#include #include #include #include #include using namespace std; struct segment { int l, r, rep, gcd; segment(int _l = 0, int _r = 0, int _rep = -1, int _gcd = 0) : l(_l), r(_r), rep(_rep), gcd(_gcd ? _gcd : (r - l + 1)) {} int length() const { return r - l + 1; } }; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); template class implicit_treap { static T join_values(const T &a, const T &b) { // Really, only the GCD matters for non-leaf nodes. return segment(min(a.l, b.l), max(a.r, b.r), 0, __gcd((unsigned)a.gcd, (unsigned)b.gcd)); } static T join_deltas(const T &d1, const T &d2) { return d2; } static T join_value_with_delta(const T &v, const T &d, int len) { return d; } struct node_t { T value, subtree_value, delta; bool pending; int size, priority; node_t *left, *right; node_t(const T &v) : value(v), subtree_value(v), pending(false), size(1), priority(rng()), left(nullptr), right(nullptr) {} } * root; static int size(node_t *n) { return (n == nullptr) ? 0 : n->size; } static void update_value(node_t *n) { if (n == nullptr) { return; } n->subtree_value = n->value; if (n->left != nullptr) { n->subtree_value = join_values(n->subtree_value, n->left->subtree_value); } if (n->right != nullptr) { n->subtree_value = join_values(n->subtree_value, n->right->subtree_value); } n->size = 1 + size(n->left) + size(n->right); } static void update_delta(node_t *n, const T &d) { if (n != nullptr) { n->delta = n->pending ? join_deltas(n->delta, d) : d; n->pending = true; } } static void push_delta(node_t *n) { if (n == nullptr || !n->pending) { return; } n->value = join_value_with_delta(n->value, n->delta, 1); n->subtree_value = join_value_with_delta(n->subtree_value, n->delta, n->size); if (n->size > 1) { update_delta(n->left, n->delta); update_delta(n->right, n->delta); } n->pending = false; } static void merge(node_t *&n, node_t *left, node_t *right) { push_delta(left); push_delta(right); if (left == nullptr) { n = right; } else if (right == nullptr) { n = left; } else if (left->priority < right->priority) { merge(left->right, left->right, right); n = left; } else { merge(right->left, left, right->left); n = right; } update_value(n); } static void split(node_t *n, node_t *&left, node_t *&right, int i) { push_delta(n); if (n == nullptr) { left = right = nullptr; } else if (i <= size(n->left)) { split(n->left, left, n->left, i); right = n; } else { split(n->right, n->right, right, i - size(n->left) - 1); left = n; } update_value(n); } static void insert(node_t *&n, node_t *new_node, int i) { push_delta(n); if (n == nullptr) { n = new_node; } else if (new_node->priority < n->priority) { split(n, new_node->left, new_node->right, i); n = new_node; } else if (i <= size(n->left)) { insert(n->left, new_node, i); } else { insert(n->right, new_node, i - size(n->left) - 1); } update_value(n); } static void erase(node_t *&n, int i) { push_delta(n); if (i == size(n->left)) { delete n; merge(n, n->left, n->right); } else if (i < size(n->left)) { erase(n->left, i); } else { erase(n->right, i - size(n->left) - 1); } update_value(n); } static node_t *select(node_t *n, int i) { push_delta(n); if (i < size(n->left)) { return select(n->left, i); } if (i > size(n->left)) { return select(n->right, i - size(n->left) - 1); } return n; } template static int rank(node_t *n, const TComp &cmp) { // assert(n != nullptr); push_delta(n); int r = size(n->left), cmp_res = cmp(n->value); if (cmp_res < 0) { return rank(n->left, cmp); } if (cmp_res > 0) { return rank(n->right, cmp) + r + 1; } return r; } void clean_up(node_t *&n) { if (n != nullptr) { clean_up(n->left); clean_up(n->right); delete n; } } public: implicit_treap(int n = 0, const T &v = T()) : root(nullptr) { for (int i = 0; i < n; i++) { push_back(v); } } template implicit_treap(It lo, It hi) : root(nullptr) { for (; lo != hi; ++lo) { push_back(*lo); } } ~implicit_treap() { clean_up(root); } int size() const { return size(root); } bool empty() const { return root == nullptr; } void insert(int