ConsisID

ConsisID是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。它具有以下特点:

本指南将指导您使用 ConsisID 生成身份保持的视频。

Load Model Checkpoints

模型权重可以存储在Hub上或本地的单独子文件夹中,在这种情况下,您应该使用 from_pretrained() 方法。

# !pip install consisid_eva_clip insightface facexlib
import torch
from diffusers import ConsisIDPipeline
from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
from huggingface_hub import snapshot_download

# Download ckpts
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")

# Load face helper model to preprocess input face image
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)

# Load consisid base model
pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
pipe.to("cuda")

Identity-Preserving Text-to-Video

对于身份保持的文本到视频生成,需要输入文本提示和包含清晰面部(例如,最好是半身或全身)的图像。默认情况下,ConsisID 会生成 720x480 的视频以获得最佳效果。

from diffusers.utils import export_to_video

prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."
image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true"

id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True)

video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42))
export_to_video(video.frames[0], "output.mp4", fps=8)
Face Image Video Description
The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ......
The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ......
The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ......
The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ......

Citation

通过以下资源了解有关 ConsisID 的更多信息:

< > Update on GitHub