|
from typing import Dict, Any, List |
|
|
|
import datasets |
|
|
|
|
|
class SuperSciRepConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SuperGLUE.""" |
|
|
|
def __init__(self, features: Dict[str, Any], task_type: str, citation: str = "", |
|
licenses: str = "", is_training: bool = False, homepage: str = "", url="", **kwargs): |
|
"""BuilderConfig for SuperGLUE. |
|
|
|
Args: |
|
features: *list[string]*, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: *string*, url to download the zip file from. |
|
citation: *string*, citation for the data set. |
|
url: *string*, url for information about the data set. |
|
label_classes: *list[string]*, the list of classes for the label if the |
|
label is present as a string. Non-string labels will be cast to either |
|
'False' or 'True'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.1.0"), **kwargs) |
|
self.features = features |
|
self.task_type = task_type |
|
self.citation = citation |
|
self.license = licenses |
|
self.is_training = is_training |
|
self.homepage = homepage |
|
self.url = url |
|
|
|
@classmethod |
|
def get_features(self, feature_names: List[str], type_mapping: Dict[str, Any] = None) -> Dict[str, Any]: |
|
|
|
full_text_mapping = {"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))})} |
|
type_mapping = {**full_text_mapping, **type_mapping} |
|
features = {name: type_mapping[name] if name in type_mapping else datasets.Value("string") for name in |
|
feature_names} |
|
if "corpus_id" in features: |
|
features["corpus_id"] = datasets.Value("uint64") |
|
return features |
|
|
|
|
|
SUPERSCIREPEVAL_CONFIGS = [ |
|
SuperSciRepConfig(name="fos", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "labels", "labels_text"], |
|
{"labels": datasets.Sequence(datasets.Value("int32")), |
|
"labels_text": datasets.Sequence(datasets.Value("string"))}), |
|
task_type="classification (multi-label)", is_training=True, description=""), |
|
|
|
SuperSciRepConfig(name="cite_count", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "venue", "n_citations", "log_citations"], |
|
{"n_citations": datasets.Value("int32"), |
|
"log_citations": datasets.Value("float32")}), |
|
task_type="regression", is_training=True, description="" |
|
), |
|
|
|
SuperSciRepConfig(name="pub_year", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "year", "venue", "norm_year", "scaled_year", "n_authors", "norm_authors"], |
|
{"year": datasets.Value("int32"), "norm_year": datasets.Value("float32"), |
|
"scaled_year": datasets.Value("float32"), "n_authors": datasets.Value("int32"), |
|
"norm_authors": datasets.Value("float32"), }), |
|
task_type="regression", is_training=True, description=""), |
|
|
|
|
|
SuperSciRepConfig(name="high_influence_cite", |
|
features=SuperSciRepConfig.get_features(["query", "candidates"], |
|
{"query": { |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64")}, |
|
"candidates": |
|
[{"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64"), |
|
"score": datasets.Value("uint32")}]}), |
|
task_type="proximity", is_training=True, description=""), |
|
|
|
|
|
SuperSciRepConfig(name="search", |
|
features=SuperSciRepConfig.get_features(["query", "doc_id", "candidates"], |
|
{"candidates": |
|
[{ |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64"), |
|
"venue": datasets.Value("string"), |
|
"year": datasets.Value("float64"), |
|
"author_names": datasets.Sequence(datasets.Value("string")), |
|
"n_citations": datasets.Value("int32"), |
|
"n_key_citations": datasets.Value("int32"), |
|
"score": datasets.Value("uint32")}]}), |
|
task_type="search", is_training=True, description=""), |
|
|
|
|
|
SuperSciRepConfig(name="feeds_1", |
|
features=SuperSciRepConfig.get_features(["query", "feed_id", "candidates"], |
|
