The ImageBind model was proposed in ImageBind: One Embedding Space To Bind Them All by Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, Ishan Misra. ImageBind is a multimodal joint embedding model for image/video, text, audio, depth, IMU, and thermal images. For any input from these six modalities, it outputs the same-sized embedding that can be used for cross-modal and multimodal tasks.
The abstract from the paper is the following:
We present ImageBind, an approach to learn a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. We show that all combinations of paired data are not necessary to train such a joint embedding, and only image-paired data is sufficient to bind the modalities together. ImageBind can leverage recent large scale vision-language models, and extends their zero-shot capabilities to new modalities just by using their natural pairing with images. It enables novel emergent applications ‘out-of-the-box’ including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation. The emergent capabilities improve with the strength of the image encoder and we set a new state-of-the-art on emergent zero-shot recognition tasks across modalities, outperforming specialist supervised models. Finally, we show strong few-shot recognition results outperforming prior work, and that ImageBind serves as a new way to evaluate vision models for visual and non-visual tasks.
This model was contributed by EduardoPacheco and ruffy369 and dg845 and shehan97. The original code can be found here.
forward
expects only one pair of modalities where one of those MUST be vision modality.get_xxx_features
method or the appropriate ImageBindXxxModelWithProjection
Here’s one example of how to get the embeddings for images, text and audios (this example requires torchaudio
!)
import torch
import torchaudio
from datasets import load_dataset
from transformers import ImageBindModel, ImageBindProcessor
ds = load_dataset("EduardoPacheco/imagebind-example-data", split="train")
images = ds["image"]
text = ds["text"]
audios = ds["audio"] # It's a dict with keys -> array and sampling_rate
audios = [
torchaudio.functional.resample(
torch.from_numpy(audio["array"]),
orig_freq=audio["sampling_rate"],
new_freq=16000
).numpy()
for audio in audios
]
model = ImageBindModel.from_pretrained("EduardoPacheco/imagebind-huge")
processor = ImageBindProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
inputs = processor(text=text, images=images, audios=audios, padding=True, return_tensors="pt")
with torch.no_grad():
audio_embeds = model.get_audio_features(input_features=inputs.input_features)
image_embeds = model.get_image_features(pixel_values=inputs.pixel_values)
text_embeds = model.get_text_features(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask)
# we can compute probs to use for retrieval or zero-shot workflows.
probs_image_text = (image_embeds @ text_embeds.T).softmax(dim=-1)
probs_text_audio = (text_embeds @ audio_embeds.T).softmax(dim=-1)
probs_image_audio = (image_embeds @ audio_embeds.T).softmax(dim=-1)
( text_config: Union = None vision_config: Union = None audio_config: Union = None projection_dim: int = 1024 **kwargs )
Parameters
dict
or ImageBindTextConfig
, optional) —
Dictionary or an instance of ImageBindTextConfig
that defines the text model configuration. dict
or ImageBindVisionConfig
, optional) —
Dictionary or an instance of ImageBindVisionConfig
that defines the vision model configuration. dict
or ImageBindAudioConfig
, optional) —
Dictionary or an instance of ImageBindAudioConfig
that defines the audio model configuration. int
, optional, defaults to 1024) —
Dimentionality of text and vision projection layers. ImageBindConfig is the configuration class to store the configuration of a ImageBindModel. It is used to instantiate a ImageBind model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageBind facebook/imagebind-huge architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import ImageBindConfig, ImageBindModel
>>> # Initializing a ImageBindConfig with facebook/imagebind-huge style configuration
>>> configuration = ImageBindConfig()
>>> # Initializing a ImageBindModel (with random weights) from the facebook/imagebind-huge style configuration
>>> model = ImageBindModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a ImageBindConfig from a ImageBindTextConfig and a ImageBindVisionConfig
>>> from transformers import ImageBindTextConfig, ImageBindVisionConfig
>>> # Initializing a ImageBindText and ImageBindVision configuration
>>> config_text = ImageBindTextConfig()
>>> config_vision = ImageBindVisionConfig()
>>> config = ImageBindConfig.from_text_vision_configs(config_text, config_vision)
( text_config: ImageBindTextConfig vision_config: ImageBindVisionConfig **kwargs ) → ImageBindConfig
Instantiate a ImageBindConfig (or a derived class) from imagebind text model configuration and imagebind vision model configuration.
