File size: 14,969 Bytes
ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d 8f6279f ebf411d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from typing import Dict, Any, List
import datasets
class SuperSciRepConfig(datasets.BuilderConfig):
"""BuilderConfig for SuperGLUE."""
def __init__(self, features: Dict[str, Any], task_type: str, citation: str = "",
licenses: str = "", is_training: bool = False, homepage: str = "", url="", **kwargs):
"""BuilderConfig for SuperGLUE.
Args:
features: *list[string]*, list of the features that will appear in the
feature dict. Should not include "label".
data_url: *string*, url to download the zip file from.
citation: *string*, citation for the data set.
url: *string*, url for information about the data set.
label_classes: *list[string]*, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.1.0"), **kwargs)
self.features = features
self.task_type = task_type
self.citation = citation
self.license = licenses
self.is_training = is_training
self.homepage = homepage
self.url = url
@classmethod
def get_features(self, feature_names: List[str], type_mapping: Dict[str, Any] = None) -> Dict[str, Any]:
full_text_mapping = {"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))})}
type_mapping = {**full_text_mapping, **type_mapping}
features = {name: type_mapping[name] if name in type_mapping else datasets.Value("string") for name in
feature_names}
if "corpus_id" in features:
features["corpus_id"] = datasets.Value("uint64")
return features
SUPERSCIREPEVAL_CONFIGS = [
SuperSciRepConfig(name="fos", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "labels", "labels_text"],
{"labels": datasets.Sequence(datasets.Value("int32")),
"labels_text": datasets.Sequence(datasets.Value("string"))}),
task_type="classification (multi-label)", is_training=True, description=""),
SuperSciRepConfig(name="cite_count", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "venue", "n_citations", "log_citations"],
{"n_citations": datasets.Value("int32"),
"log_citations": datasets.Value("float32")}),
task_type="regression", is_training=True, description=""
),
SuperSciRepConfig(name="pub_year", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "year", "venue", "norm_year", "scaled_year", "n_authors", "norm_authors"],
{"year": datasets.Value("int32"), "norm_year": datasets.Value("float32"),
"scaled_year": datasets.Value("float32"), "n_authors": datasets.Value("int32"),
"norm_authors": datasets.Value("float32"), }),
task_type="regression", is_training=True, description=""),
SuperSciRepConfig(name="high_influence_cite",
features=SuperSciRepConfig.get_features(["query", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64")},
"candidates":
[{"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", is_training=True, description=""),
SuperSciRepConfig(name="search",
features=SuperSciRepConfig.get_features(["query", "doc_id", "candidates"],
{"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64"),
"venue": datasets.Value("string"),
"year": datasets.Value("float64"),
"author_names": datasets.Sequence(datasets.Value("string")),
"n_citations": datasets.Value("int32"),
"n_key_citations": datasets.Value("int32"),
"score": datasets.Value("uint32")}]}),
task_type="search", is_training=True, description=""),
SuperSciRepConfig(name="feeds_1",
features=SuperSciRepConfig.get_features(["query", "feed_id", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64")},
"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", description="", url="feeds/feeds_1"),
SuperSciRepConfig(name="feeds_m",
features=SuperSciRepConfig.get_features(["query", "feed_id", "candidates"],
{"query": {
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64")},
"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="proximity", description="", url="feeds/feeds_m"),
SuperSciRepConfig(name="feeds_title",
features=SuperSciRepConfig.get_features(["query", "doc_id", "feed_id", "abbreviations", "candidates"],
{"candidates":
[{
"doc_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value(
"string"),
"full_text": datasets.features.Sequence({"title": datasets.Value("string"), "sentences": datasets.features.Sequence(datasets.Value("string"))}),
"corpus_id": datasets.Value("uint64"),
"score": datasets.Value("uint32")}]}),
task_type="search", description="", url="feeds/feeds_title"),
SuperSciRepConfig(name="peer_review_score_hIndex", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "rating", "confidence", "authors", "decision", "mean_rating", "hIndex"],
{"mean_rating": datasets.Value("float32"),
"rating": datasets.Sequence(datasets.Value("int32")),
"authors": datasets.Sequence(datasets.Value("string")),
"hIndex": datasets.Sequence(datasets.Value("string"))
}),
task_type="regression", description=""
),
SuperSciRepConfig(name="tweet_mentions", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "index", "retweets", "count", "mentions"],
{"index": datasets.Value("int32"), "count": datasets.Value("int32"),
"retweets": datasets.Value("float32"), "mentions": datasets.Value("float32")}),
task_type="regression", description="",
citation="@article{Jain2021TweetPapAD,\
title={TweetPap: A Dataset to Study the Social Media Discourse of Scientific Papers},\
author={Naman Jain and Mayank Kumar Singh},\
journal={2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)},\
year={2021},\
pages={328-329}\
}"),
SuperSciRepConfig(name="scidocs_view_cite_read", features=SuperSciRepConfig.get_features(
["doc_id", "corpus_id", "title", "abstract", "full_text", "authors", "cited_by", "references", "year"],
{"year": datasets.Value("int32"),
"authors": datasets.Sequence(datasets.Value("string")),
"cited_by": datasets.Sequence(datasets.Value("string")),
"references": datasets.Sequence(datasets.Value("string"))
}),
task_type="metadata", description="", url="scidocs/view_cite_read",
homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
booktitle={ACL},\
year={2020}\
}"),
SuperSciRepConfig(name="paper_reviewer_matching", features=SuperSciRepConfig.get_features(
["doc_id", "title", "abstract", "full_text", "corpus_id"],
{}),
task_type="metadata", description="", citation="@inproceedings{Mimno2007ExpertiseMF,\
title={Expertise modeling for matching papers with reviewers},\
author={David Mimno and Andrew McCallum},\
booktitle={KDD '07},\
year={2007}\
}, @ARTICLE{9714338,\
author={Zhao, Yue and Anand, Ajay and Sharma, Gaurav},\
journal={IEEE Access}, \
title={Reviewer Recommendations Using Document Vector Embeddings and a Publisher Database: Implementation and Evaluation}, \
year={2022},\
volume={10},\
number={},\
pages={21798-21811},\
doi={10.1109/ACCESS.2022.3151640}}")
]
|