected on Earth on 14 September 2015, nearly one hundred years after the prediction.
Albert Einstein
736
Scientific career
While developing general relativity, Einstein became confused about the gauge invariance in the theory. He formulated an argument that led him to conclude that a general relativistic field theory is impossible. He gave up looking for fully generally covariant tensor equations and searched for equations that would be invariant under general linear transformations only.
Albert Einstein
736
Scientific career
In June 1913, the Entwurf ('draft') theory was the result of these investigations. As its name suggests, it was a sketch of a theory, less elegant and more difficult than general relativity, with the equations of motion supplemented by additional gauge fixing conditions. After more than two years of intensive work, Einstein realized that the hole argument was mistaken and abandoned the theory in November 1915.
Albert Einstein
736
Scientific career
In 1917, Einstein applied the general theory of relativity to the structure of the universe as a whole. He discovered that the general field equations predicted a universe that was dynamic, either contracting or expanding. As observational evidence for a dynamic universe was lacking at the time, Einstein introduced a new term, the cosmological constant, into the field equations, in order to allow the theory to predict a static universe. The modified field equations predicted a static universe of closed curvature, in accordance with Einstein's understanding of Mach's principle in these years. This model became known as the Einstein World or Einstein's static universe.
Albert Einstein
736
Scientific career
Following the discovery of the recession of the galaxies by Edwin Hubble in 1929, Einstein abandoned his static model of the universe, and proposed two dynamic models of the cosmos, the Friedmann–Einstein universe of 1931 and the Einstein–de Sitter universe of 1932. In each of these models, Einstein discarded the cosmological constant, claiming that it was "in any case theoretically unsatisfactory".
Albert Einstein
736
Scientific career
In many Einstein biographies, it is claimed that Einstein referred to the cosmological constant in later years as his "biggest blunder", based on a letter George Gamow claimed to have received from him. The astrophysicist Mario Livio has cast doubt on this claim.
Albert Einstein
736
Scientific career
In late 2013, a team led by the Irish physicist Cormac O'Raifeartaigh discovered evidence that, shortly after learning of Hubble's observations of the recession of the galaxies, Einstein considered a steady-state model of the universe. In a hitherto overlooked manuscript, apparently written in early 1931, Einstein explored a model of the expanding universe in which the density of matter remains constant due to a continuous creation of matter, a process that he associated with the cosmological constant. As he stated in the paper, "In what follows, I would like to draw attention to a solution to equation (1) that can account for Hubbel's [sic] facts, and in which the density is constant over time" ... "If one considers a physically bounded volume, particles of matter will be continually leaving it. For the density to remain constant, new particles of matter must be continually formed in the volume from space."
Albert Einstein
736
Scientific career
It thus appears that Einstein considered a steady-state model of the expanding universe many years before Hoyle, Bondi and Gold. However, Einstein's steady-state model contained a fundamental flaw and he quickly abandoned the idea.
Albert Einstein
736
Scientific career
General relativity includes a dynamical spacetime, so it is difficult to see how to identify the conserved energy and momentum. Noether's theorem allows these quantities to be determined from a Lagrangian with translation invariance, but general covariance makes translation invariance into something of a gauge symmetry. The energy and momentum derived within general relativity by Noether's prescriptions do not make a real tensor for this reason.
Albert Einstein
736
Scientific career
Einstein argued that this is true for a fundamental reason: the gravitational field could be made to vanish by a choice of coordinates. He maintained that the non-covariant energy momentum pseudotensor was, in fact, the best description of the energy momentum distribution in a gravitational field. While the use of non-covariant objects like pseudotensors was criticized by Erwin Schrödinger and others, Einstein's approach has been echoed by physicists including Lev Landau and Evgeny Lifshitz.
Albert Einstein
736
Scientific career
In 1935, Einstein collaborated with Nathan Rosen to produce a model of a wormhole, often called Einstein–Rosen bridges. His motivation was to model elementary particles with charge as a solution of gravitational field equations, in line with the program outlined in the paper "Do Gravitational Fields play an Important Role in the Constitution of the Elementary Particles?". These solutions cut and pasted Schwarzschild black holes to make a bridge between two patches. Because these solutions included spacetime curvature without the presence of a physical body, Einstein and Rosen suggested that they could provide the beginnings of a theory that avoided the notion of point particles. However, it was later found that Einstein–Rosen bridges are not stable.
