import sys sys.path.append('../') from evaluation.evaluator import IREvaluator from evaluation.encoders import Model from adapter_fusion import AdapterEncoder from reviewer_matching import ReviewerMatchingEvaluator # default no control codes # model = Model(base_checkpoint="allenai/specter") # default control codes # model = Model(base_checkpoint="../lightning_logs/full_run/scincl_ctrl/checkpoints/", task_id="[PRX]", use_ctrl_codes=True) model = Model(base_checkpoint="malteos/scincl", variant="adapters", adapters_load_from="../../../phantasm/phantasm_new/lightning_logs/full_run/scincl_adapters/checkpoints/", task_id="[PRX]", all_tasks=["[PRX]"]) encoder = AdapterEncoder("malteos/scincl", ["[PRX]"], "../../../phantasm/phantasm_new/lightning_logs/full_run/scincl_adapters/checkpoints/model/adapters") model.encoder = encoder model.encoder.cuda() model.encoder.eval() evaluator = IREvaluator("feeds_1", ("allenai/scirepeval", "feeds_1"), ("allenai/scirepeval_test", "feeds_1"), model, metrics=("map", "ndcg",)) # # embeddings = evaluator.generate_embeddings() # # evaluator.evaluate(embeddings) # evaluator = IREvaluator("feeds_1", ("allenai/scirepeval", "feeds_title"), ("allenai/scirepeval_test", "feeds_title"), # model, metrics=("map", "ndcg",)) # evaluator = ReviewerMatchingEvaluator("paper reviewer evaluation", ("allenai/scirepeval", "paper_reviewer_matching"), # ("allenai/scirepeval_test", "paper_reviewer_matching"), # ("allenai/scirepeval_test", "reviewers"), model, metrics=("map", "ndcg",)) embeddings = evaluator.generate_embeddings() evaluator.evaluate(embeddings)