i, const T &v) { insert(root, new node_t(v), i); } void erase(int i) { erase(root, i); } void push_back(const T &v) { insert(size(), v); } void pop_back() { erase(size() - 1); } T at(int i) const { return select(root, i)->value; } void update(int i, const T &d) { update(i, i, d); } void update(int lo, int hi, const T &d) { node_t *l1, *r1, *l2, *r2, *t; split(root, l1, r1, hi + 1); split(l1, l2, r2, lo); update_delta(r2, d); merge(t, l2, r2); merge(root, t, r1); } T query(int lo, int hi) { node_t *l1, *r1, *l2, *r2, *t; split(root, l1, r1, hi + 1); split(l1, l2, r2, lo); T res = r2->subtree_value; merge(t, l2, r2); merge(root, t, r1); return res; } template int rank(const TComp &cmp) const { return rank(root, cmp); } }; implicit_treap T; void update_parent(int i, int p_new) { // Find the rank j of the segment containing i. int j = T.rank([&](const segment &s) { return i < s.l ? -1 : (i > s.r ? 1 : 0); }); segment curr = T.at(j); if (curr.length() == 1) { // Just update it. curr.rep = p_new; T.update(j, curr); } else { // Break up the segment. segment lseg(curr.l, i - 1, curr.rep); segment mseg(i, i, p_new); segment rseg(i + 1, curr.r, curr.rep); // Erase the old segment. T.erase(j); // Insert new segs, if non-zero length. if (rseg.length() > 0) { T.insert(j, rseg); } T.insert(j, mseg); curr = mseg; if (lseg.length() > 0) { T.insert(j, lseg); j++; // Make sure j still points to mseg. } // If j is broken up of 2 segments, then we might still need to merge it. } // If segment j - 1 has rep p_new, merge segment j left with j - 1. if (j - 1 >= 0 && T.at(j - 1).rep == p_new) { segment prev(T.at(j - 1).l, curr.r, p_new); T.update(j - 1, prev); T.erase(j); curr = prev; // Set curr to the merged segment. j--; } // If segment j + 1 has rep p_new, merge segment j right with j + 1. if (j + 1 < T.size() && T.at(j + 1).rep == p_new) { segment next(curr.l, T.at(j + 1).r, p_new); T.update(j + 1, next); T.erase(j); } } struct disjoint_sets { vector> values; vector parent, color_of_parent, parent_of_color; public: disjoint_sets(int N) : values(N), parent(N), color_of_parent(N), parent_of_color(N) { for (int i = 0; i < N; i++) { values[i] = {i}; parent[i] = i; color_of_parent[i] = i; parent_of_color[i] = i; } } // O(M + N log N) across M calls to unite(), not including update_parent(). void unite(int a, int b) { a = parent[a]; b = parent[b]; if (a != b) { if (values[a].size() < values[b].size()) { swap(a, b); } while (!values[b].empty()) { int v = values[b].back(); values[b].pop_back(); update_parent(v, a); parent[v] = a; color_of_parent[v] = color_of_parent[a]; values[a].push_back(v); } } } void repaint(int c1, int c2) { int pa = parent_of_color[c1]; if (pa == -1) { return; } color_of_parent[pa] = c2; parent_of_color[c1] = -1; int pb = parent_of_color[c2]; if (pb == -1) { parent_of_color[c2] = pa; return; } unite(pa, pb); color_of_parent[pb] = c2; parent_of_color[c2] = parent[pb]; } }; long long solve() { int N, M; cin >> N >> M; vector A(M), B(M), ans(N + 1, -1); disjoint_sets DS(N); for (int i = 0; i < M; i++) { cin >> A[i] >> B[i]; --A[i], --B[i]; } ans[0] = ans[1] = 0; // Initialize segments. T = implicit_treap(); for (int i = 0; i < N; i++) { T.push_back(segment(i, i, i)); } for (int i = 0; i < M; i++) { DS.repaint(A[i], B[i]); if (T.size() == 1) { // All segments are unified. All K_i's are possible now. for (int k = 1; k <= N; k++) { if (ans[k] == -1) { ans[k] = i + 1; } } break; } auto update_ans = [&](int k, int t) { if (ans[k] == -1) { ans[k] = t + 1; } }; for (int lastseg : {T.size() - 1, T.size() - 2}) { int gcd = T.query(0, lastseg).gcd; update_ans(gcd, i); // Directly update any K = gcd. double lim = sqrt(gcd); for (int d = 1; d <= lim; d++) { if (gcd % d == 0) { if (gcd / d != d) { update_ans(d, i); } update_ans(gcd / d, i); } } } } return accumulate(ans.begin(), ans.end(), 0LL); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; for (int t = 1; t <= T; t++) { cout << "Case #" << t << ": " << solve() << endl; } return 0; }