#include <algorithm>
#include <cstring>
#include <iostream>
#include <stack>
#include <tuple>
#include <unordered_set>
#include <vector>
using namespace std;

const int LIM = 3005;
const int MAXN = LIM * LIM;

vector<int> adj[MAXN];
unordered_set<int> cutpoints;
vector<int> comp;
vector<vector<int>> bcc, bcc_adj;

void reset_edges() {
  for (int i = 0; i < MAXN; i++) {
    adj[i].clear();
  }
}

void add_edge(int u, int v) {
  adj[u].push_back(v);
  adj[v].push_back(u);
}

void tarjan(int N) {
  cutpoints.clear();
  bcc.clear();
  comp.assign(N, -1);
  vector<int> vis(N), parent(N, -1), children(N), tin(N), pushed(N), low(N);
  vector<bool> is_cut(N);
  int curr_root = 0;
  stack<tuple<int, int, int>> dfs;
  stack<int> st;
  for (int i = 0; i < N; i++) {
    if (vis[i]) {
      continue;
    }
    vis[i] = ++curr_root;
    tin[i] = 0;
    int timer = 1;
    dfs.push({i, 0, 0});
    while (!dfs.empty()) {
      auto [u, j, t] = dfs.top();
      low[u] = t;
      if (!pushed[u]) {
        st.push(u);
        pushed[u] = 1;
      }
      if (j == (int)adj[u].size()) {
        if ((parent[u] == -1 && children[u] >= 2) ||
            (parent[u] != -1 && is_cut[u])) {
          cutpoints.insert(u);
        }
        if (t >= tin[u]) {
          vector<int> component;
          do {
            int v = st.top();
            component.push_back(v);
            comp[v] = bcc.size();
            st.pop();
          } while (comp[u] == -1);
          bcc.push_back(component);
        }
        dfs.pop();
        continue;
      }
      int v = adj[u][j];
      if (parent[u] == v) {
        get<1>(dfs.top())++;
        continue;
      }
      if (vis[v] == 0) {
        vis[v] = curr_root;
        parent[v] = u;
        children[u]++;
        dfs.push({v, 0, timer});
        tin[v] = timer++;
        continue;
      }
      is_cut[u] = is_cut[u] || low[v] >= tin[u];
      if (vis[v] == curr_root && comp[v] == -1 && low[v] < t) {
        get<2>(dfs.top()) = low[v];
      }
      get<1>(dfs.top())++;
    }
  }
  bcc_adj.assign(bcc.size(), {});
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < (int)adj[i].size(); j++) {
      if (comp[i] != comp[adj[i][j]]) {
        bcc_adj[comp[i]].push_back(comp[adj[i][j]]);
      }
    }
  }
}

template <class Value>
class LinkCut {
  struct Node {
    int ch[2] = {0, 0}, p = 0;
    Value self = 0, path = 0;  // Path aggregates
    Value sub = 0, vir = 0;    // Subtree aggregates
    bool flip = 0;             // Lazy tags
  };

  vector<Node> T;

  void push(int x) {
    if (x == 0 || !T[x].flip) {
      return;
    }
    int l = T[x].ch[0], r = T[x].ch[1];
    T[l].flip ^= 1;
    T[r].flip ^= 1;
    swap(T[x].ch[0], T[x].ch[1]);
    T[x].flip = 0;
  }

  void pull(int x) {
    int l = T[x].ch[0], r = T[x].ch[1];
    push(l);
    push(r);
    T[x].path = T[l].path + T[x].self + T[r].path;
    T[x].sub = T[x].vir + T[l].sub + T[r].sub + T[x].self;
  }

  void set(int x, int d, int y) {
    T[x].ch[d] = y;
    T[y].p = x;
    pull(x);
  }

  void splay(int x) {
    auto dir = [&](int x) {
      int p = T[x].p;
      if (p == 0) {
        return -1;
      }
      return T[p].ch[0] == x ? 0 : T[p].ch[1] == x ? 1 : -1;
    };
    auto rotate = [&](int x) {
      int y = T[x].p, z = T[y].p, dx = dir(x), dy = dir(y);
      set(y, dx, T[x].ch[!dx]);
      set(x, !dx, y);
      if (~dy) {
        set(z, dy, x);
      }
      T[x].p = z;
    };
    for (push(x); ~dir(x);) {
      int y = T[x].p, z = T[y].p;
      push(z);
      push(y);
      push(x);
      int dx = dir(x), dy = dir(y);
      if (~dy) {
        rotate(dx != dy ? x : y);
      }
      rotate(x);
    }
  }

  int access(int x) {
    int v = 0;
    for (int u = x; u != 0; u = T[u].p) {
      splay(u);
      int &ov = T[u].ch[1];
      T[u].vir += T[ov].sub;
      T[u].vir -= T[v].sub;
      ov = v;
      pull(u);
      v = u;
    }
    splay(x);
    return v;
  }

  void reroot(int x) {
    access(x);
    T[x].flip ^= 1;
    push(x);
  }

 public:
  LinkCut(int n = 0) : T(n + 1) {}

  void Init(int u, Value v) {
    T[++u].self = v;
    pull(u);
  }

  void Reset(int n) {
    T.clear();
    T.resize(n + 1);
  }

  void Link(int u, int v) {
    if (u == v || LCA(u, v) != -1) {
      return;
    }
    reroot(++u);
    access(++v);
    T[v].vir += T[u].sub;
    T[u].p = v;
    pull(v);
  }

  void Cut(int u, int v) {
    if (u == v || LCA(u, v) == -1) {
      return;
    }
    reroot(++u);
    access(++v);
    T[v].ch[0] = T[u].p = 0;
    pull(v);
  }