( vocab_size = 49408 hidden_size = 1024 mlp_ratio = 4.0 projection_dim = 1024 num_hidden_layers = 24 num_attention_heads = 16 max_position_embeddings = 77 hidden_act = 'gelu' layer_norm_eps = 1e-06 add_kv_bias = False attention_dropout = 0.0 drop_path_rate = 0.0 initializer_range = 0.02 initializer_factor = 1.0 logit_scale_init_value = 14.2857 learnable_logit_scale = True pad_token_id = 0 bos_token_id = 49406 eos_token_id = 49407 **kwargs )
Parameters
int
, optional, defaults to 49408) —
Vocabulary size of the ImageBind text model. Defines the number of different tokens that can be represented by
the inputs_ids
passed when calling ImageBindModel. int
, optional, defaults to 1024) —
Dimensionality of the encoder layers and the pooler layer. float
, optional, defaults to 4.0) —
The ratio of the hidden size in the feedforward network to the hidden size in the encoder layers. int
, optional, defaults to 1024) —
If the ImageBind text model has an output projection layer, the dimension to which that projection layer
maps to. int
, optional, defaults to 24) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 77) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "selu"
and "gelu_new"
"gelu"
are supported. float
, optional, defaults to 1e-06) —
The epsilon used by the layer normalization layers. bool
, optional, defaults to False
) —
Whether to add an extra learnable bias token to the attention key and value sequences. This is based on the
add_kv_bias
argument to torch.nn.MultiHeadAttention
. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout probability for the DropPath (stochastic) regularization layers. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1.0) —
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing). float
, optional, defaults to 14.2857) —
The initial value of the logit_scale
parameter for the text component. If None
, the logits will not
be scaled. bool
, optional, defaults to True
) —
Whether the logit_scale
is learnable or fixed. int
, optional, defaults to 0) —
Padding token id. int
, optional, defaults to 49406) —
Beginning of stream token id. int
, optional, defaults to 49407) —
End of stream token id. This is the configuration class to store the configuration of a ImageBindTextModel. It is used to instantiate a ImageBind text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the ImageBind facebook/imagebind-huge architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import ImageBindTextConfig, ImageBindTextModel
>>> # Initializing a ImageBindTextConfig with facebook/imagebind-huge style configuration
>>> configuration = ImageBindTextConfig()
>>> # Initializing a ImageBindTextModel (with random weights) from the facebook/imagebind-huge style configuration
>>> model = ImageBindTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( hidden_size = 1280 mlp_ratio = 4.0 projection_dim = 1024 num_hidden_layers = 32 num_attention_heads = 16 num_channels = 3 num_frames = 2 image_size = 224 patch_size = 14 hidden_act = 'gelu' layer_norm_eps = 1e-06 add_kv_bias = False attention_dropout = 0.0 drop_path_rate = 0.0 initializer_range = 0.02 initializer_factor = 1.0 logit_scale_init_value = None learnable_logit_scale = False **kwargs )
Parameters
int
, optional, defaults to 1280) —
Dimensionality of the encoder layers and the pooler layer. float
, optional, defaults to 4.0) —
The ratio of the hidden size in the feedforward network to the hidden size in the encoder layers. int
, optional, defaults to 1024) —
If the ImageBind vision model has an output projection layer, the dimension to which that projection layer
maps to. int
, optional, defaults to 32) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 3) —
The number of channels in the input images. int
, optional, defaults to 2) —
If using video (spatiotemporal) input, the number of video frames in the spatiotemporal data. int
, optional, defaults to 224) —
The size (resolution) of each image. int
, optional, defaults to 14) —
The size (resolution) of each patch. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "selu"
and "gelu_new"
`"gelu"
are supported. float
, optional, defaults to 1e-06) —
The epsilon used by the layer normalization layers. bool
, optional, defaults to False
) —
Whether to add an extra learnable bias token to the attention key and value sequences. This is based on the
add_kv_bias
argument to torch.nn.MultiHeadAttention
. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout probability for the DropPath (stochastic) regularization layers. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1.0) —
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing). float
, optional) —
The initial value of the logit_scale
parameter for the vision component. If None
, the logits will not
be scaled. bool
, optional, defaults to False
) —
Whether the logit_scale
is learnable or fixed. This is the configuration class to store the configuration of a ImageBindVisionModel. It is used to instantiate a ImageBind vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the ImageBind facebook/imagebind-huge architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import ImageBindVisionConfig, ImageBindVisionModel
