// Running on Fumes - Chapter 2 // Solution by Jacob Plachta #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x < 0 ? -x : x); } template T Sqr(T x) { return(x * x); } string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #define GETCHAR getchar_unlocked bool Read(int& x) { char c, r = 0, n = 0; x = 0; for (;;) { c = GETCHAR(); if ((c < 0) && (!r)) return(0); if ((c == '-') && (!r)) n = 1; else if ((c >= '0') && (c <= '9')) x = x * 10 + c - '0', r = 1; else if (r) break; } if (n) x = -x; return(1); } #define LIM 1000008 #define LIM2 2100000 int N, M, A, B; vector con[LIM]; int P[LIM], C[LIM]; int mZ, mD, mHas[LIM], mC[LIM]; int sz; LL tree[LIM2]; // DFS from node i, while populating parents void rec1(int i) { int j, c; Fox(j, Sz(con[i])) if ((c = con[i][j]) != P[i]) { P[c] = i; rec1(c); } } // DFS from node i, with depth d and previous node p, while populating min. C values per depth void rec2(int i, int d, int p) { int j, c; if (C[i]) { Max(mD, d); if (mHas[d] == mZ) Min(mC[d], C[i]); else mHas[d] = mZ, mC[d] = C[i]; } Fox(j, Sz(con[i])) if ((c = con[i][j]) != P[i]) if (c != p) rec2(c, d + 1, p); } // update value at index i in segment tree to be at most v void Update(int i, LL v) { i += sz; while (i) { Min(tree[i], v); i >>= 1; } } // query min. value in segment tree within indices [a, b] LL Query(int i, int r1, int r2, int a, int b) { if (a <= r1 && r2 <= b) return(tree[i]); i <<= 1; int m = (r1 + r2) >> 1; LL ret = (LL)INF * INF; if (a <= m) Min(ret, Query(i, r1, m, a, b)); if (b > m) Min(ret, Query(i + 1, m + 1, r2, a, b)); return(ret); } LL ProcessCase() { int i, j, k, p, d; // input Read(N), Read(M), Read(A), Read(B); Fox1(i, N) { Read(j), Read(C[i]); if (j) { con[i].pb(j); con[j].pb(i); } } // root tree at B P[B] = -1; rec1(B); // init segment tree of min. costs Fill(tree, 60); for (sz = 1; sz < N; sz <<= 1); // iterate along path from A to B while maintaining segment tree Update(0, 0); for (p = A, i = P[A], k = 1; i != B; p = i, i = P[i], k++) { // explore branches off of main path mZ++, mD = -1; rec2(i, 0, p); // consider refueling here or within an attached branch Fox(d, mD + 1) if (k - d >= 0 && mHas[d] == mZ) { LL m = Query(1, 0, sz - 1, max(0, k - (M - d)), k); Update(k - d, m + mC[d]); } } // clear graph Fox1(i, N) con[i].clear(); // get answer LL ans = Query(1, 0, sz - 1, max(0, k - M), k - 1); return ans >= (LL)INF * INF ? -1 : ans; } int main() { int T, t; Read(T); Fox1(t, T) printf("Case #%d: %lld\n", t, ProcessCase()); return(0); }