super_scirep / reviewer_matching.py
Haoyu He
first upload
99614d2
raw
history blame
3.61 kB
from typing import Union, Dict
import logging
import os
import datasets
import numpy as np
from tqdm import tqdm
from evaluation.embeddings_generator import EmbeddingsGenerator
from evaluation.encoders import Model
from evaluation.eval_datasets import SimpleDataset
from evaluation.evaluator import IREvaluator
from sklearn.metrics.pairwise import cosine_similarity
logger = logging.getLogger(__name__)
class ReviewerMatchingEvaluator(IREvaluator):
def __init__(self, name: str, meta_dataset: Union[str, tuple], test_dataset: Union[str, tuple],
reviewer_metadata: Union[str, tuple], model: Model,
metrics: tuple = ("P_5", "P_10"), batch_size: int = 16, fields: list = None):
super(ReviewerMatchingEvaluator, self).__init__(name, meta_dataset, test_dataset, model, metrics, SimpleDataset,
batch_size, fields, )
self.reviewer_metadata = reviewer_metadata
def evaluate(self, embeddings, **kwargs):
logger.info(f"Loading test dataset from {self.test_dataset}")
if type(self.test_dataset) == str and os.path.isdir(self.test_dataset):
split_dataset = datasets.load_dataset("json",
data_files={"test_hard": f"{self.test_dataset}/test_hard_qrel.jsonl",
"test_soft": f"{self.test_dataset}/test_soft_qrel.jsonl"})
else:
split_dataset = datasets.load_dataset(self.test_dataset[0], self.test_dataset[1])
logger.info(f"Loaded {len(split_dataset['test_hard'])} test query-candidate pairs for hard and soft tests")
if type(embeddings) == str and os.path.isfile(embeddings):
embeddings = EmbeddingsGenerator.load_embeddings_from_jsonl(embeddings)
qrels_hard = self.get_qc_pairs(split_dataset["test_hard"])
qrels_soft = self.get_qc_pairs(split_dataset["test_soft"])
preds = self.retrieval(embeddings, qrels_hard)
results = {f"hard_{k}": v for k, v in self.calc_metrics(qrels_hard, preds).items()}
results.update({f"soft_{k}": v for k, v in self.calc_metrics(qrels_soft, preds).items()})
self.print_results(results)
return results
def retrieval(self, embeddings, qrels: Dict[str, Dict[str, int]]) -> Dict[str, Dict[str, float]]:
logger.info("Loading reviewer metadata...")
if type(self.reviewer_metadata) == str and os.path.isdir(self.reviewer_metadata):
reviewer_dataset = datasets.load_dataset("json", data_files={
"metadata": f"{self.reviewer_metadata}/reviewer_metadata.jsonl"})["metadata"]
else:
reviewer_dataset = datasets.load_dataset(self.reviewer_metadata[0], self.reviewer_metadata[1],
split="metadata")
logger.info(f"Loaded {len(reviewer_dataset)} reviewer metadata")
reviewer_papers = {d["r_id"]: d["papers"] for d in reviewer_dataset}
run = dict()
for qid in tqdm(qrels):
query = np.array([embeddings[qid]])
cand_papers = {cid: np.array([embeddings[pid] for pid in reviewer_papers[cid]]) for cid in qrels[qid] if
cid in reviewer_papers}
scores = {cid: cosine_similarity(cand_papers[cid], query).flatten() for cid in cand_papers}
sorted_scores = {cid: sorted(scores[cid], reverse=True) for cid in scores}
run[qid] = {cid: float(np.mean(sorted_scores[cid][:3])) for cid in sorted_scores}
return run