>>> # Initializing a ImageBindVisionConfig with facebook/imagebind-huge style configuration
>>> configuration = ImageBindVisionConfig()
>>> # Initializing a ImageBindVisionModel (with random weights) from the facebook/imagebind-huge style configuration
>>> model = ImageBindVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( hidden_size = 768 mlp_ratio = 4.0 projection_dim = 1024 num_hidden_layers = 12 num_attention_heads = 12 num_mel_bins = 128 target_len = 204 num_channels = 1 patch_size = 16 stride = 10 hidden_act = 'gelu' layer_norm_eps = 1e-06 add_kv_bias = True attention_dropout = 0.0 drop_path_rate = 0.1 initializer_range = 0.02 initializer_factor = 1.0 logit_scale_init_value = 20.0 learnable_logit_scale = False **kwargs )
Parameters
int
, optional, defaults to 768) —
Dimensionality of the encoder layers and the pooler layer. float
, optional, defaults to 4.0) —
The ratio of the hidden size in the feedforward network to the hidden size in the encoder layers. int
, optional, defaults to 1024) —
If the ImageBind audio model has an output projection layer, the dimension to which that projection layer
maps to. int
, optional, defaults to 12) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 12) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 128) —
The number of frequency bins in the log-mel spectrogram. int
, optional, defaults to 204) —
The length of the target sequence. int
, optional, defaults to 1) —
The number of channels in the input audio data. int
, optional, defaults to 16) —
The kernel size of the patch embedding 2D convolution layer. int
, optional, defaults to 10) —
The stride of the patch embedding 2D convolution layer. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "selu"
and "gelu_new"
`"gelu"
are supported. float
, optional, defaults to 1e-06) —
The epsilon used by the layer normalization layers. bool
, optional, defaults to True
) —
Whether to add an extra learnable bias token to the attention key and value sequences. This is based on the
add_kv_bias
argument to torch.nn.MultiHeadAttention
. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.1) —
The dropout probability for the DropPath (stochastic) regularization layers. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1.0) —
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing). float
, optional, defaults to 20.0) —
The initial value of the logit_scale
parameter for the audio component. If None
, the logits will not
be scaled. bool
, optional, defaults to False
) —
Whether the logit_scale
is learnable or fixed. This is the configuration class to store the configuration of a ImageBindAudioModel. It is used to instantiate a ImageBind audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of the ImageBind facebook/imagebind-huge architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import ImageBindAudioConfig, ImageBindAudioModel
>>> # Initializing a ImageBindAudioConfig with facebook/imagebind-huge style configuration
>>> configuration = ImageBindAudioConfig()
>>> # Initializing a ImageBindAudioModel (with random weights) from the facebook/imagebind-huge style configuration
>>> model = ImageBindAudioModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( do_resize: bool = True size: Dict = None resample: Resampling = <Resampling.BICUBIC: 3> do_center_crop: bool = True crop_size: Dict = None do_rescale: bool = True rescale_factor: Union = 0.00392156862745098 do_normalize: bool = True image_mean: Union = None image_std: Union = None do_convert_rgb: bool = True do_chunk: bool = True chunk_duration: float = 2.0 num_chunks: int = 5 num_frames_per_chunk: int = 2 fps: int = 30 **kwargs )
Parameters
bool
, optional, defaults to True
) —
Whether to resize the image’s (height, width) dimensions to the specified size
. Can be overridden by
do_resize
in the preprocess
method. Dict[str, int]
optional, defaults to {"shortest_edge" -- 224}
):
Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with
the longest edge resized to keep the input aspect ratio. Can be overridden by size
in the preprocess
method. PILImageResampling
, optional, defaults to Resampling.BICUBIC
) —
Resampling filter to use if resizing the image. Can be overridden by resample
in the preprocess
method. bool
, optional, defaults to True
) —
Whether to center crop the image to the specified crop_size
. Can be overridden by do_center_crop
in the
preprocess
method. Dict[str, int]
optional, defaults to 224) —
Size of the output image after applying center_crop
. Can be overridden by crop_size
in the preprocess
method. bool
, optional, defaults to True
) —
Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by do_rescale
in
the preprocess
method. int
or float
, optional, defaults to 1/255
) —
Scale factor to use if rescaling the image. Can be overridden by rescale_factor
in the preprocess
method. bool
, optional, defaults to True
) —
Whether to normalize the image. Can be overridden by do_normalize
in the preprocess
method. float
or List[float]
, optional, defaults to [0.48145466, 0.4578275, 0.40821073]
) —
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method. float
or List[float]
, optional, defaults to [0.26862954, 0.26130258, 0.27577711]
) —
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method.