Albert Einstein
736
Scientific career
In order to incorporate spinning point particles into general relativity, the affine connection needed to be generalized to include an antisymmetric part, called the torsion. This modification was made by Einstein and Cartan in the 1920s.
Albert Einstein
736
Scientific career
In general relativity, gravitational force is reimagined as curvature of spacetime. A curved path like an orbit is not the result of a force deflecting a body from an ideal straight-line path, but rather the body's attempt to fall freely through a background that is itself curved by the presence of other masses. A remark by John Archibald Wheeler that has become proverbial among physicists summarizes the theory: "Spacetime tells matter how to move; matter tells spacetime how to curve." The Einstein field equations cover the latter aspect of the theory, relating the curvature of spacetime to the distribution of matter and energy. The geodesic equation covers the former aspect, stating that freely falling bodies follow lines that are as straight as possible in a curved spacetime. Einstein regarded this as an "independent fundamental assumption" that had to be postulated in addition to the field equations in order to complete the theory. Believing this to be a shortcoming in how general relativity was originally presented, he wished to derive it from the field equations themselves. Since the equations of general relativity are non-linear, a lump of energy made out of pure gravitational fields, like a black hole, would move on a trajectory which is determined by the Einstein field equations themselves, not by a new law. Accordingly, Einstein proposed that the field equations would determine the path of a singular solution, like a black hole, to be a geodesic. Both physicists and philosophers have often repeated the assertion that the geodesic equation can be obtained from applying the field equations to the motion of a gravitational singularity, but this claim remains disputed.
Albert Einstein
736
Scientific career
In a 1905 paper, Einstein postulated that light itself consists of localized particles (quanta). Einstein's light quanta were nearly universally rejected by all physicists, including Max Planck and Niels Bohr. This idea only became universally accepted in 1919, with Robert Millikan's detailed experiments on the photoelectric effect, and with the measurement of Compton scattering.
Albert Einstein
736
Scientific career
Einstein concluded that each wave of frequency f is associated with a collection of photons with energy hf each, where h is Planck's constant. He did not say much more, because he was not sure how the particles were related to the wave. But he did suggest that this idea would explain certain experimental results, notably the photoelectric effect.
Albert Einstein
736
Scientific career
In 1907, Einstein proposed a model of matter where each atom in a lattice structure is an independent harmonic oscillator. In the Einstein model, each atom oscillates independently—a series of equally spaced quantized states for each oscillator. Einstein was aware that getting the frequency of the actual oscillations would be difficult, but he nevertheless proposed this theory because it was a particularly clear demonstration that quantum mechanics could solve the specific heat problem in classical mechanics. Peter Debye refined this model.
Albert Einstein
736
Scientific career
In 1924, Einstein received a description of a statistical model from Indian physicist Satyendra Nath Bose, based on a counting method that assumed that light could be understood as a gas of indistinguishable particles. Einstein noted that Bose's statistics applied to some atoms as well as to the proposed light particles, and submitted his translation of Bose's paper to the Zeitschrift für Physik. Einstein also published his own articles describing the model and its implications, among them the Bose–Einstein condensate phenomenon that some particulates should appear at very low temperatures. It was not until 1995 that the first such condensate was produced experimentally by Eric Allin Cornell and Carl Wieman using ultra-cooling equipment built at the NIST–JILA laboratory at the University of Colorado at Boulder. Bose–Einstein statistics are now used to describe the behaviors of any assembly of bosons. Einstein's sketches for this project may be seen in the Einstein Archive in the library of the Leiden University.
Albert Einstein
736
Scientific career
Although the patent office promoted Einstein to Technical Examiner Second Class in 1906, he had not given up on academia. In 1908, he became a Privatdozent at the University of Bern. In "Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung" ("The Development of our Views on the Composition and Essence of Radiation"), on the quantization of light, and in an earlier 1909 paper, Einstein showed that Max Planck's energy quanta must have well-defined momenta and act in some respects as independent, point-like particles. This paper introduced the photon concept (although the name photon was introduced later by Gilbert N. Lewis in 1926) and inspired the notion of wave–particle duality in quantum mechanics. Einstein saw this wave–particle duality in radiation as concrete evidence for his conviction that physics needed a new, unified foundation.
