super_scirep / mdcr.py
Haoyu He
first upload
99614d2
raw
history blame
2.45 kB
import json
from typing import Union, Dict
import logging
import os
import datasets
import numpy as np
from tqdm import tqdm
from evaluation.embeddings_generator import EmbeddingsGenerator
from evaluation.encoders import Model
from evaluation.eval_datasets import SimpleDataset
from evaluation.evaluator import IREvaluator
logger = logging.getLogger(__name__)
class MDCREvaluator(IREvaluator):
def __init__(self, name: str, meta_dataset: Union[str, tuple], test_dataset: Union[str, tuple], model: Model,
metrics: tuple = None, batch_size: int = 16, fields: list = None, key="paper_id"):
super(MDCREvaluator, self).__init__(name, meta_dataset, test_dataset, model, metrics, SimpleDataset,
batch_size, fields, key)
def get_qc_pairs(self, dataset):
qrpairs = dict()
for fos_dict in dataset:
for fos in fos_dict:
for query in fos_dict[fos]:
qrpairs[query] = dict()
for model in fos_dict[fos][query]:
cands = fos_dict[fos][query][model]
qrpairs[query].update({v: 1 if model == "true" else 0 for v in cands})
return qrpairs
def evaluate(self, embeddings, **kwargs):
logger.info(f"Loading test dataset from {self.test_dataset}")
split_dataset = datasets.load_dataset("json",
data_files={"test": self.test_dataset})
logger.info(f"Loaded {len(split_dataset['test'])} test query-candidate pairs")
if type(embeddings) == str and os.path.isfile(embeddings):
embeddings = EmbeddingsGenerator.load_embeddings_from_jsonl(embeddings)
qrels_hard = self.get_qc_pairs(split_dataset["test"])
preds = self.retrieval(embeddings, qrels_hard)
results = dict()
for q, cscores in tqdm(preds.items()):
for c in cscores:
results[f"{q}_{c}"] = cscores[c]
json.dump(results, open("scirepeval_mdcr.json", "w"))
return dict()
import sys
if __name__ == "__main__":
mname = sys.argv[1]
model = Model(variant="default", base_checkpoint=mname)
evaluator = MDCREvaluator("mcdr", "../mdcr/mdcr_test_data.jsonl", "../mdcr/mdcr_test.json", model, batch_size=32)
embeddings = evaluator.generate_embeddings(save_path="mdcr_embeddings.json")
evaluator.evaluate(embeddings)