Can be overridden by the image_std
parameter in the preprocess
method. bool
, optional, defaults to True
) —
Whether to convert the image to RGB. bool
, optional, defaults to True
) —
Whether to chunk the video into multiple clips. float
, optional, defaults to 2.0) —
Duration of each chunk in seconds. int
, optional, defaults to 5) —
Number of chunks to sample. int
, optional, defaults to 2) —
Number of frames to sample per chunk. int
, optional, defaults to 30) —
Frame rate of the video. It’s assumed that all videos have the same frame rate. Constructs an ImageBind image processor.
( images: Union = None videos: Union = None do_resize: bool = None size: Dict = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: Union = None image_std: Union = None do_convert_rgb: bool = None do_chunk: bool = None chunk_duration: float = None num_chunks: int = None num_frames_per_chunk: int = None fps: int = None return_tensors: Union = None data_format: Optional = <ChannelDimension.FIRST: 'channels_first'> input_data_format: Union = None **kwargs )
Parameters
ImageInput
, optional) —
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set do_rescale=False
. Either images
or
videos
must be provided. VideoInput
, optional) —
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set do_rescale=False
. Either images
or
videos
must be provided. bool
, optional, defaults to self.do_resize
) —
Whether to resize the image. Dict[str, int]
, optional, defaults to self.size
) —
Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with
the longest edge resized to keep the input aspect ratio. int
, optional, defaults to self.resample
) —
Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling
. Only
has an effect if do_resize
is set to True
. bool
, optional, defaults to self.do_center_crop
) —
Whether to center crop the image. Dict[str, int]
, optional, defaults to self.crop_size
) —
Size of the center crop. Only has an effect if do_center_crop
is set to True
. bool
, optional, defaults to self.do_rescale
) —
Whether to rescale the image. float
, optional, defaults to self.rescale_factor
) —
Rescale factor to rescale the image by if do_rescale
is set to True
. bool
, optional, defaults to self.do_normalize
) —
Whether to normalize the image. float
or List[float]
, optional, defaults to self.image_mean
) —
Image mean to use for normalization. Only has an effect if do_normalize
is set to True
. float
or List[float]
, optional, defaults to self.image_std
) —
Image standard deviation to use for normalization. Only has an effect if do_normalize
is set to
True
. bool
, optional, defaults to self.do_convert_rgb
) —
Whether to convert the image to RGB. bool
, optional, defaults to self.do_chunk
) —
Whether to chunk the video into multiple clips. float
, optional, defaults to self.chunk_duration
) —
Duration of each chunk in seconds. int
, optional, defaults to self.num_chunks
) —
Number of chunks to sample. int
, optional, defaults to self.num_frames_per_chunk
) —
Number of frames to sample per chunk. int
, optional, defaults to self.fps
) —
Frame rate of the video. It’s assumed that all videos have the same frame rate. str
or TensorType
, optional) —
The type of tensors to return. Can be one of:np.ndarray
.TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) —
The channel dimension format for the output image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.ChannelDimension
or str
, optional) —
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format."none"
or ChannelDimension.NONE
: image in (height, width) format.Preprocess an image or batch of images.
( feature_size = 1 sampling_rate = 16000 num_mel_bins = 128 max_length = 204 padding_value = 0.0 do_normalize = True mean = -4.268 std = 9.138 do_chunk = True chunk_duration = 2.0 num_chunks = 3 **kwargs )
Parameters
int
, optional, defaults to 1) —
The feature dimension of the extracted features. int
, optional, defaults to 16000) —
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). int
, optional, defaults to 128) —
Number of Mel-frequency bins. int
, optional, defaults to 204) —
Maximum length to which to pad/truncate the extracted features. float
, optional, defaults to 0.0) —
The value to pad with when applying the padding strategy defined by the padding
argument to
[ImageBindAudioFeatureExtractor.call`]. bool
, optional, defaults to True
) —
Whether or not to normalize the log-Mel features using mean
and std
. float
, optional, defaults to -4.268) —
The mean value used to normalize the log-Mel features. Uses the AudioSet mean by default. float
, optional, defaults to 9.138) —
The standard deviation value used to normalize the log-Mel features. Uses the AudioSet standard deviation
by default. bool
, optional, defaults to True
) —
Whether or not to sample multiple chunks from the input audio. If False
, the entire audio will be used. float
, optional, defaults to 2.0) —
The duration of each chunk in seconds. int
, optional, defaults to 3) —
The number of chunks to sample from the input audio. Constructs a Audio Spectrogram Transformer (AST) feature extractor.
