// Seafood // Solution by Jacob Plachta #define DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x<0 ? -x : x); } template T Sqr(T x) { return(x*x); } string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #if DEBUG #define GETCHAR getchar #else #define GETCHAR getchar_unlocked #endif bool Read(int &x) { char c,r=0,n=0; x=0; for(;;) { c=GETCHAR(); if ((c<0) && (!r)) return(0); if ((c=='-') && (!r)) n=1; else if ((c>='0') && (c<='9')) x=x*10+c-'0',r=1; else if (r) break; } if (n) x=-x; return(1); } #define LIM 800001 int N,K; int G[2][LIM]; char O[LIM]; pair< int, pair > P[LIM]; int C[LIM],B[LIM]; int sufCB[LIM],sufCH[LIM]; int ss,nfr; PR st[LIM],fr[LIM]; int main() { if (DEBUG) freopen("in.txt","r",stdin); // vars int T,t; int i,j,a,b,c,d,p; LL ans; // testcase loop Read(T); Fox1(t,T) { // input, and generate values Read(N); Fox(i,2) { Read(G[i][0]),Read(G[i][1]),Read(a),Read(b),Read(c),Read(d); FoxI(j,2,N-1) G[i][j]=((LL)a*G[i][j-2] + (LL)b*G[i][j-1] + c)%d+1; } scanf("%s",&O); Fox(i,N) P[i]=mp(G[0][i],mp(O[i],G[1][i])); // sort objects by position sort(P,P+N); // get list of clams K=0; Fox(i,N) if (P[i].y.x=='C') C[K++]=i; // get list of useful rocks up to final clam ss=0; FoxR(i,C[K-1]) if ((P[i].y.x=='R') && ((!ss) || (P[i].y.y>st[ss-1].x))) st[ss++]=mp(P[i].y.y,P[i].x); // get clams' backtrack positions Fill(B,-1); Fox(i,K) { j=lower_bound(st,st+ss,mp(P[C[i]].y.y+1,0))-st; if (j==ss) break; B[i]=st[j].y; } // precompute suffix mins/maxes of clams' backtrack positions/hardnesses sufCB[K]=INF,sufCH[K]=0; FoxR(i,K) { sufCB[i]=min(sufCB[i+1],B[i]); sufCH[i]=max(sufCH[i+1],P[C[i]].y.y); } // get list of useful rocks past final clam nfr=0; FoxI(i,C[K-1]+1,N-1) if ((!nfr) || (P[i].y.y>fr[nfr-1].x)) fr[nfr++]=mp(P[i].y.y,P[i].x); // DP ans=2*INF; ss=0; Fox(i,K) { // perform optional transition from an earlier clam if (!i) d=0; else { p=P[C[i-1]].x; while (ss>1) { a=st[ss-1].y; b=min(a,st[ss-2].y); if ((LL)st[ss-1].x+2*max(0,p-a)<(LL)st[ss-2].x+2*max(0,p-b)) break; st[ss-2].y=b; ss--; } d=st[ss-1].x+2*max(0,p-st[ss-1].y); } st[ss++]=mp(d,B[i]); // consider concluding with transition to final clam p=P[C[K-1]].x; if (sufCB[i]>=0) Min(ans,(LL)d+max(0,p-sufCB[i])); a=lower_bound(fr,fr+nfr,mp(sufCH[i]+1,0))-fr; if (a