Albert Einstein
736
Scientific career
In a series of works completed from 1911 to 1913, Planck reformulated his 1900 quantum theory and introduced the idea of zero-point energy in his "second quantum theory". Soon, this idea attracted the attention of Einstein and his assistant Otto Stern. Assuming the energy of rotating diatomic molecules contains zero-point energy, they then compared the theoretical specific heat of hydrogen gas with the experimental data. The numbers matched nicely. However, after publishing the findings, they promptly withdrew their support, because they no longer had confidence in the correctness of the idea of zero-point energy.
Albert Einstein
736
Scientific career
In 1917, at the height of his work on relativity, Einstein published an article in Physikalische Zeitschrift that proposed the possibility of stimulated emission, the physical process that makes possible the maser and the laser. This article showed that the statistics of absorption and emission of light would only be consistent with Planck's distribution law if the emission of light into a mode with n photons would be enhanced statistically compared to the emission of light into an empty mode. This paper was enormously influential in the later development of quantum mechanics, because it was the first paper to show that the statistics of atomic transitions had simple laws.
Albert Einstein
736
Scientific career
Einstein discovered Louis de Broglie's work and supported his ideas, which were received skeptically at first. In another major paper from this era, Einstein observed that de Broglie waves could explain the quantization rules of Bohr and Sommerfeld. This paper would inspire Schrödinger's work of 1926.
Albert Einstein
736
Scientific career
Einstein played a major role in developing quantum theory, beginning with his 1905 paper on the photoelectric effect. However, he became displeased with modern quantum mechanics as it had evolved after 1925, despite its acceptance by other physicists. He was skeptical that the randomness of quantum mechanics was fundamental rather than the result of determinism, stating that God "is not playing at dice". Until the end of his life, he continued to maintain that quantum mechanics was incomplete.
Albert Einstein
736
Scientific career
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Einstein and Niels Bohr, who were two of its founders. Their debates are remembered because of their importance to the philosophy of science. Their debates would influence later interpretations of quantum mechanics.
Albert Einstein
736
Scientific career
Einstein never fully accepted quantum mechanics. While he recognized that it made correct predictions, he believed a more fundamental description of nature must be possible. Over the years he presented multiple arguments to this effect, but the one he preferred most dated to a debate with Bohr in 1930. Einstein suggested a thought experiment in which two objects are allowed to interact and then moved apart a great distance from each other. The quantum-mechanical description of the two objects is a mathematical entity known as a wavefunction. If the wavefunction that describes the two objects before their interaction is given, then the Schrödinger equation provides the wavefunction that describes them after their interaction. But because of what would later be called quantum entanglement, measuring one object would lead to an instantaneous change of the wavefunction describing the other object, no matter how far away it is. Moreover, the choice of which measurement to perform upon the first object would affect what wavefunction could result for the second object. Einstein reasoned that no influence could propagate from the first object to the second instantaneously fast. Indeed, he argued, physics depends on being able to tell one thing apart from another, and such instantaneous influences would call that into question. Because the true "physical condition" of the second object could not be immediately altered by an action done to the first, Einstein concluded, the wavefunction could not be that true physical condition, only an incomplete description of it.
Albert Einstein
736
Scientific career
A more famous version of this argument came in 1935, when Einstein published a paper with Boris Podolsky and Nathan Rosen that laid out what would become known as the EPR paradox. In this thought experiment, two particles interact in such a way that the wavefunction describing them is entangled. Then, no matter how far the two particles were separated, a precise position measurement on one particle would imply the ability to predict, perfectly, the result of measuring the position of the other particle. Likewise, a precise momentum measurement of one particle would result in an equally precise prediction for of the momentum of the other particle, without needing to disturb the other particle in any way. They argued that no action taken on the first particle could instantaneously affect the other, since this would involve information being transmitted faster than light, which is forbidden by the theory of relativity. They invoked a principle, later known as the "EPR criterion of reality", positing that: "If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of reality corresponding to that quantity." From this, they inferred that the second particle must have a definite value of both position and of momentum prior to either quantity being measured. But quantum mechanics considers these two observables incompatible and thus does not associate simultaneous values for both to any system. Einstein, Podolsky, and Rosen therefore concluded that quantum theory does not provide a complete description of reality.
