File size: 4,908 Bytes
d06f140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import torch
import torch.utils.data
from PIL import Image, ImageDraw
from torchvision import transforms

from cvat_preprocessor import CVATPreprocessor

DEBUG = True

class DTSegmentationDataset(torch.utils.data.Dataset):
    """
    Dataloader for the Duckietown dataset.
    Loads the images and the corresponding segmentation targets.
    """
    PATH_TO_ANNOTATIONS = "offline learning/semantic segmentation/data/annotations/"
    PATH_TO_IMAGES = "offline learning/semantic segmentation/data/frames/"
    CVAT_XML_FILENAME = "segmentation_annotation.xml"
    SEGM_LABELS = {
        'Background': {'id': 0, 'rgb_value': [0, 0, 0]}, # black
        'Ego Lane': {'id': 1, 'rgb_value': [102, 255, 102]}, # green
        'Opposite Lane': {'id': 2, 'rgb_value': [245, 147, 49]}, # orange
        'Obstacle': {'id': 3, 'rgb_value': [184, 61, 245]}, # purple
        'Road End': {'id': 4, 'rgb_value': [250, 50, 83]}, # red
        'Intersection': {'id': 5, 'rgb_value': [50, 183, 250]}, # blue
        'Middle Lane': {'id': 6, 'rgb_value': [255, 255, 0]}, # yellow
        'Side Lane': {'id': 7, 'rgb_value': [255, 255, 255]}, # white
    }
    
    def __init__(self):
        super(DTSegmentationDataset, self).__init__()
        # Store the list of all image names
        self.imgs = CVATPreprocessor.get_all_image_names(self.PATH_TO_ANNOTATIONS + self.CVAT_XML_FILENAME)

    def __getitem__(self, idx):
        image_name = self.imgs[idx]
        if DEBUG:
            print(f"Fetching image {image_name}")
        # load the image
        img = Image.open(self.PATH_TO_IMAGES + image_name).convert("RGB")
        
        # load the associated segmentation mask (list of polygons)
        all_polygons = CVATPreprocessor.get_all_image_polygons(image_name, self.PATH_TO_ANNOTATIONS + self.CVAT_XML_FILENAME)
        
        # Create a target image with the same spacial dimensions as the original image 
        # but a separate channel for each label
        target = np.zeros((640, 480)).astype(np.longlong)
        
        # Generate a random angle for rotation only once for both the image and the mask
        random_angle = np.random.randint(-10, 10)
        
        # Fill each channel with 1s where the corresponding label is present and 0s otherwise
        for label, polygons in all_polygons.items():            
            # Create an empty bitmask for the current label and draw all label-associated polygons on it
            mask = Image.new('L', img.size, 0)
            drawer = ImageDraw.Draw(mask)
            for polygon in polygons:
                drawer.polygon(polygon, outline=255, fill=255)
            # Show the mask for extra debugging
            # mask.show()
            
            # Rotate the mask
            mask = transforms.Compose([
                transforms.Resize((640, 480))
            ])(mask)
            mask = transforms.functional.rotate(mask, random_angle)

            mask = np.array(mask) == 255
            if DEBUG:
                print(f"Label '{label}' has {np.sum(mask)} pixels. Assigning them a value {self.SEGM_LABELS[label]['id']}")
            
            # Merge three road classes into one to improve the performance of the model
            if label in ['Ego Lane', 'Opposite Lane', 'Intersection']:
                target[mask] = self.SEGM_LABELS['Ego Lane']['id']
            else:
                target[mask] = self.SEGM_LABELS[label]['id']
        
        img = transforms.Compose([
            transforms.ToTensor(), 
            transforms.Resize((640, 480)),
            transforms.ColorJitter(brightness=0.7, contrast=0.6, saturation=0.2),
            # Normalize the image with the mean and standard deviation of the ImageNet dataset
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])(img)
        img = transforms.functional.rotate(img, random_angle)
        
        target = torch.from_numpy(target)
        
        return img, target
    
    def __len__(self):
        return len(self.imgs)
    
    @staticmethod
    def label_img_to_rgb(label_img):
        """
        Converts a label image (with one channel per label) to an RGB image.
        """
        rgb_img = np.zeros((label_img.shape[0], label_img.shape[1], 3), dtype=np.uint8)
        for label, label_info in DTSegmentationDataset.SEGM_LABELS.items():
            mask = label_img == label_info['id']
            rgb_img[mask] = label_info['rgb_value']
        return rgb_img


# ---------------------
# Randomly select a batch of images and masks from the dataset 
# and visualize them to check if the dataloader works correctly

if __name__ == "__main__":
    if DEBUG:
        dataset = DTSegmentationDataset()
        image, target = dataset[0]
        transforms.ToPILImage()(image).show()
        transforms.ToPILImage()(DTSegmentationDataset.label_img_to_rgb(target)).show()