|
import json |
|
from typing import Union, Dict |
|
|
|
import logging |
|
import os |
|
import datasets |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from evaluation.embeddings_generator import EmbeddingsGenerator |
|
from evaluation.encoders import Model |
|
from evaluation.eval_datasets import SimpleDataset |
|
from evaluation.evaluator import IREvaluator |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class MDCREvaluator(IREvaluator): |
|
def __init__(self, name: str, meta_dataset: Union[str, tuple], test_dataset: Union[str, tuple], model: Model, |
|
metrics: tuple = None, batch_size: int = 16, fields: list = None, key="paper_id"): |
|
super(MDCREvaluator, self).__init__(name, meta_dataset, test_dataset, model, metrics, SimpleDataset, |
|
batch_size, fields, key) |
|
|
|
def get_qc_pairs(self, dataset): |
|
qrpairs = dict() |
|
for fos_dict in dataset: |
|
for fos in fos_dict: |
|
for query in fos_dict[fos]: |
|
qrpairs[query] = dict() |
|
for model in fos_dict[fos][query]: |
|
cands = fos_dict[fos][query][model] |
|
qrpairs[query].update({v: 1 if model == "true" else 0 for v in cands}) |
|
return qrpairs |
|
|
|
def evaluate(self, embeddings, **kwargs): |
|
logger.info(f"Loading test dataset from {self.test_dataset}") |
|
split_dataset = datasets.load_dataset("json", |
|
data_files={"test": self.test_dataset}) |
|
logger.info(f"Loaded {len(split_dataset['test'])} test query-candidate pairs") |
|
if type(embeddings) == str and os.path.isfile(embeddings): |
|
embeddings = EmbeddingsGenerator.load_embeddings_from_jsonl(embeddings) |
|
|
|
qrels_hard = self.get_qc_pairs(split_dataset["test"]) |
|
preds = self.retrieval(embeddings, qrels_hard) |
|
results = dict() |
|
for q, cscores in tqdm(preds.items()): |
|
for c in cscores: |
|
results[f"{q}_{c}"] = cscores[c] |
|
json.dump(results, open("scirepeval_mdcr.json", "w")) |
|
return dict() |
|
|
|
import sys |
|
if __name__ == "__main__": |
|
mname = sys.argv[1] |
|
model = Model(variant="default", base_checkpoint=mname) |
|
evaluator = MDCREvaluator("mcdr", "../mdcr/mdcr_test_data.jsonl", "../mdcr/mdcr_test.json", model, batch_size=32) |
|
embeddings = evaluator.generate_embeddings(save_path="mdcr_embeddings.json") |
|
evaluator.evaluate(embeddings) |
|
|