// Tree Training // Solution by Jacob Plachta #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x < 0 ? -x : x); } template T Sqr(T x) { return(x * x); } string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #define GETCHAR getchar_unlocked bool Read(int& x) { char c, r = 0, n = 0; x = 0; for (;;) { c = GETCHAR(); if ((c < 0) && (!r)) return(0); if ((c == '-') && (!r)) n = 1; else if ((c >= '0') && (c <= '9')) x = x * 10 + c - '0', r = 1; else if (r) break; } if (n) x = -x; return(1); } #define MOD 1000000007 #define LIM 1000005 #define LOG 20 int N, M; char S[LIM]; int Z[LIM]; int DS[LIM]; int TreeCnt(int h) // # of nodes in binary tree with height h { return((1 << (h + 1)) - 1); } // E(z, s, h) = max. *s which can fit alongside z 0s (with s *s before the 1st 0) in a tree of height at most h (only relevant for z > 0) int E(int z, int s, int h) { if (h >= LOG) return(N); int left = min(s, h + 1 - z); // *s at root and along leftmost branch int cnt = TreeCnt(h); // full tree cnt -= TreeCnt(h - left); // subtract subtree of 1st 0 if (cnt >= s) cnt += TreeCnt(h - left - 1); // add back right subtree of 1st 0 return(cnt); } // F(p, z, s) = min. tree height for p *s, z 0s, and s *s before 1st 0 (s ignored if z = 0) int F(int p, int z, int s) { int r1 = z ? (s > 0 ? z : z - 1) : 0; int r2 = max(r1, min(LOG, p + z - 1)); while (r1 < r2) { int m = (r1 + r2) >> 1; if ((z ? E(z, s, m) : TreeCnt(m)) >= p) r2 = m; else r1 = m + 1; } return(r1); } int ProcessCase() { int i, j, z; // input scanf("%s", &S); N = strlen(S); // find 0s M = 0; Z[M++] = -1; Fox(i, N) if (S[i] == '0') Z[M++] = i; Z[M++] = N; // A) z = 0 int ans = 0; int v = 0, s = 0; Fill(DS, 0); Fox1(i, M - 1) { int x = Z[i] - Z[i - 1] - 1; // sequence of x *s before ith 0 v += x; DS[2]--, DS[x + 2]++; } Fox1(i, N) { s += DS[i]; v += s; ans = (ans + (LL)v * F(i, 0, 0)) % MOD; } // B) 1 <= z <= LOG Fox1(z, LOG) // z 0s { Fox1(i, M - z - 1) // ith 0 as the leftmost 0 { int j = i + z - 1; int c1 = Z[i] - Z[i - 1] - 1; // c1 *s to the left int c2 = Z[j + 1] - Z[j] - 1; // c2 *s to the right int m = Z[j] - Z[i] + 1 - z; // m *s in between Fox(s, c1 + 1) // use s *s to the left { int p = s + m, mp = s + m + c2; int h = F(p, z, s); while (p <= mp) { int p2 = min(mp, E(z, s, h)); ans = (ans + (LL)(p2 - p + 1) * h) % MOD; p = p2 + 1, h++; } } } } // C) z > LOG Fox1(i, M - 2) // count contribution of the ith 0 { // add # of intervals containing it ans = (ans + (LL)(Z[i] + 1) * (N - Z[i])) % MOD; // subtract # of intervals containing it, with <= LOG 0s FoxI(j, max(1, i - LOG + 1), i) // jth 0 as the leftmost 0 { int k = min(M - 1, j + LOG); // first disallowed 0 int c = (LL)(Z[j] - Z[j - 1]) * (Z[k] - Z[i]) % MOD; ans = (ans + MOD - c) % MOD; } // subtract # of intervals starting with it, with > LOG 0s int j = i + LOG; if (j < M) ans = (ans + MOD - (N - Z[j])) % MOD; } return(ans); } int main() { int T, t; Read(T); Fox1(t, T) printf("Case #%d: %d\n", t, ProcessCase()); return(0); }