Albert Einstein
736
Scientific career
In 1964, John Stewart Bell carried the analysis of quantum entanglement much further. He deduced that if measurements are performed independently on the two separated particles of an entangled pair, then the assumption that the outcomes depend upon hidden variables within each half implies a mathematical constraint on how the outcomes on the two measurements are correlated. This constraint would later be called a Bell inequality. Bell then showed that quantum physics predicts correlations that violate this inequality. Consequently, the only way that hidden variables could explain the predictions of quantum physics is if they are "nonlocal", which is to say that somehow the two particles are able to interact instantaneously no matter how widely they ever become separated. Bell argued that because an explanation of quantum phenomena in terms of hidden variables would require nonlocality, the EPR paradox "is resolved in the way which Einstein would have liked least".
Albert Einstein
736
Scientific career
Despite this, and although Einstein personally found the argument in the EPR paper overly complicated, that paper became among the most influential papers published in Physical Review. It is considered a centerpiece of the development of quantum information theory.
Albert Einstein
736
Scientific career
Encouraged by his success with general relativity, Einstein sought an even more ambitious geometrical theory that would treat gravitation and electromagnetism as aspects of a single entity. In 1950, he described his unified field theory in a Scientific American article titled "On the Generalized Theory of Gravitation". His attempt to find the most fundamental laws of nature won him praise but not success: a particularly conspicuous blemish of his model was that it did not accommodate the strong and weak nuclear forces, neither of which was well understood until many years after his death. Although most researchers now believe that Einstein's approach to unifying physics was mistaken, his goal of a theory of everything is one to which his successors still aspire.
Albert Einstein
736
Scientific career
Einstein conducted other investigations that were unsuccessful and abandoned. These pertain to force, superconductivity, and other research.
Albert Einstein
736
Scientific career
In addition to longtime collaborators Leopold Infeld, Nathan Rosen, Peter Bergmann and others, Einstein also had some one-shot collaborations with various scientists.
Albert Einstein
736
Scientific career
In 1908, Owen Willans Richardson predicted that a change in the magnetic moment of a free body will cause this body to rotate. This effect is a consequence of the conservation of angular momentum and is strong enough to be observable in ferromagnetic materials. Einstein and Wander Johannes de Haas published two papers in 1915 claiming the first experimental observation of the effect. Measurements of this kind demonstrate that the phenomenon of magnetization is caused by the alignment (polarization) of the angular momenta of the electrons in the material along the axis of magnetization. These measurements also allow the separation of the two contributions to the magnetization: that which is associated with the spin and with the orbital motion of the electrons.
Albert Einstein
736
Scientific career
In 1926, Einstein and his former student Leó Szilárd co-invented (and in 1930, patented) the Einstein refrigerator. This absorption refrigerator was then revolutionary for having no moving parts and using only heat as an input. On 11 November 1930, U.S. Patent 1,781,541 was awarded to Einstein and Leó Szilárd for the refrigerator. Their invention was not immediately put into commercial production, but the most promising of their patents were acquired by the Swedish company Electrolux.
Albert Einstein
736
Scientific career
Einstein also invented an electromagnetic pump, sound reproduction device, and several other household devices.
Albert Einstein
736
Non-scientific legacy
While traveling, Einstein wrote daily to his wife Elsa and adopted stepdaughters Margot and Ilse. The letters were included in the papers bequeathed to the Hebrew University of Jerusalem. Margot Einstein permitted the personal letters to be made available to the public, but requested that it not be done until twenty years after her death (she died in 1986). Barbara Wolff, of the Hebrew University's Albert Einstein Archives, told the BBC that there are about 3,500 pages of private correspondence written between 1912 and 1955.
