ConsisID是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。有一个 视频 展示了其强大的功能。它具有以下特点:
🔥 基于频率分解:将人物ID特征解耦为高频和低频部分,从频域的角度分析DIT架构的特性,并且基于此特性设计合理的控制信息注入方式。
🔥 一致性训练策略:我们提出粗到细训练策略、动态掩码损失、动态跨脸损失,进一步提高了模型的泛化能力和身份保持效果。
🔥 推理无需微调:之前的方法在推理前,需要对输入id进行case-by-case微调,时间和算力开销较大,而我们的方法是tuning-free的。
有关更多信息,请参阅论文。本指南将指导您使用 ConsisID 生成身份保持的视频。
模型权重可以存储在Hub上或本地的单独子文件夹中,在这种情况下,您应该使用 from_pretrained()
方法。
import torch
from diffusers import ConsisIDPipeline
from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer
from huggingface_hub import snapshot_download
# Download ckpts
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
# Load face helper model to preprocess input face image
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)
# Load consisid base model
pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
pipe.to("cuda")
对于身份保持的文本到视频生成,需要输入文本提示和包含清晰面部(例如,最好是半身或全身)的图像。默认情况下,ConsisID 会生成 720x480 的视频以获得最佳效果。
from diffusers.utils import export_to_video
prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."
image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true"
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True)
is_kps = getattr(pipe.transformer.config, 'is_kps', False)
kps_cond = face_kps if is_kps else None
video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42))
export_to_video(video.frames[0], "output.mp4", fps=8)
Face Image | Video | Description |
---|---|---|
The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ...... | ||
The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ...... | ||
The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ...... | ||
The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ...... |
如果您发现ConsisID对您的研究有用,请给我们Repo点个Star或者在文章中引用ConsisID。
@article{yuan2024identity,
title={Identity-Preserving Text-to-Video Generation by Frequency Decomposition},
author={Yuan, Shenghai and Huang, Jinfa and He, Xianyi and Ge, Yunyuan and Shi, Yujun and Chen, Liuhan and Luo, Jiebo and Yuan, Li},
journal={arXiv preprint arXiv:2411.17440},
year={2024}
}