{"query": { |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64")}, |
|
"candidates": |
|
[{ |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64"), |
|
"score": datasets.Value("uint32")}]}), |
|
task_type="proximity", description="", url="feeds/feeds_1"), |
|
|
|
SuperSciRepConfig(name="feeds_m", |
|
features=SuperSciRepConfig.get_features(["query", "feed_id", "candidates"], |
|
{"query": { |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64")}, |
|
"candidates": |
|
[{ |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64"), |
|
"score": datasets.Value("uint32")}]}), |
|
task_type="proximity", description="", url="feeds/feeds_m"), |
|
|
|
SuperSciRepConfig(name="feeds_title", |
|
features=SuperSciRepConfig.get_features(["query", "doc_id", "feed_id", "abbreviations", "candidates"], |
|
{"candidates": |
|
[{ |
|
"doc_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value( |
|
"string"), |
|
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}), |
|
"corpus_id": datasets.Value("uint64"), |
|
"score": datasets.Value("uint32")}]}), |
|
task_type="search", description="", url="feeds/feeds_title"), |
|
|
|
SuperSciRepConfig(name="peer_review_score_hIndex", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "rating", "confidence", "authors", "decision", "mean_rating", "hIndex"], |
|
{"mean_rating": datasets.Value("float32"), |
|
"rating": datasets.Sequence(datasets.Value("int32")), |
|
"authors": datasets.Sequence(datasets.Value("string")), |
|
"hIndex": datasets.Sequence(datasets.Value("string")) |
|
}), |
|
task_type="regression", description="" |
|
), |
|
|
|
|
|
|
|
SuperSciRepConfig(name="tweet_mentions", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "index", "retweets", "count", "mentions"], |
|
{"index": datasets.Value("int32"), "count": datasets.Value("int32"), |
|
"retweets": datasets.Value("float32"), "mentions": datasets.Value("float32")}), |
|
task_type="regression", description="", |
|
citation="@article{Jain2021TweetPapAD,\ |
|
title={TweetPap: A Dataset to Study the Social Media Discourse of Scientific Papers},\ |
|
author={Naman Jain and Mayank Kumar Singh},\ |
|
journal={2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)},\ |
|
year={2021},\ |
|
pages={328-329}\ |
|
}"), |
|
|
|
|
|
SuperSciRepConfig(name="scidocs_view_cite_read", features=SuperSciRepConfig.get_features( |
|
["doc_id", "corpus_id", "title", "abstract", "full_text", "authors", "cited_by", "references", "year"], |
|
{"year": datasets.Value("int32"), |
|
"authors": datasets.Sequence(datasets.Value("string")), |
|
"cited_by": datasets.Sequence(datasets.Value("string")), |
|
"references": datasets.Sequence(datasets.Value("string")) |
|
}), |
|
task_type="metadata", description="", url="scidocs/view_cite_read", |
|
homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\ |
|
title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\ |
|
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\ |
|
booktitle={ACL},\ |
|
year={2020}\ |
|
}"), |
|
|
|
SuperSciRepConfig(name="paper_reviewer_matching", features=SuperSciRepConfig.get_features( |
|
["doc_id", "title", "abstract", "full_text", "corpus_id"], |
|
{}), |
|
task_type="metadata", description="", citation="@inproceedings{Mimno2007ExpertiseMF,\ |
|
title={Expertise modeling for matching papers with reviewers},\ |
|
author={David Mimno and Andrew McCallum},\ |
|
booktitle={KDD '07},\ |
|
year={2007}\ |
|
}, @ARTICLE{9714338,\ |
|
author={Zhao, Yue and Anand, Ajay and Sharma, Gaurav},\ |
|
journal={IEEE Access}, \ |
|
title={Reviewer Recommendations Using Document Vector Embeddings and a Publisher Database: Implementation and Evaluation}, \ |
|
year={2022},\ |
|
volume={10},\ |
|
number={},\ |
|
pages={21798-21811},\ |
|
doi={10.1109/ACCESS.2022.3151640}}") |
|
|
|
] |
|
|