This feature extractor inherits from SequenceFeatureExtractor which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech using TorchAudio, pads/truncates them to a fixed length and normalizes them using a mean and standard deviation.
( image_processor tokenizer feature_extractor )
Parameters
CLIPTokenizer
, CLIPTokenizerFast
]) —
An instance of [‘PreTrainedTokenizer`] or PreTrainedTokenizerFast. The tokenizer is a required input. Constructs a ImageBind processor which wraps a ImageBind image processor and feature extracotr and a CLIP tokenizer into a single processor.
ImageBindProcessor offers all the functionalities of ImageBindImageProcessor, ImageBindFeatureExtractor and CLIPTokenizerFast.
See the __call__()
and decode() for more information.
This method forwards all its arguments to ImageBindTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to ImageBindTokenizerFast’s decode(). Please refer to the docstring of this method for more information.
( config: ImageBindConfig )
Parameters
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: FloatTensor input_features: Optional = None input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None return_loss: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
AutoImageProcessor. See ImageBindImageProcessor.call() for details. torch.FloatTensor
of shape (batch_size, num_mel_bins, target_len)
) —
Input features. Padding will be ignored by default should you provide it. Input features can be obtained
using AutoFeatureExtractor. See ImageBindFeatureExtractor.__call__()
for details. torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
bool
, optional) —
Whether or not to return the contrastive loss. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindConfig'>
) and inputs.
torch.FloatTensor
of shape (1,)
, optional, returned when return_loss
is True
) — Contrastive loss for image-text similarity.torch.FloatTensor
of shape (image_batch_size, text_batch_size)
) — The scaled dot product scores between image_embeds
and text_embeds
. This represents the image-text
similarity scores.torch.FloatTensor
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between text_embeds
and image_embeds
. This represents the text-image
similarity scores.torch.FloatTensor
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between audio_embeds
and image_embeds
. This represents the audio-image
similarity scores.torch.FloatTensor
of shape (batch_size, output_dim
) — The normalized text embeddings obtained by applying the projection layer to the pooled output of ImageBindTextModel, then applying L2 normalization and logit scaling.torch.FloatTensor
of shape (batch_size, output_dim
) — The normalized image embeddings obtained by applying the projection layer to the pooled output of ImageBindVisionModel, then applying L2 normalization and logit scaling.torch.FloatTensor
of shape (batch_size, output_dim
) — The normalized audio embeddings obtained by applying the projection layer to the pooled output of ImageBindAudioModel, then applying L2 normalization and logit scaling.BaseModelOutputWithPooling
):
The output of the ImageBindTextModel.BaseModelOutputWithPooling
):
The output of the ImageBindVisionModel.BaseModelOutputWithPooling
):
The output of the ImageBindAudioModel.The ImageBindModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ImageBindModel
>>> model = ImageBindModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of ImageBindTextModel.
The ImageBindModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, ImageBindModel
>>> model = ImageBindModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> tokenizer = AutoTokenizer.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
AutoImageProcessor. See ImageBindImageProcessor.call() for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of ImageBindVisionModel.
The ImageBindModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ImageBindModel
>>> model = ImageBindModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
( input_features: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → audio_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
torch.FloatTensor
of shape (batch_size, num_mel_bins, target_len)
) —
Input features. Padding will be ignored by default should you provide it. Input features can be obtained
using AutoFeatureExtractor. See ImageBindFeatureExtractor.__call__()
for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
audio_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The audio embeddings obtained by applying the projection layer to the pooled output of ImageBindAudioModel.
The ImageBindModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import torchaudio
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, ImageBindModel
>>> ds = load_dataset("EduardoPacheco/imagebind-example-data", split="train")
>>> audio = ds[0]["audio"]
>>> audio = torchaudio.functional.resample(torch.from_numpy(audio["array"]), orig_freq=audio["sampling_rate"], new_freq=16000).numpy()
>>> model = ImageBindModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = processor(audios=audio, return_tensors="pt")
>>> audio_features = model.get_audio_features(**inputs)
( config: ImageBindTextConfig )
Parameters
The text model from ImageBind without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindTextConfig'>
) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The ImageBindTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, ImageBindTextModel
>>> model = ImageBindTextModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> tokenizer = AutoTokenizer.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
( config: ImageBindTextConfig )
Parameters
ImageBind Text Model with a projection layer on top (a linear layer on top of the pooled output).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindTextModelOutput
or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindTextModelOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindTextModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindTextConfig'>
) and inputs.
text_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
optional returned when model is initialized with with_projection=True
) — The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
normalized_text_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
, optional, returned when model is initialized with with_projection=True
) — The normalized text embeddings obtained by applying the projection layer to the pooler_output, then
applying L2 normalization and scaling the logits.