  // Rooted tree LCA. Returns -1 if u and v aren't connected.
  int LCA(int u, int v) {
    if (++u == ++v) {
      return u;
    }
    access(u);
    int ret = access(v);
    return T[u].p ? ret : -1;
  }

  // Query subtree of u where v is outside the subtree.
  // Pass u = v to get the aggregate for the entire tree containing u.
  Value Subtree(int u, int v) {
    reroot(++v);
    access(++u);
    return T[u].vir + T[u].self;
  }

  Value Path(int u, int v) {
    reroot(++u);
    access(++v);
    return T[v].path;
  }

  void Update(int u, Value v) {
    access(++u);
    T[u].self = v;
    pull(u);
  }
};

// Main algorithm.

int R, C;
int G[LIM][LIM];
LinkCut<int> lcf;

inline int getn(int r, int c) { return r * C + c; }
inline int getr(int n) { return n / C; }
inline int getc(int n) { return n % C; }

// Size of group connected to (r2, c2) after swapping (r1, c1) to (r2, c2).
int num_cleared(int r1, int c1, int r2, int c2) {
  int res = 0;
  int u = getn(r1, c1), cu = comp[u];
  // If u is a cutpoint, disconnect it from all neighboring BCCs.
  if (cutpoints.count(u)) {
    for (int v : adj[u]) {
      int cv = comp[v];
      if (cu != cv) {
        lcf.Cut(cu, cv);
      }
    }
  }
  // Get a representative for each neighboring group of (r2, c2).
  unordered_set<int> seen_groups;
  bool seen_orig = false;  // Whether we've seen the original group of cu.
  for (auto [dr, dc] : {pair{-1, 0}, {0, 1}, {1, 0}, {0, -1}}) {
    int r3 = r2 + dr, c3 = c2 + dc;
    if (r3 < 0 || r3 >= R || c3 < 0 || c3 >= C) {
      continue;
    }
    if (!(r1 == r3 && c1 == c3) && G[r1][c1] == G[r3][c3]) {
      int cv = comp[getn(r3, c3)];
      bool seen = false;  // Have we seen the same group?
      for (int cmp : seen_groups) {
        if (lcf.LCA(cv, cmp) != -1) {
          seen = true;
          break;
        }
      }
      if (!seen) {
        if (lcf.LCA(cu, cv) != -1) {
          seen_orig = true;
        }
        res += lcf.Subtree(cv, cv);
        seen_groups.insert(cv);
      }
    }
  }
  // If we didn't encounter the original component, add 1 for the cell itself.
  if (!seen_orig) {
    res++;
  }
  // Undo disconnections.
  if (cutpoints.count(u)) {
    for (int v : adj[u]) {
      int cv = comp[v];
      if (cu != cv) {
        lcf.Link(cu, cv);
      }
    }
  }
  return res >= 3 ? res : 0;
}

long long solve() {
  reset_edges();
  // Build graph.
  for (int r = 0; r < R; r++) {
    for (int c = 0; c < C; c++) {
      for (auto [dr, dc] : {pair{0, 1}, {1, 0}}) {
        int r2 = r + dr, c2 = c + dc;
        if (r2 < 0 || r2 >= R || c2 < 0 || c2 >= C) {
          continue;
        }
        if (G[r][c] == G[r2][c2]) {
          add_edge(getn(r, c), getn(r2, c2));
        }
      }
    }
  }
  // Compute BCC and block forest.
  tarjan(R * C);
  int bcc_nodes = (int)bcc.size();
  // Create link-cut forest from BCC.
  lcf.Reset(bcc_nodes);
  for (int i = 0; i < bcc_nodes; i++) {
    lcf.Init(i, bcc[i].size());
  }
  for (int i = 0; i < bcc_nodes; i++) {
    for (int j : bcc_adj[i]) {
      lcf.Link(i, j);
    }
  }
  // Try swapping each neighbor.
  long long ans = 0;
  for (int r = 0; r < R; r++) {
    for (int c = 0; c < C; c++) {
      // Only check right and bottom for ordered pairs.
      for (auto [dr, dc] : {pair{0, 1}, {1, 0}}) {
        int r2 = r + dr, c2 = c + dc;
        if (r2 < 0 || r2 >= R || c2 < 0 || c2 >= C) {
          continue;
        }
        if (G[r][c] != G[r2][c2]) {
          ans += num_cleared(r, c, r2, c2) + num_cleared(r2, c2, r, c);
        }
      }
    }
  }
  return 2 * ans;
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr);
  int T;
  cin >> T;
  for (int t = 1; t <= T; t++) {
    memset(G, 0, sizeof G);
    cin >> R >> C;
    for (int r = 0; r < R; r++) {
      for (int c = 0; c < C; c++) {
        cin >> G[r][c];
      }
    }
    cout << "Case #" << t << ": " << solve() << endl;
  }
  return 0;
}