Datasets:
File size: 1,909 Bytes
2e2787d 548d832 2e2787d 548d832 2e2787d 548d832 2e2787d 548d832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import json
import os
import sys
import pickle
from PIL import Image
from tqdm import tqdm
from utils import parse_face_attributes, json_element_cnt
def mapping(img_folders:str, label_folder:str):
new_data = []
label_data = {}
img_folders = [img_folders+"/"+folder for folder in os.listdir(img_folders) if os.path.isdir(os.path.join(img_folders, folder))]
labels = [label for label in os.listdir(label_folder) if json_element_cnt(os.path.join(label_folder, label)) == 1]
# for label in labels:
for label in tqdm(labels, desc="mapping labels to images"):
label_data[label] = parse_face_attributes(os.path.join(label_folder, label))
print(len(label_data.keys()))
print(list(label_data.keys())[:10])
error = 0
for label_file_name in tqdm(label_data.keys(), desc="mapping images to labels"):
img_idx = label_file_name.split(".")[0]
img_idx_str = f"img000{img_idx}.png"
img_idx_int = int(img_idx)
img_folder_idx = img_idx_int // 1000
# print(img_folders[0])
# print(img_folders[img_folder_idx])
# print(f"loc: {os.path.join(img_folders[img_folder_idx], img_idx_str)}")
# print(os.path.exists(os.path.join(img_folders[img_folder_idx], img_idx_str)))
if os.path.exists(os.path.join(img_folders[img_folder_idx], img_idx_str)):
new_data.append({
# "img": os.path.join(img_folders[img_folder_idx], img_idx_str),
"img": Image.open(os.path.join(img_folders[img_folder_idx], img_idx_str)),
"label": label_data[label_file_name]})
else:
error += 1
print(len(new_data))
print(error)
with open("ffhq_data.pkl", "wb") as f:
pickle.dump(new_data, f)
if __name__ == "__main__":
img_folder = "./temp_data"
label_folder = "./temp_data/ffhq-features-dataset/json"
mapping(img_folder, label_folder) |