|
import pickle |
|
|
|
import numpy as np |
|
|
|
from evaluation.encoders import Model |
|
from evaluation.eval_datasets import SimpleDataset |
|
from evaluation.evaluator import Evaluator |
|
import argparse |
|
from tqdm import tqdm |
|
|
|
import json |
|
|
|
|
|
def read_data(file_path): |
|
task_data = json.load(open(file_path, "r")) |
|
task_data = list(task_data.values()) |
|
return task_data |
|
|
|
|
|
class S2ANDEvaluator: |
|
|
|
def __init__(self, data_dir: str, model: Model, batch_size: int = 16): |
|
blocks = ["arnetminer", "inspire", "kisti", "pubmed", "qian", "zbmath"] |
|
self.data_dir = data_dir |
|
self.evaluators = [ |
|
Evaluator(block, f"{data_dir}/{block}/{block}_papers.json", SimpleDataset, model, batch_size, [], |
|
"paper_id", process_fn=read_data) for block in blocks] |
|
|
|
def generate_embeddings(self, suffix: str): |
|
for evaluator in tqdm(self.evaluators): |
|
print(evaluator.name) |
|
results = evaluator.generate_embeddings() |
|
paper_ids, embs = np.array([str(k) for k in results]), np.array( |
|
[results[k] for k in results]) |
|
pickle.dump((embs, paper_ids), |
|
open(f"{self.data_dir}/{evaluator.name}/{evaluator.name}_{suffix}.pkl", "wb")) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--mtype', help='Model variant to be used (default, pals, adapters, fusion)', default="default") |
|
parser.add_argument('--model', '-m', help='HuggingFace model to be used') |
|
parser.add_argument('--ctrl-tokens', action='store_true', default=False, help='use control codes for tasks') |
|
parser.add_argument('--adapters-dir', help='path to the adapter checkpoints', default=None) |
|
parser.add_argument('--adapters-chkpt', help='hf adapter names keyed on tasks', default=None, type=json.loads) |
|
parser.add_argument('--fusion-dir', help='path to the fusion checkpoints', default=None) |
|
parser.add_argument("--data-dir", help="path to the data directory") |
|
parser.add_argument("--suffix", help="suffix for output embedding files") |
|
|
|
args = parser.parse_args() |
|
adapters_load_from = args.adapters_dir if args.adapters_dir else args.adapters_chkpt |
|
model = Model(variant=args.mtype, base_checkpoint=args.model, adapters_load_from=adapters_load_from, |
|
fusion_load_from=args.fusion_dir, use_ctrl_codes=args.ctrl_tokens, |
|
task_id="[PRX]", all_tasks=["[CLF]", "[PRX]", "[RGN]", "[QRY]"]) |
|
evaluator = S2ANDEvaluator(args.data_dir, model) |
|
evaluator.generate_embeddings(args.suffix) |
|
|