The ImageBindTextModelWithProjection forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, ImageBindTextModelWithProjection
>>> model = ImageBindTextModelWithProjection.from_pretrained("EduardoPacheco/imagebind-huge")
>>> tokenizer = AutoTokenizer.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
( config: ImageBindVisionConfig )
Parameters
The vision model from ImageBind without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
AutoImageProcessor. See ImageBindImageProcessor.call() for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindVisionConfig'>
) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The ImageBindVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ImageBindVisionModel
>>> model = ImageBindVisionModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
( config: ImageBindVisionConfig )
Parameters
ImageBind Vision Model with a projection layer on top (a linear layer on top of the pooled output).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindVisionModelOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) —
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
AutoImageProcessor. See ImageBindImageProcessor.call() for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindVisionModelOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindVisionModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindVisionConfig'>
) and inputs.
image_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
optional returned when model is initialized with with_projection=True
) — The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
normalized_image_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
, optional, returned when model is initialized with with_projection=True
) — The normalized image embeddings obtained by applying the projection layer to the pooler_output, then
applying L2 normalization and scaling the logits.
The ImageBindVisionModelWithProjection forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ImageBindVisionModelWithProjection
>>> model = ImageBindVisionModelWithProjection.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> image_embeds = outputs.image_embeds
( config: ImageBindAudioConfig )
Parameters
The vision model from ImageBind without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_features: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_mel_bins, target_len)
) —
Input features. Padding will be ignored by default should you provide it. Input features can be obtained
using AutoFeatureExtractor. See ImageBindFeatureExtractor.__call__()
for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindTransformerOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindAudioConfig'>
) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The ImageBindAudioModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import torchaudio
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, ImageBindAudioModel
>>> ds = load_dataset("EduardoPacheco/imagebind-example-data", split="train")
>>> audio = ds[0]["audio"]
>>> audio = torchaudio.functional.resample(torch.from_numpy(audio["array"]), orig_freq=audio["sampling_rate"], new_freq=16000).numpy()
>>> model = ImageBindAudioModel.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = processor(audios=audio, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
( config: ImageBindAudioConfig )
Parameters
ImageBind Audio Model with a projection layer on top (a linear layer on top of the pooled output).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_features: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.imagebind.modeling_imagebind.ImageBindAudioModelOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_mel_bins, target_len)
) —
Input features. Padding will be ignored by default should you provide it. Input features can be obtained
using AutoFeatureExtractor. See ImageBindFeatureExtractor.__call__()
for details. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.imagebind.modeling_imagebind.ImageBindAudioModelOutput
or tuple(torch.FloatTensor)
A transformers.models.imagebind.modeling_imagebind.ImageBindAudioModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.imagebind.configuration_imagebind.ImageBindAudioConfig'>
) and inputs.
audio_embeds (torch.FloatTensor
of shape (batch_size, hidden_size)
) — The Audio embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
normalized_audio_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
, optional, returned when model is initialized with with_projection=True
) — The normalized audio embeddings obtained by applying the projection layer to the pooler_output, then
applying L2 normalization and scaling the logits.
The ImageBindAudioModelWithProjection forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import torch
>>> import torchaudio
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, ImageBindAudioModelWithProjection
>>> ds = load_dataset("EduardoPacheco/imagebind-example-data", split="train")
>>> audio = ds[0]["audio"]
>>> audio = torchaudio.functional.resample(torch.from_numpy(audio["array"]), orig_freq=audio["sampling_rate"], new_freq=16000).numpy()
>>> model = ImageBindAudioModelWithProjection.from_pretrained("EduardoPacheco/imagebind-huge")
>>> processor = AutoProcessor.from_pretrained("EduardoPacheco/imagebind-huge")
>>> inputs = processor(audios=audio, return_tensors="pt")
>>> outputs = model(**inputs)
>>> audio_embeds = outputs.audio_embeds