update split generators
Browse files- super_scirep.py +45 -45
super_scirep.py
CHANGED
@@ -93,51 +93,51 @@ class SuperSciRep(datasets.GeneratorBasedBuilder):
|
|
93 |
citation=self.config.citation,
|
94 |
)
|
95 |
|
96 |
-
def _split_generators(self, dl_manager):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
|
142 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
143 |
def _generate_examples(self, filepath, split):
|
|
|
93 |
citation=self.config.citation,
|
94 |
)
|
95 |
|
96 |
+
# def _split_generators(self, dl_manager):
|
97 |
+
# # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
98 |
+
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
99 |
+
# base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
|
100 |
+
# data_urls = dict()
|
101 |
+
# data_dir = self.config.url if self.config.url else self.config.name
|
102 |
+
# if self.config.is_training:
|
103 |
+
# data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl",
|
104 |
+
# "val": f"{base_url}/train/{data_dir}/val.jsonl"}
|
105 |
+
#
|
106 |
+
# if "cite_prediction" not in self.config.name:
|
107 |
+
# data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
|
108 |
+
# print(data_urls)
|
109 |
+
# downloaded_files = dl_manager.download_and_extract(data_urls)
|
110 |
+
# splits = []
|
111 |
+
# if "test" in downloaded_files:
|
112 |
+
# splits = [datasets.SplitGenerator(
|
113 |
+
# name=datasets.Split("evaluation"),
|
114 |
+
# # These kwargs will be passed to _generate_examples
|
115 |
+
# gen_kwargs={
|
116 |
+
# "filepath": downloaded_files["test"],
|
117 |
+
# "split": "evaluation"
|
118 |
+
# },
|
119 |
+
# ),
|
120 |
+
# ]
|
121 |
+
#
|
122 |
+
# if "train" in downloaded_files:
|
123 |
+
# splits += [
|
124 |
+
# datasets.SplitGenerator(
|
125 |
+
# name=datasets.Split.TRAIN,
|
126 |
+
# # These kwargs will be passed to _generate_examples
|
127 |
+
# gen_kwargs={
|
128 |
+
# "filepath": downloaded_files["train"],
|
129 |
+
# "split": "train",
|
130 |
+
# },
|
131 |
+
# ),
|
132 |
+
# datasets.SplitGenerator(
|
133 |
+
# name=datasets.Split.VALIDATION,
|
134 |
+
# # These kwargs will be passed to _generate_examples
|
135 |
+
# gen_kwargs={
|
136 |
+
# "filepath": downloaded_files["val"],
|
137 |
+
# "split": "validation",
|
138 |
+
# })
|
139 |
+
# ]
|
140 |
+
# return splits
|
141 |
|
142 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
143 |
def _generate_examples(self, filepath, split):
|