Albert Einstein
736
Non-scientific legacy
Einstein's right of publicity was litigated in 2015 in a federal district court in California. Although the court initially held that the right had expired, that ruling was immediately appealed, and the decision was later vacated in its entirety. The underlying claims between the parties in that lawsuit were ultimately settled. The right is enforceable, and the Hebrew University of Jerusalem is the exclusive representative of that right. Corbis, successor to The Roger Richman Agency, licenses the use of his name and associated imagery, as agent for the university.
Albert Einstein
736
Non-scientific legacy
Mount Einstein in the Chugach Mountains of Alaska was named in 1955.
Albert Einstein
736
Non-scientific legacy
Mount Einstein in New Zealand's Paparoa Range was named after him in 1970 by the Department of Scientific and Industrial Research.
Albert Einstein
736
In popular culture
Einstein became one of the most famous scientific celebrities after the confirmation of his general theory of relativity in 1919. Although most of the public had little understanding of his work, he was widely recognized and admired. In the period before World War II, The New Yorker published a vignette in their "The Talk of the Town" feature saying that Einstein was so well known in America that he would be stopped on the street by people wanting him to explain "that theory". Eventually he came to cope with unwanted enquirers by pretending to be someone else: "Pardon me, sorry! Always I am mistaken for Professor Einstein."
Albert Einstein
736
In popular culture
Einstein has been the subject of or inspiration for many novels, films, plays, and works of music. He is a favorite model for depictions of absent-minded professors; his expressive face and distinctive hairstyle have been widely copied and exaggerated. Time magazine's Frederic Golden wrote that Einstein was "a cartoonist's dream come true".
Albert Einstein
736
In popular culture
Many popular quotations are often misattributed to him. For example, it is often claimed, erroneously, that he said, "The definition of insanity is doing the same thing over and over and expecting different results."
Albert Einstein
736
Awards and honors
Einstein received numerous awards and honors, and in 1922, he was awarded the 1921 Nobel Prize in Physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect". None of the nominations in 1921 met the criteria set by Alfred Nobel, so the 1921 prize was carried forward and awarded to Einstein in 1922.
Albert Einstein
736
Awards and honors
Einsteinium, a synthetic chemical element, was named in his honor in 1955, a few months after his death.
Afghanistan
737
Afghanistan, officially the Islamic Emirate of Afghanistan, is a landlocked country located at the crossroads of Central Asia and South Asia. Referred to as the Heart of Asia, it is bordered by Pakistan to the east and south, Iran to the west, Turkmenistan to the northwest, Uzbekistan to the north, Tajikistan to the northeast, and China to the northeast and east. Occupying 652,864 square kilometers (252,072 sq mi) of land, the country is predominantly mountainous with plains in the north and the southwest, which are separated by the Hindu Kush mountain range. Kabul is the country's largest city and serves as its capital. According to the World Population review, as of 2021, Afghanistan's population is 40.2 million. The National Statistics Information Authority of Afghanistan estimated the population to be 32.9 million as of 2020.
Afghanistan
737
Human habitation in Afghanistan dates to the Middle Paleolithic era. Popularly referred to as the graveyard of empires, the land has historically been home to various peoples and has witnessed numerous military campaigns, including those by the Persians, Alexander the Great, the Maurya Empire, Arab Muslims, the Mongols, the British, the Soviet Union, and a US-led coalition. Afghanistan also served as the source from which the Greco-Bactrians and the Mughals, amongst others, rose to form major empires. The various conquests and periods in both the Iranian and Indian cultural spheres made the area a center for Zoroastrianism, Buddhism, Hinduism, and later Islam. The modern state of Afghanistan began with the Durrani Afghan Empire in the 18th century, although Dost Mohammad Khan is sometimes considered to be the founder of the first modern Afghan state. Dost Mohammad died in 1863, days after his last campaign to unite Afghanistan, and Afghanistan was consequently thrown back into civil war. During this time, Afghanistan became a buffer state in the Great Game between the British Empire and the Russian Empire. From India, the British attempted to subjugate Afghanistan but were repelled in the First Anglo-Afghan War. However, the Second Anglo-Afghan War saw a British victory and the successful establishment of British political influence. Following the Third Anglo-Afghan War in 1919, Afghanistan became free of foreign political hegemony, and emerged as the independent Kingdom of Afghanistan in June 1926 under Amanullah Khan. This monarchy lasted almost half a century, until Zahir Shah was overthrown in 1973, following which the Republic of Afghanistan was established.
