Processors are used to prepare non-textual inputs (e.g., image or audio) for a model.
Example: Using a WhisperProcessor to prepare an audio input for a model.
import { AutoProcessor, read_audio } from '@xenova/transformers';
let processor = await AutoProcessor.from_pretrained('openai/whisper-tiny.en');
let audio = await read_audio('https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac', 16000);
let { input_features } = await processor(audio);
// Tensor {
// data: Float32Array(240000) [0.4752984642982483, 0.5597258806228638, 0.56434166431427, ...],
// dims: [1, 80, 3000],
// type: 'float32',
// size: 240000,
// }CallableFeatureExtractornew ImageFeatureExtractor(config).thumbnail(image, size, [resample]) ⇒ Promise.<RawImage>.crop_margin(image, gray_threshold) ⇒ Promise.<RawImage>.pad_image(pixelData, imgDims, padSize, options) ⇒ *.rescale(pixelData) ⇒ void.get_resize_output_image_size(image, size) ⇒ *.resize(image) ⇒ Promise.<RawImage>.preprocess(image, overrides) ⇒ Promise.<PreprocessedImage>._call(images, ...args) ⇒ Promise.<ImageFeatureExtractorResult>ImageFeatureExtractor._call(images) ⇒ Promise.<DetrFeatureExtractorResult>.post_process_object_detection() : post_process_object_detection.remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels) ⇒ *.check_segment_validity(mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold) ⇒ *.compute_segments(mask_probs, pred_scores, pred_labels, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse, target_size) ⇒ *.post_process_panoptic_segmentation(outputs, [threshold], [mask_threshold], [overlap_mask_area_threshold], [label_ids_to_fuse], [target_sizes]) ⇒ Array.<{segmentation: Tensor, segments_info: Array<{id: number, label_id: number, score: number}>}>Callablenew Processor(feature_extractor)._call(input, ...args) ⇒ Promise.<any>Processor._call(audio) ⇒ Promise.<any>.from_pretrained(pretrained_model_name_or_path, options) ⇒ Promise.<Processor>~center_to_corners_format(arr) ⇒ Array.<number>~enforce_size_divisibility(size, divisor) ⇒ *~HeightWidth : *~ImageFeatureExtractorResult : object~PreprocessedImage : object~DetrFeatureExtractorResult : object~SamImageProcessorResult : objectBase class for feature extractors.
Kind: static class of processors
Extends: Callable
Constructs a new FeatureExtractor instance.
| Param | Type | Description |
|---|---|---|
| config | Object | The configuration for the feature extractor. |
Feature extractor for image models.
Kind: static class of processors
Extends: FeatureExtractor
FeatureExtractornew ImageFeatureExtractor(config).thumbnail(image, size, [resample]) ⇒ Promise.<RawImage>.crop_margin(image, gray_threshold) ⇒ Promise.<RawImage>.pad_image(pixelData, imgDims, padSize, options) ⇒ *.rescale(pixelData) ⇒ void.get_resize_output_image_size(image, size) ⇒ *.resize(image) ⇒ Promise.<RawImage>.preprocess(image, overrides) ⇒ Promise.<PreprocessedImage>._call(images, ...args) ⇒ Promise.<ImageFeatureExtractorResult>Constructs a new ImageFeatureExtractor instance.
| Param | Type | Default | Description |
|---|---|---|---|
| config | Object | The configuration for the feature extractor. | |
| config.image_mean | Array.<number> | The mean values for image normalization. | |
| config.image_std | Array.<number> | The standard deviation values for image normalization. | |
| config.do_rescale | boolean | Whether to rescale the image pixel values to the [0,1] range. | |
| config.rescale_factor | number | The factor to use for rescaling the image pixel values. | |
| config.do_normalize | boolean | Whether to normalize the image pixel values. | |
| config.do_resize | boolean | Whether to resize the image. | |
| config.resample | number | What method to use for resampling. | |
| config.size | number | Object | The size to resize the image to. | |
| [config.do_flip_channel_order] | boolean | false | Whether to flip the color channels from RGB to BGR.
Can be overridden by the |
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any corresponding dimension of the specified size.
Kind: instance method of ImageFeatureExtractor
Returns: Promise.<RawImage> - The resized image.
| Param | Type | Default | Description |
|---|---|---|---|
| image | RawImage | The image to be resized. | |
| size | Object | The size | |
| [resample] | string | 0 | 1 | 2 | 3 | 4 | 5 | 2 | The resampling filter to use. |
Crops the margin of the image. Gray pixels are considered margin (i.e., pixels with a value below the threshold).
Kind: instance method of ImageFeatureExtractor
Returns: Promise.<RawImage> - The cropped image.
| Param | Type | Default | Description |
|---|---|---|---|
| image | RawImage | The image to be cropped. | |
| gray_threshold | number | 200 | Value below which pixels are considered to be gray. |
Pad the image by a certain amount.
