Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2017 /finals /strolls.cpp
wjomlex's picture
2017 Problems
7acee6b verified
// Hacker Cup 2017
// Final Round
// Fox Strolls
// Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
bool Read(int &x)
{
char c,r=0,n=0;
x=0;
for(;;)
{
c=GETCHAR();
if ((c<0) && (!r))
return(0);
if ((c=='-') && (!r))
n=1;
else
if ((c>='0') && (c<='9'))
x=x*10+c-'0',r=1;
else
if (r)
break;
}
if (n)
x=-x;
return(1);
}
#define LIM 500000
int main()
{
// vars
int T,t;
int N;
int i,j,a,b,h;
LL ans1,ans2;
static int H[LIM];
static PR P[LIM];
stack<PR> ST;
set<int> S;
set<int>::iterator I;
// testcase loop
Read(T);
Fox1(t,T)
{
// input
Read(N);
Fox(i,N)
{
Read(H[i]);
P[i]=mp(H[i],i);
}
// PART 1: sum of distances
ans1=0;
// get base sum assuming no bridges
Fox(i,N)
ans1+=H[i];
ans1*=N-1;
Fox1(i,N-1)
ans1+=(LL)i*(N-i);
// process trees bottom-to-top
sort(P,P+N);
S.clear();
S.insert(-1);
S.insert(N);
Fox(i,N)
{
h=P[i].x;
j=P[i].y;
// find interval of paths having this as their shortest tree
I=S.lower_bound(j);
b=*I - 1;
I--;
a=*I + 1;
// subtract total distance saved by bridges
ans1-=(LL)h*2*((LL)(j-a)*(b-j) + (b-a));
// insert this tree
S.insert(j);
}
// PART 2: number of bridges
ans2=0;
// process trees left-to-right
while (!ST.empty())
ST.pop();
ST.push(mp(0,0));
Fox1(i,N-1)
if (H[i]>=H[i-1])
{
// at least as high as envelope's highest point, so build single bridge backwards
if (ST.top().x==H[i-1])
ST.pop();
ST.push(mp(H[i-1],i));
ans2++;
}
else
{
// clip off higher parts of envelope
j=i-1;
while (ST.top().x>H[i])
j=ST.top().y,ST.pop();
// build row of bridges back across, and update envelope
if (!ST.top().x)
ans2+=i-j;
else
{
ans2+=i-ST.top().y;
h=ST.top().x,ST.pop();
if (H[i]!=h)
ST.push(mp(h,j));
}
ST.push(mp(H[i],i));
}
// output
printf("Case #%d: %lld %lld\n",t,ans1,ans2);
}
return(0);
}