Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2017 /finals /moles.cpp
wjomlex's picture
2017 Problems
7acee6b verified
// Hacker Cup 2017
// Final Round
// Fox Moles
// Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x<0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x*x); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
bool Read(int &x)
{
char c,r=0,n=0;
x=0;
for(;;)
{
c=getchar();
if ((c<0) && (!r))
return(0);
if ((c=='-') && (!r))
n=1;
else
if ((c>='0') && (c<='9'))
x=x*10+c-'0',r=1;
else
if (r)
break;
}
if (n)
x=-x;
return(1);
}
#define LIM 900009
int K,A,B;
map<int,int> M;
vector<int> con[LIM],con2[LIM];
bool col0[LIM];
int col[LIM],ind[LIM],P1[LIM],P2[LIM],dist[LIM];
int Make(int i)
{
if (M.count(i))
return(M[i]);
return(M[i]=K++);
}
bool DFS(int i,int c)
{
// conflict?
if ((col0[i]) && (c) || (col[i]>=0) && (c!=col[i]))
return(0);
// already coloured?
if (col[i]>=0)
return(1);
// colour node and its neighbours
col[i]=c;
int j;
Fox(j,Sz(con[i]))
if (!DFS(con[i][j],1-c))
return(0);
return(1);
}
bool MatchBFS()
{
int i,a,b,a2;
queue<int> Q;
Fill(dist,60);
Fox(a,A)
if (P1[a]<0)
dist[a]=0,Q.push(a);
while (!Q.empty())
{
a=Q.front(),Q.pop();
if (dist[a]<dist[A])
Fox(i,Sz(con2[a]))
{
b=con2[a][i];
a2=P2[b];
if (dist[a2]>=INF)
dist[a2]=dist[a]+1,Q.push(a2);
}
}
return(dist[A]<INF);
}
bool MatchDFS(int a)
{
if (a==A)
return(1);
int i,b,a2;
Fox(i,Sz(con2[a]))
{
b=con2[a][i];
a2=P2[b];
if ((dist[a2]==dist[a]+1) && (MatchDFS(a2)))
{
P1[a]=b;
P2[b]=a;
return(1);
}
}
dist[a]=INF;
return(0);
}
int MaxMatching()
{
int a,b,m=0;
Fill(P1,-1);
Fox(b,B)
P2[b]=A;
while (MatchBFS())
{
Fox(a,A)
if ((P1[a]<0) && (MatchDFS(a)))
m++;
}
return(m);
}
int main()
{
// vars
int T,t;
int N=0;
int i,j,a,b,p,r,z,ans;
// testcase loop
Read(T);
Fox1(t,T)
{
// init
Fox(i,K)
con[i].clear();
Fox(i,A)
con2[i].clear();
K=0;
M.clear();
Fill(col0,0);
Fill(col,-1);
Fill(ind,-1);
Fill(P1,-1);
Fill(P2,-1);
// input
Read(N);
while (N--)
{
Read(p),Read(r);
i=Make(p),a=Make(p-r),b=Make(p+r);
col0[i]=1;
con[a].pb(b);
con[b].pb(a);
}
// attempt to 2-color the graph (initially just from forced nodes)
Fox(z,2)
Fox(i,K)
if (col[i]<0)
{
if ((!z) && (!col0[i]))
continue;
if (!DFS(i,0))
{
ans=-1;
goto Done;
}
}
// construct the bipartite graph, ignoring forced nodes
A=B=0;
Fox(i,K)
if (!col0[i])
{
Fox(j,Sz(con[i]))
if (col0[con[i][j]])
goto Skip;
if (!col[i])
ind[i]=A++;
else
ind[i]=B++;
Skip:;
}
Fox(i,K)
if ((ind[i]>=0) && (!col[i]))
{
a=ind[i];
Fox(j,Sz(con[i]))
{
b=ind[con[i][j]];
if (b>=0)
con2[a].pb(b);
}
}
ans=A+B-MaxMatching()+1;
// output
Done:;
printf("Case #%d: %d\n",t,ans);
}
return(0);
}