// Ladders and Snakes // Solution by Jacob Plachta #define DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define LD long double #define PR pair #define Fox(i,n) for (i=0; i=0; i--) #define FoxR1(i,n) for (i=n; i>0; i--) #define FoxRI(i,a,b) for (i=b; i>=a; i--) #define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++) #define Min(a,b) a=min(a,b) #define Max(a,b) a=max(a,b) #define Sz(s) int((s).size()) #define All(s) (s).begin(),(s).end() #define Fill(s,v) memset(s,v,sizeof(s)) #define pb push_back #define mp make_pair #define x first #define y second template T Abs(T x) { return(x<0 ? -x : x); } template T Sqr(T x) { return(x*x); } string plural(string s) { return(Sz(s) && s[Sz(s)-1]=='x' ? s+"en" : s+"s"); } const int INF = (int)1e9; const LD EPS = 1e-12; const LD PI = acos(-1.0); #if DEBUG #define GETCHAR getchar #else #define GETCHAR getchar_unlocked #endif bool Read(int &x) { char c,r=0,n=0; x=0; for(;;) { c=GETCHAR(); if ((c<0) && (!r)) return(0); if ((c=='-') && (!r)) n=1; else if ((c>='0') && (c<='9')) x=x*10+c-'0',r=1; else if (r) break; } if (n) x=-x; return(1); } #define LIM 50 struct Dinic { struct Edge { int to, rev, c, f; Edge(int to, int rev, int c, int f) : to(to), rev(rev), c(c), f(f) {} }; vector lvl, ptr, q; vector< vector > adj; Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {} void addEdge(int a, int b, int c) { adj[a].pb(Edge(b, Sz(adj[b]), c, 0)); adj[b].pb(Edge(a, Sz(adj[a]) - 1, 0, 0)); } int dfs(int v, int t, int f) { if (v == t || !f) return f; for (int& i = ptr[v]; i < Sz(adj[v]); i++) { Edge& e = adj[v][i]; if (lvl[e.to] == lvl[v] + 1) { if (int p = dfs(e.to, t, min(f, e.c - e.f))) { e.f += p, adj[e.to][e.rev].f -= p; return p; } } } return 0; } int calc(int s, int t) { int L, flow = 0; q[0] = s; Fox(L,31) { do { lvl = ptr = vector(Sz(q)); int qi = 0, qe = lvl[s] = 1; while (qi < qe && !lvl[t]) { int i, v = q[qi++]; Fox(i,Sz(adj[v])) { Edge e=adj[v][i]; if (!lvl[e.to] && (e.c - e.f) >> (30 - L)) { q[qe++] = e.to, lvl[e.to] = lvl[v] + 1; } } } while (int p = dfs(s, t, INF)) flow += p; } while (lvl[t]); } return flow; } }; int main() { if (DEBUG) freopen("in.txt","r",stdin); // vars int T,t; int N,H; int i,j,k; int X[LIM],A[LIM],B[LIM]; // testcase loop Read(T); Fox1(t,T) { // input Read(N),Read(H); Fox(i,N) Read(X[i]),Read(A[i]),Read(B[i]); // construct flow graph Dinic D(N+2); Fox(i,N) { // connected to bottom? if (A[i]==0) D.addEdge(N,i,1e7); // connected to top? if (B[i]==H) D.addEdge(i,N+1,1e7); // consider connections to other ladders Fox(j,N) if (X[i] > E; Fox(k,N) if ((X[i]<=X[k]) && (X[k]<=X[j])) { E.pb(mp(A[k],mp(1,k))); E.pb(mp(B[k],mp(0,k))); } int s=0; set S; sort(All(E)); Fox(k,Sz(E)) { if (E[k].y.x) S.insert(E[k].y.y); else S.erase(E[k].y.y); if ((Sz(S)==2) && (S.count(i)) && (S.count(j))) s+=E[k+1].x-E[k].x; } if (s) { D.addEdge(i,j,s); D.addEdge(j,i,s); } } } // compute min cut int ans=D.calc(N,N+1); if (ans>=1e7) ans=-1; // output printf("Case #%d: %d\n",t,ans); } return(0); }