Kind: instance method of ImageFeatureExtractor
Returns: * - The padded pixel data and image dimensions.
| Param | Type | Default | Description |
|---|---|---|---|
| pixelData | Float32Array | The pixel data to pad. | |
| imgDims | Array.<number> | The dimensions of the image (height, width, channels). | |
| padSize | * | The dimensions of the padded image. | |
| options | Object | The options for padding. | |
| [options.mode] | 'constant' | 'symmetric' | 'constant' | The type of padding to add. |
| [options.center] | boolean | false | Whether to center the image. |
| [options.constant_values] | number | 0 | The constant value to use for padding. |
Rescale the image’ pixel values by this.rescale_factor.
Kind: instance method of ImageFeatureExtractor
| Param | Type | Description |
|---|---|---|
| pixelData | Float32Array | The pixel data to rescale. |
Find the target (width, height) dimension of the output image after resizing given the input image and the desired size.
Kind: instance method of ImageFeatureExtractor
Returns: * - The target (width, height) dimension of the output image after resizing.
| Param | Type | Description |
|---|---|---|
| image | RawImage | The image to resize. |
| size | any | The size to use for resizing the image. |
Resizes the image.
Kind: instance method of ImageFeatureExtractor
Returns: Promise.<RawImage> - The resized image.
| Param | Type | Description |
|---|---|---|
| image | RawImage | The image to resize. |
Preprocesses the given image.
Kind: instance method of ImageFeatureExtractor
Returns: Promise.<PreprocessedImage> - The preprocessed image.
| Param | Type | Description |
|---|---|---|
| image | RawImage | The image to preprocess. |
| overrides | Object | The overrides for the preprocessing options. |
Calls the feature extraction process on an array of images, preprocesses each image, and concatenates the resulting features into a single Tensor.
Kind: instance method of ImageFeatureExtractor
Returns: Promise.<ImageFeatureExtractorResult> - An object containing the concatenated pixel values (and other metadata) of the preprocessed images.
| Param | Type | Description |
|---|---|---|
| images | Array.<RawImage> | The image(s) to extract features from. |
| ...args | any | Additional arguments. |
Detr Feature Extractor.
Kind: static class of processors
Extends: ImageFeatureExtractor
ImageFeatureExtractor._call(images) ⇒ Promise.<DetrFeatureExtractorResult>.post_process_object_detection() : post_process_object_detection.remove_low_and_no_objects(class_logits, mask_logits, object_mask_threshold, num_labels) ⇒ *.check_segment_validity(mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold) ⇒ *.compute_segments(mask_probs, pred_scores, pred_labels, mask_threshold, overlap_mask_area_threshold, label_ids_to_fuse, target_size) ⇒ *.post_process_panoptic_segmentation(outputs, [threshold], [mask_threshold], [overlap_mask_area_threshold], [label_ids_to_fuse], [target_sizes]) ⇒ Array.<{segmentation: Tensor, segments_info: Array<{id: number, label_id: number, score: number}>}>Calls the feature extraction process on an array of images, preprocesses each image, and concatenates the resulting features into a single Tensor.
Kind: instance method of DetrFeatureExtractor
Returns: Promise.<DetrFeatureExtractorResult> - An object containing the concatenated pixel values of the preprocessed images.
| Param | Type | Description |
|---|---|---|
| images | Array.<RawImage> | The image(s) to extract features from. |
Kind: instance method of DetrFeatureExtractor
Binarize the given masks using object_mask_threshold, it returns the associated values of masks, scores and labels.
Kind: instance method of DetrFeatureExtractor
Returns: * - The binarized masks, the scores, and the labels.
| Param | Type | Description |
|---|---|---|
| class_logits | Tensor | The class logits. |
| mask_logits | Tensor | The mask logits. |
| object_mask_threshold | number | A number between 0 and 1 used to binarize the masks. |
| num_labels | number | The number of labels. |
Checks whether the segment is valid or not.
Kind: instance method of DetrFeatureExtractor
Returns: * - Whether the segment is valid or not, and the indices of the valid labels.
| Param | Type | Default | Description |
|---|---|---|---|
| mask_labels | Int32Array | Labels for each pixel in the mask. | |
| mask_probs | Array.<Tensor> | Probabilities for each pixel in the masks. | |
| k | number | The class id of the segment. | |
| mask_threshold | number | 0.5 | The mask threshold. |
| overlap_mask_area_threshold | number | 0.8 | The overlap mask area threshold. |
Computes the segments.
Kind: instance method of DetrFeatureExtractor
Returns: * - The computed segments.
| Param | Type | Default | Description |
|---|---|---|---|
| mask_probs | Array.<Tensor> | The mask probabilities. | |
| pred_scores | Array.<number> | The predicted scores. | |
| pred_labels | Array.<number> | The predicted labels. | |
| mask_threshold | number | The mask threshold. | |
| overlap_mask_area_threshold | number | The overlap mask area threshold. | |
| label_ids_to_fuse | Set.<number> | | The label ids to fuse. |
| target_size | Array.<number> | | The target size of the image. |
Post-process the model output to generate the final panoptic segmentation.