Afghanistan
737
Since the late 1970s, Afghanistan's history has been dominated by extensive warfare, including coups, invasions, insurgencies, and civil wars. The conflict began in 1978 when a communist revolution established a socialist state, and subsequent infighting prompted the Soviet Union to invade Afghanistan in 1979. Mujahideen fought against the Soviets in the Soviet–Afghan War and continued fighting amongst themselves following the Soviets' withdrawal in 1989. The Islamic fundamentalist Taliban controlled most of the country by 1996, but their Islamic Emirate of Afghanistan received little international recognition before its overthrow in the 2001 US invasion of Afghanistan. The Taliban returned to power in 2021 after capturing Kabul and overthrowing the government of the Islamic Republic of Afghanistan, ending the 2001–2021 war. In September 2021 the Taliban re-established the Islamic Emirate of Afghanistan. The Taliban government remains internationally unrecognized.
Afghanistan
737
Afghanistan is rich in natural resources, including lithium, iron, zinc, and copper. It is the second largest producer of cannabis resin, and third largest of both saffron and cashmere. The country is a member of the South Asian Association for Regional Cooperation and a founding member of the Organization of Islamic Cooperation. Due to the effects of war in recent decades, the country has dealt with high levels of terrorism, poverty, and child malnutrition. Afghanistan remains among the world's least developed countries, ranking 180th in the Human Development Index. Afghanistan's gross domestic product (GDP) is $81 billion by purchasing power parity and $20.1 billion by nominal values. Per capita, its GDP is amongst the lowest of any country as of 2020.
Afghanistan
737
Etymology
Some scholars suggest that the root name Afghān is derived from the Sanskrit word Aśvakan, which was the name used for ancient inhabitants of the Hindu Kush. Aśvakan literally means "horsemen", "horse breeders", or "cavalrymen" (from aśva, the Sanskrit and Avestan words for "horse").
Afghanistan
737
Etymology
Historically, the ethnonym Afghān was used to refer to ethnic Pashtuns. The Arabic and Persian form of the name, Afġān, was first attested in the 10th-century geography book Hudud al-'Alam. The last part of the name, "-stan", is a Persian suffix meaning "place of". Therefore, "Afghanistan" translates to "land of the Afghans", or "land of the Pashtuns" in a historical sense. According to the third edition of the Encyclopedia of Islam:
Afghanistan
737
Etymology
The name Afghanistan (Afghānistān, land of the Afghans / Pashtuns, afāghina, sing. afghān) can be traced to the early eighth/fourteenth century, when it designated the easternmost part of the Kartid realm. This name was later used for certain regions in the Ṣafavid and Mughal empires that were inhabited by Afghans. While based on a state-supporting elite of Abdālī / Durrānī Afghans, the Sadūzāʾī Durrānī polity that came into being in 1160 / 1747 was not called Afghanistan in its own day. The name became a state designation only during the colonial intervention of the nineteenth century.
Afghanistan
737
Etymology
The term "Afghanistan" was officially used in 1855, when the British recognized Dost Mohammad Khan as king of Afghanistan.
Afghanistan
737
History
Excavations of prehistoric sites suggest that humans were living in what is now Afghanistan at least 50,000 years ago, and that farming communities in the area were among the earliest in the world. An important site of early historical activities, many believe that Afghanistan compares to Egypt in terms of the historical value of its archaeological sites. Artifacts typical of the Paleolithic, Mesolithic, Neolithic, Bronze, and Iron Ages have been found in Afghanistan. Urban civilization is believed to have begun as early as 3000 BCE, and the early city of Mundigak (near Kandahar in the south of the country) was a center of the Helmand culture. More recent findings established that the Indus Valley Civilization stretched up towards modern-day Afghanistan. An Indus Valley site has been found on the Oxus River at Shortugai in northern Afghanistan. There are several smaller IVC colonies to be found in Afghanistan as well. An Indus Valley site has been found on the Oxus River at Shortugai in northern Afghanistan, which shows Afghanistan to have been a part of Indus Valley Civilization.