|
from typing import Union, Dict |
|
|
|
import logging |
|
import os |
|
import datasets |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from evaluation.embeddings_generator import EmbeddingsGenerator |
|
from evaluation.encoders import Model |
|
from evaluation.eval_datasets import SimpleDataset |
|
from evaluation.evaluator import IREvaluator |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ReviewerMatchingEvaluator(IREvaluator): |
|
def __init__(self, name: str, meta_dataset: Union[str, tuple], test_dataset: Union[str, tuple], |
|
reviewer_metadata: Union[str, tuple], model: Model, |
|
metrics: tuple = ("P_5", "P_10"), batch_size: int = 16, fields: list = None): |
|
super(ReviewerMatchingEvaluator, self).__init__(name, meta_dataset, test_dataset, model, metrics, SimpleDataset, |
|
batch_size, fields, ) |
|
self.reviewer_metadata = reviewer_metadata |
|
|
|
def evaluate(self, embeddings, **kwargs): |
|
logger.info(f"Loading test dataset from {self.test_dataset}") |
|
if type(self.test_dataset) == str and os.path.isdir(self.test_dataset): |
|
split_dataset = datasets.load_dataset("json", |
|
data_files={"test_hard": f"{self.test_dataset}/test_hard_qrel.jsonl", |
|
"test_soft": f"{self.test_dataset}/test_soft_qrel.jsonl"}) |
|
else: |
|
split_dataset = datasets.load_dataset(self.test_dataset[0], self.test_dataset[1]) |
|
logger.info(f"Loaded {len(split_dataset['test_hard'])} test query-candidate pairs for hard and soft tests") |
|
if type(embeddings) == str and os.path.isfile(embeddings): |
|
embeddings = EmbeddingsGenerator.load_embeddings_from_jsonl(embeddings) |
|
|
|
qrels_hard = self.get_qc_pairs(split_dataset["test_hard"]) |
|
qrels_soft = self.get_qc_pairs(split_dataset["test_soft"]) |
|
preds = self.retrieval(embeddings, qrels_hard) |
|
results = {f"hard_{k}": v for k, v in self.calc_metrics(qrels_hard, preds).items()} |
|
results.update({f"soft_{k}": v for k, v in self.calc_metrics(qrels_soft, preds).items()}) |
|
self.print_results(results) |
|
return results |
|
|
|
def retrieval(self, embeddings, qrels: Dict[str, Dict[str, int]]) -> Dict[str, Dict[str, float]]: |
|
logger.info("Loading reviewer metadata...") |
|
if type(self.reviewer_metadata) == str and os.path.isdir(self.reviewer_metadata): |
|
reviewer_dataset = datasets.load_dataset("json", data_files={ |
|
"metadata": f"{self.reviewer_metadata}/reviewer_metadata.jsonl"})["metadata"] |
|
else: |
|
reviewer_dataset = datasets.load_dataset(self.reviewer_metadata[0], self.reviewer_metadata[1], |
|
split="metadata") |
|
logger.info(f"Loaded {len(reviewer_dataset)} reviewer metadata") |
|
reviewer_papers = {d["r_id"]: d["papers"] for d in reviewer_dataset} |
|
|
|
run = dict() |
|
for qid in tqdm(qrels): |
|
query = np.array([embeddings[qid]]) |
|
cand_papers = {cid: np.array([embeddings[pid] for pid in reviewer_papers[cid]]) for cid in qrels[qid] if |
|
cid in reviewer_papers} |
|
scores = {cid: cosine_similarity(cand_papers[cid], query).flatten() for cid in cand_papers} |
|
sorted_scores = {cid: sorted(scores[cid], reverse=True) for cid in scores} |
|
run[qid] = {cid: float(np.mean(sorted_scores[cid][:3])) for cid in sorted_scores} |
|
return run |
|
|