Kind: instance method of DetrFeatureExtractor
| Param | Type | Default | Description |
|---|---|---|---|
| outputs | * | The model output to post process | |
| [threshold] | number | 0.5 | The probability score threshold to keep predicted instance masks. |
| [mask_threshold] | number | 0.5 | Threshold to use when turning the predicted masks into binary values. |
| [overlap_mask_area_threshold] | number | 0.8 | The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. |
| [label_ids_to_fuse] | Set.<number> | | The labels in this state will have all their instances be fused together. |
| [target_sizes] | Array.<Array<number>> | | The target sizes to resize the masks to. |
Represents a Processor that extracts features from an input.
Kind: static class of processors
Extends: Callable
Callablenew Processor(feature_extractor)._call(input, ...args) ⇒ Promise.<any>Creates a new Processor with the given feature extractor.
| Param | Type | Description |
|---|---|---|
| feature_extractor | FeatureExtractor | The function used to extract features from the input. |
Calls the feature_extractor function with the given input.
Kind: instance method of Processor
Returns: Promise.<any> - A Promise that resolves with the extracted features.
| Param | Type | Description |
|---|---|---|
| input | any | The input to extract features from. |
| ...args | any | Additional arguments. |
Represents a WhisperProcessor that extracts features from an audio input.
Kind: static class of processors
Extends: Processor
Calls the feature_extractor function with the given audio input.
Kind: instance method of WhisperProcessor
Returns: Promise.<any> - A Promise that resolves with the extracted features.
| Param | Type | Description |
|---|---|---|
| audio | any | The audio input to extract features from. |
Helper class which is used to instantiate pretrained processors with the from_pretrained function.
The chosen processor class is determined by the type specified in the processor config.
Example: Load a processor using from_pretrained.
let processor = await AutoProcessor.from_pretrained('openai/whisper-tiny.en');Example: Run an image through a processor.
let processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch16');
let image = await RawImage.read('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg');
let image_inputs = await processor(image);
// {
// "pixel_values": {
// "dims": [ 1, 3, 224, 224 ],
// "type": "float32",
// "data": Float32Array [ -1.558687686920166, -1.558687686920166, -1.5440893173217773, ... ],
// "size": 150528
// },
// "original_sizes": [
// [ 533, 800 ]
// ],
// "reshaped_input_sizes": [
// [ 224, 224 ]
// ]
// }Kind: static class of processors
Instantiate one of the processor classes of the library from a pretrained model.
The processor class to instantiate is selected based on the feature_extractor_type property of the config object
(either passed as an argument or loaded from pretrained_model_name_or_path if possible)
Kind: static method of AutoProcessor
Returns: Promise.<Processor> - A new instance of the Processor class.
| Param | Type | Description |
|---|---|---|
| pretrained_model_name_or_path | string | The name or path of the pretrained model. Can be either:
|
| options | * | Additional options for loading the processor. |
Converts bounding boxes from center format to corners format.
Kind: inner method of processors
Returns: Array.<number> - The coodinates for the top-left and bottom-right corners of the box (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
| Param | Type | Description |
|---|---|---|
| arr | Array.<number> | The coordinate for the center of the box and its width, height dimensions (center_x, center_y, width, height) |
Rounds the height and width down to the closest multiple of size_divisibility
Kind: inner method of processors
Returns: * - The rounded size.
| Param | Type | Description |
|---|---|---|
| size | * | The size of the image |
| divisor | number | The divisor to use. |
Named tuple to indicate the order we are using is (height x width), even though the Graphics’ industry standard is (width x height).
Kind: inner typedef of processors
Kind: inner typedef of processors
Properties
| Name | Type | Description |
|---|---|---|
| pixel_values | Tensor | The pixel values of the batched preprocessed images. |
| original_sizes | Array.<HeightWidth> | Array of two-dimensional tuples like [[480, 640]]. |
| reshaped_input_sizes | Array.<HeightWidth> | Array of two-dimensional tuples like [[1000, 1330]]. |
Kind: inner typedef of processors
Properties
| Name | Type | Description |
|---|---|---|
| original_size | HeightWidth | The original size of the image. |
| reshaped_input_size | HeightWidth | The reshaped input size of the image. |
| pixel_values | Tensor | The pixel values of the preprocessed image. |
Kind: inner typedef of processors
Properties
| Name | Type |
|---|---|
| pixel_mask | Tensor |
Kind: inner typedef of processors
Properties
| Name | Type |
|---|---|
| pixel_values | Tensor |
| original_sizes | Array.<HeightWidth> |
| reshaped_input_sizes | Array.<HeightWidth> |
| [input_points] | Tensor |
| [input_labels] | Tensor |